
Celestial Mechanics – Solutions
Alexander V. Krivov & Tobias Stein1

Unit 13

Problem 13.1

Using the formula for the Legendre polynomials,
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in the case of an external perturber we derived in the lecture
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and found the disturbing function to be
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(The k = 0 term disappeared because it is independent of r and the k = 1 term cancels with the indirect
term of R.)

For an internal perturber, we shall use expansion in powers of r′/r rather than r/r′:
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and the disturbing function for the internal perturber reads
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Expansion (2) is similar to (1), except that it contains two additional terms.

Bonus problem 13.2

Neglecting the variations of coefficients j, one can give a lower limit for the number of of terms just by
calculating the number of variations for the exponents of e, e′, i, and i′. Since the only conditions are
k1 + k2 + k3 + k4 ≤ n and k1,k2,k3,k4 ≥ 0, this number of terms is given by
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∑
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This can be solved step by step, using (e.g., BRONSTEIN et al.: Taschenbuch der Mathematik):
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We find
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Comparing equations (3), (4), (5), and (6), we can guess the recursion and derive
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So, for n = 7, the result is N = 330. The actual number of 7th-order terms that Le Verrier found was 469.
The discrepancy is due to the fact that not only the exponents k can be varied but also the frequencies j.
The case known from the lecture – expansion in e to the order of e2 – shows that the above estimate is
not always a good estimate: one would obtain N = 15 for n = 2, which is wrong by more than a factor
of 2.

Problem 13.3

As covered in the lecture, evolution if complex eccentricity (to 2nd order e and I) is given by

z = ef exp[iϖ ]︸ ︷︷ ︸
const

+ep exp[i(At +β )], (7)

where the oscillatory term has amplitude ep and phase shift β . The angular frequency is
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3, (8)

where n = 2π/P is Earth’s Kepler frequency, P = 1 yr the orbital period, M′ the perturber’s mass, M�
the Solar mass, α = a/a′ the ratio of semi-major axes of Earth vs perturber, and b(α) ≈ 3α a Laplace
coefficient. For αJup = 1/5.2 and M′Jup/M� = 9.5×10−4, we find

AJup = 32×10−6 rad/yr = 1.8×10−3 ◦/yr =
360°

0.2 Myr
. (9)

3



Jupiter induces secular precession with a full period of 0.2 Myr. For Saturn’s αSat = 1/9.6 and M′Sat/M�=
2.9×10−4, we find

ASat = 1.5×10−6 rad/yr = 8.9×10−5 ◦/yr =
360°

4 Myr
, (10)

corresponding to a period of 4 Myr.

4


