Celestial Mechanics – Exercises

Alexander V. Krivov & Tobias Stein¹

Distributed: 23 Jan 2025. Due: 30 Jan 2025.

Unit 13

Problem 13.1

The disturbing function for a two-planet planar problem with an *external* perturbing planet has the form

$$R = \frac{GM'}{r'} \sum_{n=2}^{\infty} \left(\frac{r}{r'}\right)^n P_n(\cos H).$$

Derive the disturbing function for an *internal* perturbing planet. (2 points)

Bonus Problem 13.2

A standard expansion of the disturbing function in the two-planet problem is

$$R = \sum_{\substack{k_1, \dots, k_4 \\ j_1, \dots, j_6}} N_{k_1, \dots, k_4, j_1, \dots, j_6} (a/a') e^{k_1} e'^{k_2} I^{k_3} I'^{k_4} \cos\left(j_1 \lambda + j_2 \lambda' + j_3 \omega + j_4 \omega' + j_5 \Omega + j_6 \Omega'\right).$$
(1)

Find a rough (lower) estimate of the number of terms in the n^{th} order expansion, i. e. in the series that contains terms with $k_1 + k_2 + k_3 + k_4 \le n$ (with $k_{1...4} \ge 0$). If you get the estimate then you should be impressed by the number of terms that Le Verrier had to deal with when deriving the 7th order expansion in the year 1855, without any computers ... (3 bonus points)

Problem 13.3

Consider the secular perturbations of Earth's orbit by (a) Jupiter ($a_J = 5.2 \text{ au}$, $M_J = 0.95 \times 10^{-3} M_{\odot}$) and (b) Saturn ($a_S = 9.6 \text{ au}$, $M_S = 0.29 \times 10^{-3} M_{\odot}$) separately. Estimate the frequencies of the resulting forced precessions of Earth's orbit for the two cases. (2 points)

¹tobias.stein@uni-jena.de