
Celestial Mechanics – Solutions
Alexander V. Krivov & Tobias Stein1

Unit 4

Problem 4.1

Eccentric and mean anomaly are linked through Kepler’s equation:

M = E− esinE. (1)

As explained in the lecture, the simplest way to solve the equation for E is (fixed-point) iterations: solve
for (one of the occurrences of) E,

E = M+ esinE, (2)

insert the previous value on the right-hand side and obtain a new value on the left-hand side:

En+1 = M+ esinEn, (3)

As long as e < 1, the iterations converge, although rather slow for M ∼ π . Listing 1 presents a trivial
C program that performs those iterations, and Listing 2 contains the results. In some 15 iterations, the
accuracy is about 1 degree. The accuracy of 0.01◦ requires some 30 iterations. For M = 120° and e= 0.9,
the resulting eccentric anomaly is

E ≈ 147.62°.

As an alternative, we could use Newton’s method, which uses the slope of a function and iterates

xn+1 = xn−
f (x)
f ′(x)

(4)

to find the roots of function f (x). In our case, f and its roots are given by

f (E) = E− esinE−M = 0 (5)

and its derivative by

f ′(E) =
d f
dE

= 1− ecosE. (6)

If we replace line 16 in Listing 1 by the one in Listing 3, we find that Newton’s method converges more
quickly (see Listing 4), which is the case for most combinations of e and M. However, for e & 0.87 and
M . 30°, Newton’s method converges poorly or only by chance and the fixed-point iteration should be
preferred. Figure 1 illustrates the required number of iterations for the two methods. The secant method
(or “regula falsi”) converges well under all circumstances, but requires more lines of code.
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Listing 1: A simple C program to solve Kepler’s
equation

1 # i n c l u d e <s t d i o . h>
2 # i n c l u d e <math . h>
3
4 main ( )
5 {
6 double d e g r e e = a t a n ( 1 . 0 ) / 4 5 . 0 ;
7 double e , M, E , E1 ;
8
9 e = 0 . 9 ;

10 M = 120 .0* d e g r e e ;
11
12 E1 = M;
13 do
14 {
15 E = E1 ;
16 E1 = M + e * s i n ( E ) ;
17 p r i n t f ( ” %10.5 f\n ” , E1 / d e g r e e ) ;
18
19 } whi le ( f a b s ( E1 − E ) > 1 . 0 e −3* d e g r e e ) ;
20
21 }

Listing 2: The output of that C program
1 164 .65764
2 133 .64370
3 157 .31566
4 139 .88671
5 153 .22416
6 143 .23063
7 150 .86729
8 145 .10419
9 149 .50030

10 146 .17159
11 148 .70729
12 146 .78402
13 148 .24779
14 147 .13654
15 147 .98182
16 147 .33980
17 147 .82799
18 147 .45708
19 147 .73907
20 147 .52479
21 147 .68768
22 147 .56389
23 147 .65798
24 147 .58648
25 147 .64083
26 147 .59952
27 147 .63092
28 147 .60705
29 147 .62519
30 147 .61141
31 147 .62188
32 147 .61392
33 147 .61997
34 147 .61537
35 147 .61887
36 147 .61621
37 147 .61823
38 147 .61670
39 147 .61786
40 147 .61698

Listing 3: A simple C program to solve Kepler’s
equation with Newton’s method

1 # i n c l u d e <s t d i o . h>
2 # i n c l u d e <math . h>
3
4 main ( )
5 {
6 double d e g r e e = a t a n ( 1 . 0 ) / 4 5 . 0 ;
7 double e , M, E , E1 ;
8
9 e = 0 . 9 ;

10 M = 120 .0* d e g r e e ;
11
12 E1 = M;
13 do
14 {
15 E = E1 ;
16 E1 = E − ( E − M − e * s i n ( E ) ) / ( 1 . 0 − e * cos ( E ) ) ;
17 p r i n t f ( ” %10.5 f \n ” , E1 / d e g r e e ) ;
18 }
19 whi le ( f a b s ( E1 − E ) > 1 . 0 e −3* d e g r e e ) ;
20 }

Listing 4: The output with Newton’s method
1 150 .79837
2 147 .63979
3 147 .61736
4 147 .61736

The true anomaly θ can be found from two known formulas for the radial distance r:

r =
a(1− e2)

1+ ecosθ
and r = a(1− ecosE),

whence

cosθ =
1
e

[
(1− e2)

1− ecosE
−1
]
=

cosE− e
1− ecosE

.

