
Celestial Mechanics – Solutions
Alexander V. Krivov & Tobias Stein1

Unit 3

Problem 3.1

(a) The semimajor axes of the two planets can be obtained from Kepler’s 3rd law:

a
au

=

(
P
yr

)2/3

,

giving
aN = 1652/3 au = 30.1au and aP = 2482/3 au = 39.5au.

The minimum and the maximum distance on an elliptic orbit can be obtained from the equation that
describes the orbit,

r(θ) =
a(1− e2)

1+ ecosθ
,

and are given by
rmin = r(0) = a(1− e), rmax = r(π) = a(1+ e).

Thus, for Neptune’s circular orbit we have

aN = rN,min = rN,max = 30.1au,

whereas for Pluto’s eccentric orbit

rP,min = 29.6au, rP,max = 49.3au.

(b) So, we find that rP,min < rN,max while rP,max > rN,min. The two orbits cross each other in a 2D
projection onto the ecliptic plane.
However, Pluto’s real orbit is inclined by 17◦ (Neptune: 1.7◦) and the two orbits do not cross each other
in three dimensions. (Extra info: Even if they did, Pluto would not undergo close encounters because his
orbital motion is locked in Neptune’s outer 3:2 resonance. Thus Pluto is “safe”.)

(c) Kepler’s 2nd law, angular momentum conservation, helps us here. We know from class that the
angular momentum constant is given by

c = r2
θ̇ . (1)

In addition we know from the energy integral,

v2

2
− κ2

r
=

h
2

and
v2

2
=

h
2
+

κ2

r
(2)

that the orbital velocity, v, is minimal for maximum distance, rmax, and vice versa, v is maximal for rmin.
At these two locations, the apocenter and the pericenter, the radial velocity vanishes, ṙ = 0, and we find

v(r = rmin/max) = rθ̇ =
c
r
. (3)

1tobias.stein@uni-jena.de

1



Thus, the ratio of the extremal velocities is

vmax

vmin
=

v(rmin)

v(rmax)
=

rmax

rmin
=

1+ e
1− e

≈ 5
3
. (4)

Extra info: if we were interested in the absolute values of vmin and vmax we could use Kepler’s 2nd law
to express the area of the orbital ellipse (see lecture),

c
2

P = πab, (5)

with the orbital period P = 2π
√

a3/κ2 and the semi-minor axis b = a
√

1− e2, we find

c =
2πab

P
=
√

aκ2(1− e2), (6)

and hence,

vmax/min =
2πa2

√
1− e2

Prmin/max
. (7)

With rmin = a(1− e) and rmax = a(1+ e), we end up at vmax = 6.1 km/s and vmin = 3.7 km/s.

Problem 3.2

We know from the lectures that the semi-major axis a of an orbit is linked with the constant total energy:

v2

2
− κ2

r
=

h
2
=−κ2

2a
, (8)

where v is the launch velocity, r the asteroid’s radius, and κ2 = G(M +m) ≈ GM, with M the mass of
the asteroid and m the mass of the stone. Solving for a and introducing the escape velocity v2

esc ≡ 2κ2/r,
we obtain

a =
−κ2

2
v2

2 −
κ2

r

=
r/2

1− rv2

2κ2

=
r/2

1− (v/vesc)2 . (9)

The semi-major axis does not depend on the launch angle. When the escape velocity is reached, the
orbit’s extent becomes infinite.
We also know that the eccentricity is related to the angular momentum constant c (and the energy con-
stant):

κ
4(e2−1) = hc2 (see extra info below), (10)

which we can solve for e and obtain

e =

√
1+

hc2

κ4 . (11)

From~c =~r×~̇r we can arrive at an equation for c (see lecture),

c = r2
θ̇ , (12)

which illustrates that the angular momentum depends only on the tangential velocity component, rθ̇ .
Assuming a launch angle α relative to the surface, we find

rθ̇ = vcosα and c = rvcosα, (13)

and hence,

e =

√
1+

hr2v2 cos2 α

κ4 =

√
1−2

r
2κ2︸︷︷︸
1/v2

esc

r
a

v2 cos2 α, (14)
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where we have already substituted h = −κ2/a and can further substitute vesc and our result from above
for a,

r
a
= 2

[
1− v2

v2
esc

]
, (15)

to obtain

e =

√
1−4

[
1− v2

v2
esc

]
v2

v2
esc

cos2 α. (16)

For v→ vesc the eccentricity behaves as e→ 1. For v > vesc, we find e > 1 and a < 0, which corresponds
to a normal hyperbola. When we launch horizontally, α = 0, and at the right velocity, v = vesc/

√
2, the

stone is injected into a circular orbit (e = 0).

