The Solar System – Exercise classes

Problem Set 6

Distributed: 18 Nov 2024, Results due: 25 Nov 2024.

Problem 6.1

What is the minimum radius of an iron meteoroid ($\rho \approx 8 \text{ g/cm}^3$) that is not significantly affected by the atmospheric drag of (a) Earth (surface pressure: $p \approx 10^5$ Pa) and (b) Venus ($p \approx 9 \times 10^6$ Pa)? Estimate the resulting crater sizes. Assume two cases: (1) vertical impact and (2) impact at an angle of 30° with respect to the surface. (2 points)

Problem 6.2

Estimate the minimum and maximum velocities at which a Solar-system object (that is not on an orbit bound to Earth) can impact on Earth. Neglect the atmospheric drag and Earth's rotation. (2 points)

Problem 6.3

Assuming an impact velocity of 11 km/s, how much mass is required for an impactor to release enough energy to vaporize the oceans (heat of evaporation: 2.2 MJ/kg)? How much mass is required to free the water from Earth's gravitational bond? (2 points)

Figure 1: Topography of the crater-strewn Lunar surface. The blue depressions in the image center are the well-known maria on Moon's Earth-facing hemisphere. On its backside (also blue, lower left and right) sits the South-Pole-Aitken basin, the Moon's biggest impact structure, itself speckled with younger craters. (Lunar Reconnaissance Orbiter Camera)