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Alexander V. Krivov & Tobias Stein1

Unit 2

Problem 2.1

The barycenter of the solar system is close to the common center of mass of the Sun and the most
massive planet, which is Jupiter. Let M� be the solar mass, R� its radius, MJ the Jupiter mass, and rJ its
heliocentric distance (the radius of its orbit). Further, denote by x the distance of the barycenter from the
center of the Sun.
Then,

M�x = MJ(rJ− x)

or

M�x≈MJrJ,

which we can re-write as

x
R�
≈ MJ

M�

rJ

R�
.

This shows that the barycenter’s distance from the solar center, measured in the solar radii, is just the
mass ratio of Jupiter and the Sun times the ratio of the orbital radius of Jupiter and the solar radius.
Coincidentally, the product of the two ratios is close to unity. Indeed, MJ/M�≈ 1/1000, whereas rJ≈ 5au
≈ 1000R�. Thus x/R� ≈ 1, and the barycenter is close to the solar surface.

A more accurate calculation gives

x
R�
≈ MJ

M�+MJ
· rJ

R�
≈ 9.53×10−4 5.203× (1.496×1011 m)

6.96×108 m
≈ 1.065

suggesting that the barycenter is slightly outside the solar photosphere.

However, even this calculation still may not be accurate enough. For instance, the Jupiter orbit is slightly
elliptic, making rJ vary. A yet more significant effect is the effect of the other planets. For instance, Saturn
can induce a correction to x/R� of the order (MS/M�)(rS/R�) ≈ (1/3000)(2000/1) ∼ 0.6. Therefore,
if Jupiter and Saturn are on opposite sides of the Sun, the barycenter of the solar system will be within
the Sun . . .

Problem 2.2

Assuming a body to be spherical, from the energy integral we obtain

vesc =

√
2

GM
R

=

√
2

4πGρR3/3
R

= R

√
8πGρ

3
∝ R
√

ρ.
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Table 1: Masses and semimajor axes of the Solar System planets

m/M� a/R� x/R�

Mercury 1.66×10−7 83 1.4×10−5

Venus 2.45×10−6 155 3.8×10−4

Earth 3.00×10−6 215 6.5×10−4

Mars 3.22×10−7 328 1.1×10−4

Jupiter 9.55×10−4 1119 1.07
Saturn 2.86×10−4 2061 0.58
Uranus 4.37×10−5 4130 0.18
Neptune 5.15×10−5 6547 0.33

The special case with ρ = 1 g cm−3 and R = 1 km results in vesc = 0.75 m/s, which can be combined
with the above to

vesc

0.75 m/s
=

R
1 km

√
ρ

1 g cm−3 .

or

vesc = 0.75 m/s × R
1 km

√
ρ

1 g cm−3 .

The density ρ is ranging from 0.7g cm−3 for Saturn up to 5.5g cm−3 for Earth, while the typical densities
for planetesimals are between 1 and 3 g cm−3. Since the dependence on ρ is weak (∝

√
ρ) and the values

are all within the same order of magnitude, we find

vesc ≈ 1 m/s × R
km

.

For Earth with R ≈ 6000 km, we predict vesc ≈ 6 km/s (actual value: 11 km/s). For Phobos with R ≈
12 km, we predict vesc ≈ 12 m/s (actual value: close to it, slightly depends on the ejection point, as
Phobos has a potato form).

Problem 2.3

In that strange universe, the gravitational force exerted by mass 1 on mass 2 scales as

~F =−GM1M2

r4 ~r (1)

where the value and units of G are different from our normal gravitational constant.

Equation of Motion

Relative to the origin (see Fig. 1), we have

~̈ρ2 =
~F

M2
=−GM1

r4 ~r,

and

~̈ρ1 =−
~F

M1
=

GM2

r4 ~r.

From the vectors in Fig. 1, we find
~r =~ρ2−~ρ1,
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Figure 1: The positions of two masses and the coordinate origin O .

and so

~̈r = ~̈ρ2−~̈ρ1.

Substituting ~̈ρ1 and ~̈ρ2 from above, we arrive at the equation of motion (EoM):

~̈r+
G(M1 +M2)

r4 ~r =~̈r+
κ2

r4~r0,

where we defined κ2 ≡ G(M1 +M2).

Angular Momentum Integral

Crossing~r with EoM:

~r×~̈r+ κ2

r4~r×~r = 0.

Now~r×~r = 0, so from above

~r×~̈r = 0.

Integrate this with respect to time:

~I =
∫
~r×~̈r dt.