The resulting true anomaly is between 0◦ and 180◦, because so is the eccentric anomaly:

θ ≈ 172.37◦.
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Figure 1: Required number of steps to reach an accuracy of 1×10−4 rad when solving Kepler’s equation
for E as a function of e and M. Two methods are compared: (left) fixed-point iteration, (right) Newton’s
method.

By the way, the relation between E and θ can be simplified by writing

1− cosθ =
(1+ e)(1− cosE)

1− ecosE
1+ cosθ =

(1− e)(1+ cosE)
1− ecosE

and using the double angle formulae, these equations can be written as

sin2 θ

2
=

(1+ e)
1− ecosE

sin2 E
2
, cos2 θ

2
=

(1− e)
1− ecosE

cos2 E
2
.

Hence, the relation is

tan
θ

2
=

√
1+ e
1− e

tan
E
2
.

Problem 4.2

For illustrative purposes, Let’s start with a fiducial comet with e = 0.7, I = 45°, Ω = 60°, ω = 70°, and
φ = 135°. Figure 2a shows the initial ellipse in the reference plane, with its perihelion orientated towards
the reference direction, arbitrarily chosen to coincide with the x axis. In the solar system, the plane is
the ecliptic plane and the direction is towards vernal equinox (�). The red line depicts the line of node
and the green line is the major axis of the ellipse. The thin black arrow shows the position vector of
the comet. In Fig. 2b the ellipse was rotated by the longitude of ascending node Ω with respect to the
reference direction and by the argument of pericenter ω with respect to the line of node. The last step
(Fig. 2c) is to rotate the ellipse around the line of node to apply the inclination. We can apply the same
steps for the actual comets Halley (Fig. 4) and Hale–Bopp (Fig. 3).
Fig. 5 shows the orbits of the comets and Earth to scale.

Bonus: we are interested in the time required to move from the current position to the aphelion,

∆t ≡ t(180°)− t(θcurrent). (7)
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Figure 2: Sketching the orbit of a fiducial comet with e = 0.7, I = 45°, Ω = 60°, ω = 70°, θ = 135°. (a)
Initial position of the ellipse. (b) Rotate orbit by ω and Ω. (c) Rotate around the line of nodes to apply
inclination I.
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Figure 3: Sketching the orbit of comet C/1995 O1 Hale-Bopp. (a) Initial position of the ellipse. (b)
Rotate orbit by ω and Ω. (c) Rotate around the line of nodes to apply inclination I = 89°.
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Figure 4: Sketching the orbit of comet 1P/Halley. (a) Initial position of the ellipse. (b) Rotate orbit by ω

and Ω. (c) Flip around the line of nodes to apply inclination I = 162°.
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Figure 5: The orbits of comets (red) Churyumov-Gerasimenko, (green) Halley, and (blue) Hale-Bopp
projected onto the ecliptic plane. Earth’s orbit is plotted in black. Solid arcs are above the ecliptic plane,
dotted arcs are below the ecliptic.

The time is related to mean anomaly via

M =
2π

P
(t−T )

M
π

P+T = t

=180°︷ ︸︸ ︷
M(θ = 180°)−M(θcurrent)

2π
P = ∆t, (8)

where T is the time of last perihelion passage and P = 2π
√

a3/(GMSun) the orbital period. The mean
anomaly M us related to the eccentric anomaly E via Kepler’s equation,

M = E− esinE, (9)

which in turn depends on the true anomaly θ via the two equations for a conic section:

r =
a(1− e2)

1+ ecosθ
= a(1− ecosE)

1− 1− e2

1+ ecosθ
= ecosE

arccos
[

1
e

(
1− 1− e2

1+ ecosθ

)]
= E

arccos
[

e+ cosθ

1+ ecosθ

]
= E. (10)
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From the values given for comet Halley, e = 0.968, a = 17.9 au, θcurrent = 179.97°, we obtain

P = 75.7 yr, (11)

E(θcurrent) = 179.765°, (12)

M(E(θcurrent)) = 179.537°, (13)

∆t = 0.097 yr ≈ 0.1 yr. (14)

Halley will reach its aphelion in late 2023. For Hale-Bopp’s e = 0.995, a = 177 au, θcurrent = 165°, we
obtain

P = 2355 yr, (15)

E(θcurrent) = 41.6°, (16)

M(E(θcurrent)) = 3.76°, (17)

∆t ≈ 1150 yr. (18)

While Hale-Bopp’s true anomaly appears already close to its aphelion value, its eccentric and mean
anomaly are still far from aphelion. The comet’s last perihelion passage actually happened in 1997, only
some 25 years ago.

