Celestial Mechanics – Exercises

Alexander V. Krivov & Tobias Stein¹

Distributed: 05 Dec 2024. Due: 12 Dec 2024.

Unit 8

Problem 8.1

Derive (a) the Gauss and (b) the Lagrange perturbation equation for semilatus rectum $p = a(1 - e^2)$ from the corresponding perturbation equations for semimajor axis *a* and eccentricity *e*. (2 points)

Problem 8.2

The International Space Station (ISS) orbits the Earth at an altitude $h \approx 400$ km above sea level and experiences drag in the thin upper atmosphere. The frictional acceleration is given by

$$\ddot{\vec{x}} = -\frac{C_{\rm d} \,\sigma \,\rho \,\dot{x}^2}{2m} \frac{\dot{\vec{x}}}{\dot{x}},$$

where C_d is the drag coefficient on the order of unity, σ the station's cross section, *m* its mass, $\dot{\vec{x}}$ its velocity, $\dot{\vec{x}} = |\dot{\vec{x}}|$, and $\rho \sim 10^{-15}$ g/cm³ the mass density of the atmosphere at the ISS's altitude. Use the Gauss perturbation equations to estimate the rate $\dot{\vec{h}}$ at which ISS loses its height. (In all calculations, assume that the orbit is always circular and take reasonable values for the unknown quantities.) (2 points)

¹tobias.stein@uni-jena.de