Physics of Planetary Systems — Exercises Suggested Solutions to Set 4

Problem 4.1

(2 points)

To calculate this, one needs to know about magnitudes, the fact that the RV error is roughly proportional to $(S/N)^{-1}$ (where S/N is the signal-to-noise ratio), please see the expression for the predicted radial velocity error in the lecture,

$$\sigma[\text{m/s}] = \frac{2.4 \cdot 10^{11}}{R^{3/2} \cdot (S/N) \cdot (\Delta \lambda [\text{\AA}])^{1/2}}$$

and that S/N is proportional to the square root of the number of detected photons, because it is dominated by photon noise (shot noise):

$$S/N \propto \frac{S}{\sqrt{S}} \propto \sqrt{S}$$

So we need to calculate the number of detected photons on the fainter star, given by the fainter magnitude, plus the fact that one will expose longer: A magnitude difference of $\Delta m = 6$ corresponds to a brightness (photons) reduction by a factor of $2.512^{\Delta m} = 2.512^6 = 251.2$ or can alternatively be calculated using the formula

$$\Delta m = 2.5 \, \log \frac{F_1}{F_2}.$$

This means in 30 minutes on a 15th magnitude star, the HARPS spectrograph will detect 1/251.2 the number of photons (i. e. $1/\sqrt{251.2} = 1/15.85$ times the signal to noise ratio since $S/N \propto \sqrt{\text{detected photons}}$). But by increasing the exposure time, one detects more photons by a factor 60/30 = 2. So compared to the $m_v = 9$ mag with a 30 min exposure, on a $m_v = 15$ mag star HARPS will detect in one hour $(1/251.2) \times 2 = 1/125.6$ times the number of photons. Since RV error is inversely proportional to S/N and the S/N is proportional to the square root of the detected photons, one will have an RV error $1 \text{ m/s} \times \sqrt{125.6} = 11.2 \text{ m/s}$. Note: at these faint magnitudes systematic errors (e. g. characteristics of the detector) become an important contribution, so the error may be much larger than for photon statistics.

Problem 4.2

(2 points)

Methods to precisely measure stellar RVs mostly differ by the way the wavelength reference is obtained:

1. Use telluric lines in Earth's atmosphere (e.g., O₂ at 6300 Å) as reference

Advantages:

- simple & inexpensive
- feasible for almost any high-resolution spectrograph
- both the reference and stellar light illuminate the spectrograph in the same manner and are recorded at the same time ⇒ minimization of instrumental shifts
- RV precision of a few tens of m/s achievable

Disadvantages:

- limited wavelength coverage (10s of Å) ⇒ small number of spectral lines can be used for the RV measurements
- variations of Earth's atmosphere (temperature and pressure changes, winds)
- line depths of telluric lines vary with air mass
- a star cannot be observed without telluric lines which is needed in the reduction process

2. Hydrogen-Fluoride (HF) absorption cell

Advantages:

- stable reference, no temperature, pressure, or wind shifts
- RV precision of ≈ 10 m/s

Disadvantages:

- long path length is needed (1 m) to produce suitable absorption lines, problem if space is limited in the spectrograph
- HF is sensitive to pressure shifts
- provides absorption features over only a narrow wavelength range in the optical (100 Å)
- has to be refilled with each observing run, dangerous gas, so safety concerns are a real issue

Problem 4.3

The stellar radius is given by

$$R_* = 0.55 \frac{\tau}{1 \text{ hr}} \left(\frac{M_*}{M_{\odot}} \frac{1 \text{ hr}}{P} \right)^{1/3} R_{\odot}.$$

Reading off the transit duration from the graph yields $\tau = 0.3 \dots 0.4$ days. Plugging in the values, we obtain

$$R=1.7\ldots 2.2 R_{\odot}.$$

This is definitely not a solar-type star. Most likely it is not a good planet candidate. But we have more information: the transit depth. Since $(R_p/R_*)^2 = 0.011$, the planet has a radius

$$R_{\rm p} = 0.18 \dots 0.23 R_{\odot} = 1.8 \dots 2.3 R_{\rm Jup},$$

which is too big for a planet. The chances are high that the companion is an M dwarf star.

Problem 4.4

Assume power laws

$$c_s^2 \propto T \propto r^{-\xi}$$
 and $\Sigma \propto r^{-\zeta}$, (1)

so that

$$\mathbf{v} = \alpha \frac{c_s^2}{\Omega_K} \propto r^{-\xi + 3/2}.$$

Substitute these into the formula for the radial velocity

$$v_r = -\frac{3v}{2r} - \frac{3}{\Sigma} \frac{\partial}{\partial r} (\Sigma v) = -\frac{3}{\Sigma \sqrt{r}} \frac{\partial}{\partial r} (\Sigma v \sqrt{r})$$
(3)

to get

 $v_r \propto \frac{v}{r} \propto r^{-\xi + 1/2} \tag{4}$

Now, the stationary continuity equation,

$$\frac{\partial(\Sigma r v_r)}{\partial r} = 0,\tag{5}$$

requires $\Sigma r v_r = \text{const or}$

$$r^{-\zeta} \cdot r \cdot r^{-\xi+1/2} = r^{-\zeta} \cdot r^{-\xi+3/2} = \text{const},$$
(6)

(1 point)

(3 points)

whence

$$\zeta = -\xi + 3/2. \tag{7}$$

Therefore, a general solution is

$$T \propto r^{-\xi}, \qquad v \propto r^{-\xi+3/2}, \qquad \Sigma \propto r^{\xi-3/2}.$$
(8)

To be "physical", these solutions must have at least $\xi > 0$ (the farther out from the star, the colder). On the other hand, $\xi < 3/2$ is a reasonable requirement because the surface density is not expected to grow outward. These limitations are not strict though.

Note that a steepening temperature profile ($\sigma \uparrow$) results in a shallower density profile and vice versa. This can be understood by looking again at the continuity criterion. The product rv_r is roughly proportional to v and thus to c_s^2 and T. Hence the product ΣT is conserved in the stationary case. The profiles of the two quantities must therefore compensate.

Plotting several of these solutions, for instance for $\xi = 0, 1/2, 1$, and 3/2 is straightforward. Hopefully you will not do that in linear scale ... log-log is the most natural scale to plot power laws.