We can solve this by guessing the solution and checking its validity. From the chain rule we know

d
dt
(~r×~̇r) =~r×~̈r+~̇r×~̇r =~r×~̈r, (2)

where again we used ~̇r×~̇r = 0. So the solution to our integral is indeed

~I =
∫
~r×~̈r dt =~r×~̇r−~c,

where~c is an arbitrary constant. Hence we arrive at the angular momentum integral:

~r×~̇r =~c.

Angular momentum as we know it is still in this other universe.
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Energy Integral

The scalar product of EoM with ~̇r yields

~̇r ·~̈r+ κ2

r4 ~̇r ·~r = 0. (3)

Now note that
d
dt

(
~̇r ·~̇r
)
=~̇r · d~̇r

dt
+~̇r · d~̇r

dt
= 2~̇r · d~̇r

dt
= 2~̇r ·~̈r,

so we can change ~̇r ·~̈r to

~̇r ·~̈r = 1
2

d
dt

(
~̇r ·~̇r
)
=

1
2

d~̇r2

dt
=

1
2

dv2

dt
. (4)

Noting that ṙ is simply the projection of ~̇r onto ṙ, we can use

~r ·~̇r = rṙ. (5)

Applying the substitutions in eqs. (4) and (5) to eq. (3), we obtain

1
2

dv2

dt
+κ

2 ṙ
r3 = 0. (6)

The ṙ/r3 in the second term can then be rewritten as

ṙ
r3 =

d
dt

(
− 1

2r2

)
(7)

and we obtain
d
dt

(
v2

2

)
−κ

2 d
dt

(
1

2r2

)
= 0, (8)

which can be integrated to
v2

2
− κ2

2r2 =
h
2
. (9)

There is again an energy constant h/2, albeit with a slightly different contribution from the potential
term.

Circular Orbits

With the angular momentum integral being the same in this other universe, we can relate radial and
angular variables in the same way as in ours:

c = r2
θ̇ or dt =

r2

c
dθ . (10)

The azimuthal velocity component can be written as

rθ̇ = r
dθ

dt
=

c
r
, (11)

and hence, the orbital velocity as

v2 = ṙ2 + r2
θ̇

2 =
c2

r4

(
dr
dθ

)2

+
c2

r2 (12)
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The energy integral (×2) then reads

h = v2− κ2

r2 =
c2

r4

(
dr
dθ

)2

+
c2

r2 −
κ2

r2 . (13)

Substituting Binet’s variable, u≡ 1/r and dr/dθ = d(1/u)/dθ =−u′/u2, we find

h = u′2c2 +u2c2−u2
κ

2. (14)

Another differentiation by θ leads to

0 = 2u′′u′c2 +2u′u(c2−κ
2) (15)

u′′ = u
(

κ2

c2 −1
)

︸ ︷︷ ︸
≡A

. (16)

Depending on the sign of A, we find three types of real-valued solutions:

u(θ) =


u0 exp

[
θ
√

A
]
+u1 exp

[
−θ
√

A
]

for A > 0 (c < κ),

u0 +u1θ for A = 0 (c = κ),

u0 cos
[
θ
√
−A+ const

]
for A < 0 (c > κ),

(17)

where u0 and u1 are constants that depend on the initial conditions u(0) and u′(0). The exponential
solution has u grow and r reduce for θ → ∞, corresponding to an inward spiral. The cosine solution has
an upper boundary that corresponds to an minimum distance rmin, but u(θ) can reach zero (and below)
corresponding to→∞, i. e. an unbound orbit. For A = 0 (corresponding to κ = c) we have another spiral,
open inward or outward, depending on u1 = u′(0). For the special case of u′(0) = 0, the solution describes
a circle. This solution is, however, not stable against small perturbations.
Alternatively, we can check which type of radial motion is possible in the effective potentials U(r) in
both universes:

ṙ2

2
+U(r) = const. (18)

For the normal universe, we obtain

ṙ2

2
+

c2

2r2 −
κ2

r︸ ︷︷ ︸
≡Unormal

=
h
2
. (19)

Here, Unormal can have a local minimum, corresponding to motion between a maximum and a minimum
radius. For the strange universe, we find

ṙ2

2
+

c2−κ2

2r2︸ ︷︷ ︸
≡Ustrange

=
h
2
, (20)

which does not have a local extremum, and hence, only motion that is open outward or open inward,
depending on the sign of U . Circular motion is only possible when Ustrange = h = 0 = const, which is the
case for |c| = κ . Even then, the flat potential for that case means that the orbit would be prone to radial
drift.
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