
Physics of Planetary Systems — Exercises
Suggested Solutions to Set 10

Problem 10.1 (2 points)

We first need to compute the Einstein Radius, θE,

θE =

√
4GM

c2
DLS

DLDS
= 1.38×10−8 rad×

√
M [M�]

DLS[kpc]
DL[kpc] DS[kpc]

= 2.85 mas×

√
M [M�]

DLS[kpc]
DL[kpc] DS[kpc]

(1)

We then need to calculate the magnification from:

µ =
u2 +2

u
√

u2 +4
,

where u is defined as u≡ β/θE, and β is the impact parameter in radians. Asymptotically, µ can be approxi-
mated as

µ →
{

1+ 2
u4 for u� 1,

1
u for u� 1.

(2)

The duration of the event is given by

t =
RE

v
=

θEDL

v
,

with RE = θEDL being the the projected Einstein Radius. The involved distances are DL = 2 kpc, DS = 10 kpc,
DLS = 8 kpc.

a) Assuming M = 1 M�, we obtain θE = 1.8 mas, u = 0.01/1.8 = 0.00552, and thus, µ = 181. With
RE = θEDL = 5.4×1013 cm and an assumed velocity v≈ 200 km/s, the transit duration is t = 31.2 d.

b) M = 1 MJup leads to: θE = 0.0556 mas, u = 0.01/0.0556 = 0.18, µ = 5.63, RE = 1.66× 1012 cm,
t = 23.1 h.

c) M = 1 M⊕ leads to: θE = 1.5×10−11 rad = 0.00312 mas, u = 0.01/0.00312 = 3.2, µ = 1.013, RE =

9.24×1010 cm, t = 1.3 h.

Problem 10.2 (2 points)

Imagine you measure the arrival times of pulses from a pulsar (with M∗ = 1.4 M�) and you note that the
times deviate periodically (with a period P = 1 yr) by up to ±1 ms from those expected for constant intervals.
What is the minimum mass of a possible companion that could cause this deviation. Hint: assume a circular
orbit.

Neglecting relativistic effects, the true times at which the pulsar emits its pulses are given by

tn = t0 +nP. (3)

In contrast, the times at which the pulses arrive at the barycenter of the solar system are

t ′n = tn +
r(tn)

c
, (4)
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where r(tn) is the distance at the time of pulse emission and c the speed of light. The radial velocity of the
pulsar is composed of the (near-constant) system velocity and the variation due to orbital motion around the
barycenter:

ṙ = vr = vsys +∆vr(t). (5)

The resulting distance is

r = r0 +

t∫
t0

vrdt = r0 +(t− t0)vsys +∆r(t), (6)

where ∆r is the pulsar’s distance from the common barycenter with its companion. Hence we find

t ′n = tn +
r0 +(tn− t0)vsys +∆r(tn)

c
eq. (3)
= t0 +nP+

r0 +nPvsys +∆r(tn)
c

= t ′0 +nP
(

1+
vsys

c

)
︸ ︷︷ ︸

≡P′

+
∆r(tn)−∆r(t0)

c︸ ︷︷ ︸
≡∆t ′n

. (7)

If no companion were present, we would expect the pulses to arrive at times t ′0 + nP′, i. e. with constant
intervals P′. However the radial displacement (∆r) causes a variation in light travel times, and hence, the
pulse timings from those expected, ∆t ′n. The maximum (semi-)amplitudes of radial displacement and timing
variations are related to the semi-major axis of the pulsar’s orbit, apulsar, via:

∆t ′max =
∆rmax

c
=

apulsar sin i
c

, (8)

where i is the inclination of the pulsar–companion orbit relative to the plane of the sky. Using Kepler’s third
law,

Porb = 2π

√
a3

GM
(9)

with M = Mpulsar +Mcomp, and the definition of the barycenter,

a = apulsar +acomp = apulsar

(
1+

Mpulsar

Mcomp

)
, (10)

we obtain

Porb = 2π

√√√√ a3
pulsar

(
1+ Mpulsar

Mcomp

)3

G(Mpulsar +Mcomp)
≈ 2π

√
a3

pulsarM
2
pulsar

GM 3
comp

eq. (8)
= 2π

√√√√(c∆t ′max)
3 M 2

pulsar

G
(
Mcomp sin i

)3 , (11)

and after solving for the minimum mass,

Mcomp sin i = c∆tmax
3

√
1
G

(
2πMpulsar

Porb

)2

. (12)

Assuming Mpulsar = 1.4 M�, Porb = 1 yr, and ∆t ′max = 1 ms, we find

Mcomp sin i = 5×1024 kg≈ 0.8MEarth, (13)

i. e. we may have detected an Earth-mass planet (if the inclination is not too far away from 90°).
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Extra info: the difference between emitted and observed pulse periods P and P′, respectively, is due to the
simple, “acoustic” doppler effect.

Problem 10.3 (2 points)

The gas drag force (as usual, in the Epstein regime):

Fgas =
4
3

ρcsσv

where σ = πs2 and v is the relative velocity of the planetesimal with respect to gas:

v = ηvK , η ≈ c2
s

v2
K

The velocities cs and vK were already calculated in Problem 9:
cs ≈ 2kms−1 and vK ≈ 30kms−1, so that η ≈ (2/30)2 ≈ 1/200.
Substituting other numerical values (in CGS) there results

Fgas ≈
4
3
·10−9 ·2 ·105 · (3s2) ·30 ·105 ·

(
1

200

)
≈ 8 ·10−4s2 ·1.5 ·104 ≈ 10s2.

The mutual gravitational force acting upon two planetesimals with radius s “at contact” is

Fgr =
Gm2

(2s)2 =
G

(2s)2

(
4
3

πρplans3
)2

≈ G
4s2

(
4ρplans3)2 ≈ 4Gρ

2
plans4

or, numerically, assuming ρplan ≈ 2,

Fgr ≈ 4 ·7 ·10−8 ·4s4 ≈ 10−6s4.

Equating Fgas and Fgr leads to
10s2 = 10−6s4

or
s = 3 ·103cm = 30m.

Therefore, gravity seems to be important already at sizes� 1km, but: gas drag acts permanently, whereas
mutual gravity only during (short-lasting) close encounters.

Problem 10.4 (1 point)

Rebounds are possible if typical velocity of fragments v is less than escape velocity of the debris cloud
emerged after the collision of two planetesimals of radius s. Roughly,

v < vesc ∼
√

2Gm
s
∼
√

2G(4/3)πρplans3

s
∼
√

8Gρplans

whence

s >
v√

8Gρplan
∼ 103
√

8 ·7 ·10−8 ·2
∼ 103
√

10−6
∼ 106cm∼ 10km.
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