Celestial Mechanics — Solutions
Alexander V. Krivov & Tobias Stein!

Unit 10

Problem 10.1

The Hansen coefficients are defined through

2
1
X" 2—/ cos (mB)dM.
0

In order solve the integral, we need to bring everything to a common integration variable. The best choice
can vary, depending on the problem. We start with true anomaly 0: from
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The Hansen coefficients in question are are:
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All cosine terms are even with respect to the midpoint () of the integration interval. Hence, they can be
rewritten as 2 [ ...d6. While cos is odd with respect to the new midpoint (7/2), cos? is even, resulting
in all terms with even exponents being even (with respect to 7/2) and all terms with odd exponents being
odd. The integral over the odd terms from O to 7 /2 vanishes, while the corresponding integral over the
even integrals may be non-zero. Partial integration can be used for these even terms.

Problem 10.2

The 0 integral for Xg Vs
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which is harder to solve directly. The clue to finding this Hansen coefficient is to make another trans-
formation of variables: you have to go from M to E (rather than to 6 as in the previous problem).
Differentiating the Kepler equation, E —esinE = M, we find

dM = (1 —ecosE) dE = _dE.
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Therefore,
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Problem 10.3

As in the previous problem, we rewrite
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Using the binomial expansion,

where
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are the binomial coefficients and a = 1, b = —ecosE, we find
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By including all terms with k < 2, we obtain e* accuracy:
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For n = 2, the o(e?) terms vanish and the result agrees with the solution of the previous problem.



Alternatively, we could have expanded f(e) = (1 —ecosE)"*! in a Taylor series around e = 0:
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