
Celestial Mechanics – Solutions
Alexander V. Krivov & Tobias Stein1

Unit 10

Problem 10.1

The Hansen coefficients are defined through

Xn,m
0 ≡ 1

2π

2π∫
0

( r
a

)n
cos(mθ)dM.

In order solve the integral, we need to bring everything to a common integration variable. The best choice
can vary, depending on the problem. We start with true anomaly θ : from

r2 dθ

dt
= κ

√
a(1− e2)︸ ︷︷ ︸

Kepler’s 2nd

and
dM
dt

=
κ

a3/2︸ ︷︷ ︸
variant of Kepler’s 3rd

,

we find

a2

r2 dM =
dθ√
1− e2

,

so that

Xn,m
0 ≡ 1

2π
√

1− e2

2π∫
0

( r
a

)n+2
cos(mθ)dθ . (1)

Using

r =
a(1− e2)

1+ ecosθ
,

Eq. (1) takes the form

Xn,m
0 ≡ 1

2π
(1− e2)n+3/2

2π∫
0

(1+ ecosθ)−n−2 cos(mθ)dθ .
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The Hansen coefficients in question are are:

X−2,2
0 =

1
2π(1− e2)1/2

2π∫
0

cos(2θ)dθ = 0

X−3,1
0 =

1
2π(1− e2)3/2

2π∫
0

(1+ ecosθ)cosθ dθ

=
1

2π(1− e2)3/2

2π∫
0

( cosθ︸ ︷︷ ︸∫
...=0

+ ecos2
θ︸ ︷︷ ︸∫

...=π

) dθ

=
e

2(1− e2)3/2

X−4,0
0 =

1
2π(1− e2)5/2

2π∫
0

(1+ ecosθ)2dθ

=
1

2π(1− e2)5/2

2π∫
0

( 1︸︷︷︸∫
...=2π

+ 2ecosθ︸ ︷︷ ︸∫
...=0

+ e2 cos2
θ︸ ︷︷ ︸∫

...=π

)dθ

=
1+ e2/2
(1− e2)5/2 .

All cosine terms are even with respect to the midpoint (π) of the integration interval. Hence, they can be
rewritten as 2

∫
π

0 . . .dθ . While cos is odd with respect to the new midpoint (π/2), cos2 is even, resulting
in all terms with even exponents being even (with respect to π/2) and all terms with odd exponents being
odd. The integral over the odd terms from 0 to π/2 vanishes, while the corresponding integral over the
even integrals may be non-zero. Partial integration can be used for these even terms.

Problem 10.2

The θ integral for X2,0
0 is

(1− e2)7/2

2π

2π∫
0

1
(1+ ecosθ)4 dθ ,

which is harder to solve directly. The clue to finding this Hansen coefficient is to make another trans-
formation of variables: you have to go from M to E (rather than to θ as in the previous problem).
Differentiating the Kepler equation, E− esinE = M, we find

dM = (1− ecosE) dE =
r
a

dE.
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Therefore,

X2,0
0 =

1
2π

2π∫
0

( r
a

)2
dM

=
1

2π

2π∫
0

(1− ecosE)3dE

=
1

2π

2π∫
0

(
1︸︷︷︸∫

...=2π

− 3ecosE︸ ︷︷ ︸∫
...=0

+ 3e2 cos2 E︸ ︷︷ ︸∫
...=π

− e3 cos3 E︸ ︷︷ ︸∫
...=0

)
dE

=
1

2π

[
2π +3e2

π
]

= 1+
3e2

2
.

Problem 10.3

As in the previous problem, we rewrite

Xn,0
0 ≡ 1

2π

2π∫
0

( r
a

)n
dM

as

Xn,0
0 =

1
2π

2π∫
0

(1− ecosE)n+1dE.

Using the binomial expansion,

(a+b)n =
n

∑
k=0

(
n
k

)
an−kbk,

where (
n
k

)
=

n!
k!(n− k)!

(0≤ k ≤ n)

are the binomial coefficients and a = 1, b =−ecosE, we find

Xn,0
0 =

1
2π

2π∫
0

n+1

∑
k=0

(
n+1

k

)
(−ecosE)kdE.

By including all terms with k ≤ 2, we obtain e2 accuracy:

Xn,0
0 =

1
2π

2π∫
0

[(
n+1

0

)
︸ ︷︷ ︸

=1

−
(

n+1
1

)
ecosE︸ ︷︷ ︸∫

...=0

+

(
n+1

2

)
︸ ︷︷ ︸
= n(n+1)

2

e2 cos2 E︸ ︷︷ ︸∫
...=π

]
dE +o(e2)

= 1+
n(n+1)

4
e2 +o(e2).

For n = 2, the o(e2) terms vanish and the result agrees with the solution of the previous problem.
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Alternatively, we could have expanded f (e) = (1− ecosE)n+1 in a Taylor series around e = 0:

f (e) = f (0)+ e f ′(0)+
e2

2
f ′′(0)+o(e2) =

∞

∑
k=0

f (k)(0)
k!

ek,

where

f ′(e) =−(n+1)(1− ecosE)n cosE, f ′(0) =−(n+1)cosE

f ′′(e) = n(n+1)(1− ecosE)n−1 cos2 E, f ′′(0) = n(n+1)cos2 E
...

...

f (k)(e) =
(n+1)!

(n+1− k)!
(1− ecosE)n+1−k(−cosE)k, f (k)(0) =

(n+1)!
(n+1− k)!

(−cosE)k,

with k ≤ n+1, such that

f (e) = 1− e(n+1)cosE +
n(n+1)

2
e2 cos2 E +o(e2)

=
n+1

∑
k=0

(n+1)!
(n+1− k)! k!

(−ecosE)k

=
n+1

∑
k=0

(
n+1

k

)
(−ecosE)k.

Eventually, we are back at

Xn,0
0 =

1
2π

2π∫
0

[
1− e(n+1)cosE +

n(n+1)
2

e2 cos2 E +o(e2)

]
dE = 1+

n(n+1)
4

e2 +o(e2).
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