
Physics of Planetary Systems — Exercises
Suggested Solutions to Set 11

Problem 11.1 (2 points)

We first need to compute the Einstein Radius, θE,

θE =

√
4GM

c2
DLS

DLDS
= 1.38×10−8 rad×

√
M [M�]

DLS[kpc]
DL[kpc] DS[kpc]

= 2.85 mas×

√
M [M�]

DLS[kpc]
DL[kpc] DS[kpc]

(1)

We then need to calculate the magnification from:

µ =
u2 +2

u
√

u2 +4
,

where u is defined as u≡ β/θE, and β is the impact parameter in radians. Asymptotically, µ can be approxi-
mated as

µ →
{

1+ 2
u4 for u� 1,

1
u for u� 1.

(2)

The duration of the event is given by

t =
RE

v
=

θEDL

v
,

with RE = θEDL being the the projected Einstein Radius. The involved distances are DL = 2 kpc, DS = 10 kpc,
DLS = 8 kpc.

a) Assuming M = 1 M�, we obtain θE = 1.8 mas, u = 0.01/1.8 = 0.00552, and thus, µ = 181. With
RE = θEDL = 5.4×1013 cm and an assumed velocity v≈ 200 km/s, the transit duration is t = 31.2 d.

b) M = 1 MJup leads to: θE = 0.0556 mas, u = 0.01/0.0556 = 0.18, µ = 5.63, RE = 1.66× 1012 cm,
t = 23.1 h.

c) M = 1 M⊕ leads to: θE = 1.5×10−11 rad = 0.00312 mas, u = 0.01/0.00312 = 3.2, µ = 1.013, RE =

9.24×1010 cm, t = 1.3 h.

Problem 11.2 (2 points)

a: If no companion were present, we would expect the pulses to arrive at times t ′0 +nP′, i. e. with constant
intervals P′ (except for the effect discussed in (b)). However the radial displacement (∆r) causes a variation in
light travel times, and hence, the pulse timings from those expected, ∆t ′n. The maximum (semi-)amplitudes of
radial displacement and timing variations are related to the semi-major axis of the pulsar’s orbit, apulsar, via:

∆t ′max =
∆rmax

c
=

apulsar sin i
c

, (3)

where i is the inclination of the pulsar–companion orbit relative to the plane of the sky. Using Kepler’s third
law,

Porb = 2π

√
a3

GM
(4)
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with M = Mpulsar +Mcomp, and the definition of the barycenter,

a = apulsar +acomp = apulsar

(
1+

Mpulsar

Mcomp

)
, (5)

we obtain

Porb = 2π

√√√√ a3
pulsar

(
1+ Mpulsar

Mcomp

)3

G(Mpulsar +Mcomp)
≈ 2π

√
a3

pulsarM
2
pulsar

GM 3
comp

eq. (3)
= 2π

√√√√(c∆t ′max)
3 M 2

pulsar

G
(
Mcomp sin i

)3 , (6)

and after solving for the minimum mass,

Mcomp sin i = c∆tmax
3

√
1
G

(
2πMpulsar

Porb

)2

. (7)

Assuming Mpulsar = 1.4 M�, Porb = 1 yr, and ∆t ′max = 1 ms, we find

Mcomp sin i = 5×1024 kg≈ 0.8MEarth, (8)

i. e. we may have detected an Earth-mass planet (if the inclination is not too far away from 90°).
b: Neglecting relativistic effects, the true times at which the pulsar emits its pulses are given by

tn = t0 +nP. (9)

In contrast, the times at which the pulses arrive at the barycenter of the solar system are

t ′n = tn +
r(tn)

c
, (10)

where r(tn) is the distance at the time of pulse emission and c the speed of light. The radial velocity of the
pulsar is composed of the (near-constant) system velocity and the variation due to orbital motion around the
barycenter:

ṙ = vr = vsys +∆vr(t). (11)

The resulting distance is

r = r0 +

t∫
t0

vrdt = r0 +(t− t0)vsys +∆r(t), (12)

where ∆r is the pulsar’s distance from the common barycenter with its companion. Hence we find

t ′n = tn +
r0 +(tn− t0)vsys +∆r(tn)

c
eq. (9)
= t0 +nP+

r0 +nPvsys +∆r(tn)
c

(13)

The difference between this and the normal case are the terms nPvsys
c and ∆r(tn)

c . If we assume n = 1, vsys =

200 km
s , and ∆r(tn) = 1au, we get nPvsys

c ≈ 5.8h and ∆r(tn)
c ≈ 500s. So even without a companion, the signal

arrival time might increase/decrease by up to 5.8 hours each time and vary by up to 500 seconds.
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Problem 11.3 (1 point)

As discussed in the lecture, the migration rate for type-II migration in the low-mass and high-mass regimes is
given by

ȧp ≈


vr (low mass)

vr

√
4πΣa2

p
Mp

(high mass),
(14)

where Σ is the surface mass density of the surrounding gas disk, vr its radial drift speed, and ap and Mp
the planetary semi-major axis and mass, respectively. (The corresponding timescale could be defined as
tII ≡ ap/ȧp.) The two regimes are joined where the square-root term becomes unity, i. e.

Mp = 4πΣa2
p. (15)

Below that critical mass, the planet is less massive than the surrounding disk. It will be dragged along with
the viscous gas that slowly drifts toward the star. Above the critical mass, the planet is more massive than the
disk and will not be affected as strongly, resulting in a slower migration.

Assuming ap = 1 au = 1.5×1013 cm and Σ = 1000 g cm−2, we find

Mp ≈ 2.8×1030 g≈ 1.5 MJup, (16)

which is quite a lot.

Bonus problem 11.4 (3 extra points)

If the material from both sides of the gap can reach the gap center within one orbital period, the gap is closed.
Thus, we have to equate the time the planet needs to reach the same position relative to the gas again with the
time needed for the gas to traverse a distance equal to the planet’s Hill radius rH:

2πr
vrel

=
rH

vfill
, (17)

where vfill is the speed at which the gas can refill the gap and vrel is the difference between the tangential
velocities of gas and embryo:

vrel = vK− vgas = vK (1−
√

1−2η)≈ ηvK,

with η ≡ c2
s/v2

K. Using

rH = r
(

Mp

3M∗

)1/3

, (18)

we arive at

2πr
vrel

=
r

vfill

(
Mp

3M∗

)1/3

,

and solving for Mp leads to

Mp = 3M∗

(
2πvfill

vrel

)3

.

Now, we can assume a filling velocity that equals the radial drift velocity:

vfill =
3ν

2r
=

3αc2
s

2rΩK
=

3αc2
s

2vK
, (19)
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from which we obtain

Mp = 3M∗

(
3παc2

s

ηv2
K

)3

= 3M∗ (3πα)3 ≈ 2500α
3M∗.

Assuming α = 0.001 . . .0.01 and M∗ = M� leads to

Mp = 2.5×10−6M∗ . . .2.5×10−3M∗

≈ 1 M⊕ . . .2 MJup.
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