
Physics of Planetary Systems — Exercises
Suggested Solutions to Set 6

Problem 6.1 (3 points)

This figure appeared in Dreizler et al. 2003, A&A, 402, 791. This paper should have been rejected by the
referee. One should of course be critical that within the errors one can also fit a straight line through all data
points. The RV measurements are consistent with no variations. However, the proof against the planet is in
the phase. Photometric phase 0 is at transit center. At this phase the star is behind the planet and moving
transversely to the observers left (0 radial velocity). After this phase, the star should start moving towards the
observer. This is a blue shift in wavelength and by definition should be a negative radial velocity after phase 0.
But the radial velocity curve for this star is 180 degrees out of phase from that expected for a transiting planet.
This is impossible, so the RV data do not support the planet hypothesis and the paper and press release should
have never been published.

Problem 6.2 (1 point)

The amplitude of the Rossiter-McLaughlin effect is given by:
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where ARM is the amplitude after removal of orbital motion, vs is the rotational velocity of the star in km/s, r
is the radius of the planet in Jupiter radii and R is the stellar radius in solar radii.
So we need the radius in Jupiter radii and the rotational velocity in km/s. A radius of 1.6 REarth corresponds
to 0.14 RJup. This is the easier part, the trickier one is calculating the rotational velocity from the stellar radius
and rotation period. With

vs =
2πR

P
= 1.8 km/s,

the Rossiter-McLaughlin effect can easily found to be 0.6 m/s.

Problem 6.3 (2 points)

The incoming energy per unit time is the cross-section area of a spherical grain times the flux of stellar
radiation at a distance r:

πs2 · L∗
4πr2 , (1)

where we assume that all intercepted radiation is absorbed, i. e. a pitch black surface with Bond albedo A = 0.
The outgoing energy per unit time is the surface area of the grain times the Stefan–Boltzmann radiation flux:
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In the equilibrium both are equal:
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Numerically, for the Sun at 1 au:
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The temperature of 1500 K required for sublimation is 6 times higher.
It is reached at 1 au/62 = 1/36 au≈ 6R�.
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Problem 6.4 (2 points)

The sound speed was estimated in an earlier problem: cs ∼ 1 km/s ∼ 103 m/s at 1 au. The resulting gas
damping constant is
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and the Kepler frequency
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The condition
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becomes
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or

s∼ 5 m. (10)

Therefore, the boundary is at meter-sized bodies.
An alternative, more general expression can be found the following way:
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Assuming further that Σgas ≈ 100Σdust, we obtain
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, (11)

where Σdust is the usual surface mass density of dust (on the order of 10 g/cm2) and ρdust the bulk density (on
the order of 1 g/cm3), resulting again in s∼ 5 m.
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