
Celestial Mechanics – Solutions
Alexander V. Krivov & Tobias Stein1

Unit 1

Problem 1.1

It is clear that the surface is axially symmetric with respect to the x axis. Therefore, it is sufficient to find
the section of the surface by the x–y plane, i. e. the equation of the form f (x,y) = 0 (see Fig. 1).
By writing down the equality of the gravitational forces from the Earth and the Sun:

M�/r2
� = M⊕/r2

⊕,

and taking into account that

r2
⊕ = x2 + y2, r2

� = (x−a)2 + y2,

we can perform the following series of transformations:

M�/r2
� = M⊕/r2

⊕

M�r2
⊕ = M⊕r2

�

M�
(
x2 + y2) = M⊕

[
(x−a)2 + y2]

x2(M�−M⊕)+2xaM⊕+ y2(M�−M⊕) = a2M⊕

x2 +2xa
M⊕

M�−M⊕
+ y2 = a2 M⊕

M�−M⊕[
x+a

M⊕
M�−M⊕

]2

−
[

a
M⊕

M�−M⊕

]2

+ y2 = a2 M⊕
M�−M⊕[

x+a
M⊕

M�−M⊕

]2

+ y2 = a2 M⊕
M�−M⊕

[
M⊕

M�−M⊕
+1
]

[
x+a

M⊕
M�−M⊕︸ ︷︷ ︸
≡∆x

]2

+ y2 = a2 M⊕
M�−M⊕

[
M�

M�−M⊕

]
︸ ︷︷ ︸

≡R2

.

The resulting equation does, indeed, describe a sphere. Its radius is

R = a

√
M�M⊕

(M�−M⊕)2 ≈ a

√
M⊕
M�

.

Its center is shifted from the center of the Earth along the x axis away from the Sun by the distance

∆x = a
M⊕

M�−M⊕
≈ a

M⊕
M�

.

Numerically, R = 260000km. The orbit of the Moon is substantially farther, so the Sun attracts the Moon
stronger than the Earth does – a well-known paradox. Also, ∆x = 450km, so the center of the sphere is
inside the Earth.
The gravitation sphere would be a plane (that includes the midpoint between the Earth and the Sun and is
perpendicular to the line that connects the two) if the mass of the Earth were exactly equal to the mass of
the Sun. In that case, the center of the sphere would be at (negative) infinity.
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Figure 1: Sphere on which the gravitational forces towards Earth and towards the Sun are of the same
magnitude.

Problem 1.2

We choose a cylindric coordinate system centred on the disc mid-point. Then, each point in the disc (of
radius R and total mass M) is defined through its distance from the centre r′ and an azimuthal angle ϕ . Its
distance to the test particle (of mass mT) is x2 + r′2, and the integral to be solved is given by

Fx =−GmT Σ

R∫
0

2π∫
0

x
r′2 + x2

1

(r′2 + x2)1/2 r′dϕ dr′,

where Σ ≡ M/(πR2) is the disc’s surface mass density (which we assume constant). After simplification
and trivial integration over ϕ we have

Fx =−2π GmT Σ

R∫
0

x

(r′2 + x2)3/2 r′dr′.

Integration over r′ results in

Fx(x) = 2π GmT Σ

[
x

(R2 + x2)1/2 −
x

(x2)1/2

]
= 2π GmT Σ

[
x

(R2 + x2)1/2 −
x
|x|

]
. (1)

Due to the disc being infinitely thin, the x/|x| makes Fx jump from −1 to 1 at x = 0. In order to get the
asymptote for |x| � R, we take a look at the Taylor-series expansion of F(x) which is

Fx(x) = 2π GmT Σ

[ x
R
∓1+O(x2)

]
, (2)

where the upper sign is for x > 0 and the lower one for x < 0. The value of Fx(x) at the surface of the disc,
i.e. at x/R≈ 0, is independent of the disc’s extent and equal to that of an infinite plane.
Both the full solution (Eq. 1) and the linear approximation (Eq. 2) are plotted in Fig. 2.
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Figure 2: The function Fx(x) (for R = 2), given in Eq. (1), its asymptote for |x| � R, given in Eq. (2), and
its asymptote for |x| � R, where the disc becomes a point source of mass πR2Σ.
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