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Unit 11

Problem 11.1

In the lecture it was shown that

〈
Ω̇
〉
=− 3ν cos I

κa7/2(1− e2)2

and

〈ω̇〉=+
6ν
(
1− 5

4 sin2 I
)

κa7/2(1− e2)2 .

The resulting orbit-averaged change rate of the longitude of periapsis, ϖ = Ω+ω , is

〈ϖ̇〉=
〈
Ω̇
〉
+ 〈ω̇〉=+

3ν

κa7/2(1− e2)2

(
−cos I +2− 5

2 sin2 I︸ ︷︷ ︸
=1−cos2 I

)
.

This change rate vanishes if

−cos I +2− 5
2

(
1− cos2 I

)
= 0

−2
5 cos I− 1

5 + cos2 I = 0 (quadratic equation)

cos I = 1
5 ±
√

1
25 +

1
5

cos I =
1±
√

6
5

I ≈
{

46.4°
106.9°

Problem 11.2

From the Poynting-Robertson force

~FPR =−S0

r2

(
2ṙ
c
~er +

rθ̇

c
~eθ

)
,

we find the radial and the tangential perturbing force to be

S =~er~FPR =−2S0ṙ
cr2 and T =~eθ

~FPR =−S0θ̇

rc
, (1)
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respectively. We now write down the Gauss perturbation equation for ȧ:

ȧ = 2a2[esinθ S′+(1+ ecosθ)︸ ︷︷ ︸
p/r

T ′]

S′ =
S

κ
√

p
and T ′ =

T
κ
√

p
: =

2a2

κ
√

p

[
Sesinθ +T

p
r

]
(2)

Eq. (1) : =− 2a2S0

cκ
√

p

[
2ṙ
r2 esinθ +

pθ̇

r2

]
ṙ =

r2

p
esinθ θ̇ and r2

θ̇ = κ
√

p : =− 2a2S0

cκ
√

p

[
2κ
√

pr2 e2 sin2
θ +

κ p3/2

r4

]

=−2S0

cp

[
2a2

r2 e2 sin2
θ +

a2 p2

r4

]
sin2

θ =
1
2
[1− cos(2θ)] : =−2S0

cp

[
e2 a2

r2 − e2 a2

r2 cos(2θ)+
a4

r4 (1− e2)2
]
.

The average of that change is

〈ȧ〉=− 2S0

2πcp

2π∫
0

[
e2 a2

r2︸︷︷︸
e2X−2,0

0

−e2 a2

r2 cos(2θ)︸ ︷︷ ︸
e2X−2,2

0

+
a4

r4

(
1− e2)2︸ ︷︷ ︸

X−4,0
0 (1−e2)2

]
dM,

From the lecture and Problem 9.1, we know these Hansen coefficients:

X−2,0
0 =

1√
1− e2

,

X−2,2
0 = 0,

X−4,0
0 =

1+ e2/2
(1− e2)5/2 ,

we obtain

〈ȧ〉=−S0

ca
2+3e2

(1− e2)3/2 .

—————————————-
Bonus Problem
Now we can estimate S0 to get some numbers for 〈ȧ〉. To this end, we consider an ideally absorbing,
spherical particle with a radius s and a density ρ . It has the mass m = (4/3)πρs3 and cross section
σ = πs2.
Using the stellar luminosity L, the radiation power that the particle intercepts from the star is

P =
σL

4πr2 .

We have

S0

r2 =
1
m

P
c
=

Ls2

4mcr2
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and we find

S0 =
Ls2

4mc
,

〈ȧ〉=− Ls2

4amc2
2+3e2

(1− e2)3/2 =− 3L
16πρasc2

2+3e2

(1− e2)3/2 .

This we can rewrite in typical units in the solar system:

〈ȧ〉=−0.36
2+3e2

(1− e2)3/2

L
L�

g cm−3

ρ

µm
s

au
a

au
kyr

(3)

For a particle with s = 1µm and ρ = 1g cm−3 in a circular orbit (e = 0) around the sun at a distance of
1au, the Poynting-Robertson lifetime is given by

TPR ≡
∣∣∣∣ a
〈ȧ〉

∣∣∣∣≈ 1388
L�
L

ρ

g cm−3
s

µm

( a
au

)2
yr = 1388yr,

which means that such a particle would spiral from an Earth orbit towards the Sun in a few thousand
years.
That Poynting-Robertson time is proportional to a2 and to s. Therefore, even for a = 30au and s =
100µm, it is “just” a few hundred million years, i.e. much less that the age of the Solar System. We
conclude that the interplanetary dust particles cannot be primordial. In fact, studies show that even
grains much larger than∼ 1mm cannot be primordial – they will be eliminated by another effect, namely
mutual collisions.
Where do they come from? They are continuously supplied by comets and asteroids. By the way, it is
still the matter of hot debate whether the cometary or the asteroidal sources are more important.
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