Extra info: for M (and E and θ ) close to 180° we can define M′ ≡ π−M and E ′ = π−E and approx-
imate Kepler’s equation:

π−M = π−E + esinE

M′ = E ′+ esinE ′

= E ′+ e
[
E ′+O(E ′3)

]
≈ (1+ e)E ′ (19)

such that
M ≈ π− (1+ e)(π−E) = E− e(π−E). (20)

For e≈ 1, we find
(π−M)≈ 2(π−E). (21)

In a similar fashion, we can let θ ′ ≡ π−θ to find

cosθ = cos(π−θ
′) =−cosθ

′ ≈−1+
θ ′2

2
, (22)

and hence,

E = arccos
[

e−1+θ ′2/2
1− e+ eθ ′2/2

]
= arccos

[
−1+

(1+ e)θ ′2

2(1− e+ eθ ′2/2)

]
. (23)

Eq. (22) can be rewritten to

arccos
[
−1+

θ ′2

2

]
≈ π−θ

′ or arccos [−1+ x]≈ π−
√

2x, (24)

which leads us to

(π−E)≈

√
(1+ e)θ ′2

1− e+ eθ ′2/2
= θ

′

√
1+ e

1− e+ eθ ′2/2
≈ (π−θ)

√
2

1− e
, (25)

where the last approximation assumes θ ′� 1− e, such that

(π−M)≈ 2(π−θ)

√
2

1− e
. (26)
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Problem 4.3

Collision occurs if the distance becomes zero:

r(E) = a(1− ecosE) = 0 (27)

Obviously, in the elliptic case (0 ≤ e < 1 and a > 0), there is no real solution to that problem because
an ellipse never goes through its foci. However, we can find a solution for E(t) for complex instants of
time. Equation (27) has the form

cosE = b with b≡ 1/e. (28)

Noting that
eiE = cosE + isinE,

we find that

cosE =
eiE + e−iE

2
or

2cosE = x+
1
x
,

where we have put x≡ eiE . Equation (28) becomes a quadratic:

x2−2bx+1 = 0

and has two roots:
x = b±

√
b2−1.

or
eiE = b±

√
b2−1.

or
iE = i ·2πk+ ln

(
b±
√

b2−1
)
, (29)

the first term comes from 2π-periodicity of the exponential function eiE . Then,

E = 2πk− i ln
(

b±
√

b2−1
)
,

Since
b−
√

b2−1 =
[
b+
√

b2−1
]−1

,

we can re-write our result as
E = 2πk∓ i ln

(
b+
√

b2−1
)

or, remembering that b = 1/e,

E = 2πk∓ i ln

(
1
e
+

√
1
e2 −1

)
. (30)

The moments of collisions can be found from Kepler’s equation

E− esinE = n(t−T ) (31)

with n being the mean motion. We need sinE, which is easy to calculate from Eq. (28)

sinE =∓
√

1− cos2 E =∓
√

1− 1
e2 =∓1

e

√
e2−1 =∓ i

e

√
1− e2. (32)
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Now we substitute E from (30) and sinE from (32) into Kepler’s equation (31). With the correct combi-
nation of the signs (!) we obtain

2πk∓ i ln

(
1
e
+

√
1
e2 −1

)
± i
√

1− e2 = n(t−T ),

so that collisions take place at the time instants

t = T +
1
n

[
2πk∓ i ln

(
1
e
+

√
1
e2 −1

)
± i
√

1− e2

]
,

or, in a compact form,

t = T + k P∓ iβ
n
,

where P = 2π/n is the orbital period and we have denoted

β ≡ ln

(
1
e
+

√
1
e2 −1

)
−
√

1− e2

= ln
(

1+
√

1− e2
)
−
√

1− e2− lne.

It is easy to see that β is real and positive and β → ∞ for e→ 0.

The complex instants of collisions are plotted in Fig. 6.
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Figure 6: Instants of time (bold dots) in a complex plane at which collisions in the elliptic motion occur.
Here, we have set T = 0 (i.e., t = 0+0i corresponds to a pericenter passage).

Note: This exercise has practical use: the convergence radius of a Taylor series expansion for the ap-
proximation of a trajectory – e. g. for an asteroid – is equal to the minimum “temporal distance” to the
next singularity in the imaginary plane. Thus, an approximation over a time longer than this minimum
distance would diverge.
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