
Physics of Planetary Systems — Exercises
Suggested Solutions to Set 12

Problem 12.1 (2 points)

To address the question of how planetary radii and temperatures are related, we need the temperatures.
Measuring the temperatures is very difficult or completely unfeasible is most cases, so that we have to rely
on estimates based on the typical irradiation from the star, depends on the stellar luminosity, L∗, and the
star-planet distance, r. Equating absorbed stellar radiation (over the cross section of the planet) and emitted
thermal radiation (over its whole surface), we find
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where R∗ and T∗ are the stellar radius and temperature, respectively, and A the planet’s Bond albedo. In solar
units, we have

Tp = 279 K×T∗[T�]

√
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, (2)

where we assumed 4
√

1−A≈ 1. After extracting the tabulated values for Mp, Rp, R∗, T∗(= Teff), and r(assumed
≈ a) from https://exoplanet.eu/, we can filter for Mp > 0.3MJup, calculate Tp and plot Tp vs Rp.

The resulting distribution is shown in Fig. 1. For low temperatures (Tp . 1300 K), all planets have their
radii close to the Jupiter radius, which is expected from electron degeneracy pressure in equilibrium with
gravity. For higher temperatures (Tp & 1300 K) the extra heat from the stars puffs the outer planet envelopes
up, leading to drasticly increased radii.

Extra info: we could have made our lives a bit easier by plotting Tp vs Rp directly on the exoplanet
website because the database already provides the calculcated temperatures.

Problem 12.2 (1 point)

In the lecture, the connection between planets and host star metallicity was given, originally derived by Valenti
& Fischer. For a metallicity of [Fe/H] = 0.5, the frequency of planet hosting stars is 25%≤ p≤ 30% (Fig. 2).
So, in a sample of n = 100 stars one would expect to find 25≤ np≤ 30 stars with planets. If we ask for the
probability to find at least 30 planetary systems, we have to use the binomial distribution B(n, p,k), where k
denotes the number of planetary systems:

P(X > 29) =
100

∑
k=30

B(100,0.25 . . .0.3,k) = 1−
29

∑
k=0

B(100,0.25 . . .0.3,k) = 0.15 . . .0.55.

Thus, we would expect to find more than 29 planets with a probability of 15–55 %. Note that the probability in
the cumulative value comes from a number close to 30. The probability to find e. g. 70 planets is almost zero.
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https://exoplanet.eu/

Figure 1: Radii vs calculated temperatures of confirmed planets with masses Mp > 0.3MJup. Dashed lines
indicate the two rough temperature regimes.
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Figure 2: The increasing trend in the fraction of stars with planets as a function of metallicity (Valentin &
Fischer). Right: Same as left, but divided into 0.1 dex metallicity bins. The trend is fitted with a power law,
yielding the probability for giant planets: P = 0.03[(NFe/NH)/(NFe/NH)�]
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Problem 12.3 (2 points)

From energy conservation,

Ekin +Epot = const, (3)

and
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in combination with the virial theorem,

−2Ekin = Epot, (5)

we find
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and therefore,
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With rU,0 = rN,0 = 7 au, rU,1 = 19 au, rN,1 = 30 au, rJ,1 = 5.2 au, MN = 17M⊕, MU = 14M⊕, and MJ =
318M⊕, the result is

rJ,0 = 5.48 au, ∆rJ = rJ,1− rJ,0 =−0.28 au,
∆rJ

rJ,0
=−5%. (8)

Alternatively, from angular momentum conservation,
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we find √
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and, therefore,
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Here, the result is

rJ,0 = 6.29 au, ∆rJ = 1.09 au. (12)

As expected, the change is in any case only slight because Jupiter is much more massive than both Uranus and
Neptune.

Extra info: As |∆rJ/rJ| is small for both cases, we can approximate the two results further. For energy
conservation, we find

rJ,0 ≈ rJ,1

(
1+

MN

MJ

∆rN

rN,0

rJ,1

rN,1
+

MU

MJ

∆rU

rU,0

rJ,1

rU,1

)
(13)

because (1−x)−1≈ 1+x for x� 1. For the other extreme of angular momentum conservation, the approximate
result is
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because (1+ x+ y)2 ≈ 1+2x+2y for x� 1 and y� 1. The square and the square root dependence on the
distances both create an additional factor of two each, such that the change in Jupiter’s distance is roughly
four times as great compared to the case of energy conservation. If we had ∆rN/rN,1� 1 and ∆rU/rU,1� 1
(which is not the case!) we could simplify further:
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More extra info: The system that we consider is actually an open system because we only look at the
three planets while neglecting other players, namely Saturn and a host of planetesimals. These others players
receive both energy and angular momentum while interacting with (mostly) Uranus and Neptune. Angular
momentum and energy would be perfectly conserved when considering the full system but not in our reduced
system. The solution that we get here is therefore not the full solution. Actually, without the other objects
involved, the change of Uranus’s and Neptune’s position would not have happened the way it did. Without the
dampening effect of the outer planetesimals, they could not have reached today’s safe, almost circular orbits
(which don’t cross those of Jupiter and/or Saturn anymore). Instead they would have undergone repeated close
encounters, getting ejected out of the Solar system eventually.

Bonus problem 12.4 (0.5 extra points for each item)

Here is an incomplete list of (somewhat) open problems:
1. Do planets form in a “standard” way or through gravitational instabilities?
2. What are typical masses of gaseous disks — about MMSN or much larger?
3. How large is Shakura-Sunyaev’s α in protoplanetary disks?
4. What is the role of dead zones, does episodic accretion occur?
5. What are the mechanisms of disk dispersal in ∼ 107yr?
6. Does the massive midplane dust layer form?
7. How efficient is sticking at micrometer to millimeter sizes?
8. (Why do meter-sized planetesimals survive fast inward drift in a gas disk?)
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9. (What causes planetesimals to grow from meter to kilometer sizes?)
10. How long did gas accretion of Jupiter and Saturn take?
11. Do pulsational instabilities during gas envelope growth occur in reality?
12. Is it true that Uranus and Neptune formed in the Jupiter–Saturn region and then migrated?
13. Are masses and orbital spacing of terrestrial planets rather chance quantities?
14. What is the origin of water on Earth?
15. What allows sub-Earth mass embryos to survive fast type-I migration?
16. What stops migration of “hot Jupiters” near the star?
17. Why didn’t Jupiter and Saturn in our Solar System migrate, or did they?
18. How to explain large orbital eccentricities of many extrasolar planets?
19. What mechanisms clean up planetesimal disks at later stages?
20. (Was there a Late Heavy Bombardment in the Solar System?)

and so on . . .
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