Bonus: The radius at which the stone touches the surface is given by the equation for an ellipse

r !
=

p
1+ ecosθ

, (17)

which can have up to two solutions for θ , θ↑ > 0 for the point where we throw the stone, θ↓ < 2π for the
point where it falls back down:

θ�� = arccos
[

1
e

( p
r
−1
)]

. (18)

The stone is above the surface for θ↑ < θ < θ↓. Given that θ↓ = 2π−θ↑, the angular difference between
the two solutions is

∆θ = 2(π−θ↑) = 2
{

π− arccos
[

1
e

( p
r
−1
)]}

= 2arccos
[

1
e

(
1− p

r

)]
. (19)

The distance along the surface between the two points is then

x = 2r arccos
[

1
e

(
1− p

r

)]
. (20)

Extra info: equation (10) can be derived in the following way. Crossing the angular momentum vector
and the Laplace vector, we begin with

~c×~e = (~r×~̇r)×
(
~̇r×~c

κ2 −
~r
r

)
=

(~r×~̇r)× (~̇r×~c)
κ2︸ ︷︷ ︸
≡~A

− (~r×~̇r)×~r
r︸ ︷︷ ︸
≡~B

. (21)

We can now use the relation~a× (~b× ~d) =~b(~a · ~d)− ~d(~a ·~b) with~a = (~r×~̇r),~b =~̇r, and ~d =~c to obtain

~A = κ
−2{(~r×~̇r)× (~̇r×~c)

}
= κ

−2~̇r[(~r×~̇r︸︷︷︸
~c

) ·~c]−κ
−2~c[(~r×~̇r) ·~̇r︸ ︷︷ ︸

=0

]

= κ
−2c2~̇r, (22)

and for~a =~b =~r and ~d =~̇r,

~B = r−1(~r×~̇r)×~r
= −r−1~r(~r ·~̇r︸︷︷︸

rṙ

)+ r−1~̇r(~r ·~r︸︷︷︸
r2

)

= −ṙ~r+ r~̇r. (23)
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Using~a · (~b× ~d) =~b · (~d×~a) with~a =~c×~e,~b =~c, and ~d =~e, we proceed to consider

(~c×~e) · (~c×~e) =
[
κ
−2c2~̇r+ ṙ~r− r~̇r

]
·
[
κ
−2c2~̇r+ ṙ~r− r~̇r

]
~c · [~e× (~c×~e)] =

[(
κ
−2c2− r

)
~̇r+ ṙ~r

]
·
[(

κ
−2c2− r

)
~̇r+ ṙ~r

]
~c · [~c(~e ·~e)−~e(~e ·~c)] =

(
κ
−2c2− r

)2
v2 + ṙ2r2 +2

(
κ
−2c2− r

)
ṙ2r

(~c ·~c︸︷︷︸
=c2

)(~e ·~e︸︷︷︸
=e2

)− (~c ·~e︸︷︷︸
=0

)(~e ·~c︸︷︷︸
=0

) =
(
κ
−4c4−2κ

−2c2r+ r2)v2 +
(
2κ
−2c2r− r2) ṙ2. (24)

The left-hand side could be understood more easily, when considering that~c⊥~e implies |~c×~e|= |~c||~e|=
ce. For the right-hand side, the angular momentum constant, c = r2θ̇ , can now be used to express the
radial velocity in terms of orbital velocity,

ṙ2 = v2− r2
θ̇

2 = v2− c2r−2, (25)

which allows to simplify further

c2e2 =
(
κ
−4c4−2κ

−2c2r+ r2)v2 +
(
2κ
−2c2r− r2)(v2− c2r−2)

c2e2 = κ
−4c4v2−2κ

−2c4r−1 + c2

c2(e2−1) = κ
−4c4(v2−2κ

2r−1︸ ︷︷ ︸
≡h

)

κ
4(e2−1) = hc2, (26)

where h is the usual energy constant.
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