Physics of Planetary Systems — Exercises — Set 7

Problem 7.1

(2 points)

Consider vertical settling and grain growth in a protoplanetary disk. Given a mass coagulation rate $\dot{m} \propto \sigma \rho_{gas} \dot{z}$ (where $m = 4/3 \times \pi \rho s^3$ and $\sigma \propto s^2$), show that a grain's final radius (as it arrives in the disk's mid-plane) is independent from its (small) initial radius. *Hint: How can you calculate the gas column density* Σ_{gas} from the gas density ρ_{gas} ?

Bonus problem 7.2

(2 extra points)

Perform a direct estimate of the final radius in Problem 7.1.

Problem 7.3

(1 point)

Estimate the altitude from which you should drop an object (on Earth) so that it hits the ground at 1 cm/s, a velocity typical for grain–grain collisions in protoplanetary disks.

Figure 1: Snapshot of a cloud of fragments produced in a (high-velocity) collision experiment set up in a laboratory at Braunschweig University. (Blum, IGeP/TU Braunschweig)