
Celestial Mechanics – Solutions
Alexander V. Krivov & Tobias Stein1

Unit 8

Problem 8.1

The semilatus rectum is defined through

p≡ a(1− e2),

and accordingly, its first derivative with respect to time is

ṗ = ȧ(1− e2)−2aeė =
ȧp
a
−2aeė.

(a) Using the known Gauss perturbation equations for ȧ and ė,

ȧ = 2a2 [esinθ S′+(1+ ecosθ)T ′
]
,

ė = psinθ S′+ p · (cosθ + cosE)T ′,

we find
ṗ = 2ap(1− ecosE)T ′ = 2prT ′.

(b) The Lagrange perturbation equations for p can be derived from

ȧ =
2
na

∂R
∂M

,

ė =
1− e2

ena2
∂R
∂M︸ ︷︷ ︸

= ȧp
2ea2

−
√

1− e2

ena2
∂R
∂ω

.

(1)

We obtain

ṗ =
ȧp
a
− ȧp

a︸ ︷︷ ︸
=0

+ 2

√
1− e2

na
∂R
∂ω

= 2
√

p
κ

∂R
∂ω

. (2)

Problem 8.2

Since the orbital motion is assumed to be circular, we can neglect the radial part of the drag force, S, and
the Gauss perturbation equation for the semimajor axis reduces to

ȧ = 2a2T ′,

where
T ′ =

T
κ
√

p
,
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and the azimuthal part of the specific drag force, T , is given by

T = ẍ =−Cdσρ ẋ2

2m
.

Therefore,

ȧ =−a2Cdσρ ẋ2

mκ
√

a
,

where we used the fact that p = a for e = 0. In addition, we know that the velocity ẋ equals the Keplerian
velocity:

ẋ =
κ√
a
.

We obtain

ȧ =−Cdσρκ
√

a
m

=−Cdσρ
√

GM⊕a
m

. (3)

We know that a= 400km+6373km≈ 7× 108 cm, ρ ≈ 10−15 g cm−3, and κ2 =GM⊕= 4×1020 cm3 s−2,
and we can estimate Cd ∼ 1, σ ∼ 30×30m2 ≈ 107 cm2, and m∼ 400t≈ 4×108 g. (Don’t worry if you
took, say, σ = 100m2 and m = 100t – it’s fine for a rough estimate.) Substituting the numbers into
Eq. (3), we find

ȧ≈−0.01 cm s−1,

which translates to an altitude loss of roughly 10 meters per day or about 300 meters per month.
Figure 1 shows the real evolution of the ISS’s (somewhat higher) altitude, with the height loss (between
the reboosts) in 2022 being (very roughly) consistent with our estimate. Our estimate for the cross section
σ is likely the dominant source of error.
From our estimate, it follows that if the air density were by two orders of magnitude higher (ρ ∼
10−12 g cm−3), the loss rate would be on the order of a few hundred kilometers per month — compara-
ble with the altitude itself. Obviously, space flight at atmospheric layers that thick would no longer be
possible. Figure 2 shows the output of a commonly used average model for Earth’s atmosphere (Source:
https://kauai.ccmc.gsfc.nasa.gov/instantrun/msis). The critical density of ρ ≈ 10−12 g cm−3

discussed above is reached at an altitude of ≈ 170km. There are indeed no satellites flying closer to the
Earth surface than that.
Figure 2 shows that the density in the upper atmosphere has strong diurnal and annual variations caused
by the varying solar irradiation. The 11-year solar activity cycle leads to the additional long-term varia-
tions by a factor of 10 seen in Fig. 3.
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Figure 1: “This plot shows the orbital height of the ISS over one year. Clearly visible are the re-boosts
which suddenly increase the height, and the gradual decay in between. The height is averaged over
one orbit, and the gradual decrease is caused by atmospheric drag. As can be seen from the plot, the
rate of descent is not constant and this variation is caused by changes in the density of the tenuous outer
atmosphere due mainly to solar activity.” (Source: www.heavens-above.com, top: 2011-12-07, bottom:
2022-12-12)
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Figure 2: Average mass density of the atmosphere over altitude for winter/summer and day/night at
moderate latitudes.
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Figure 3: Atmospheric mass densities in summer nights at altitudes of 340 km and 400 km between the
years 2000 to 2020 at moderate latitudes: strong correlation with solar activity.
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