The Solar System – Exercise classes

Problem Set 4

Distributed: 4 Nov 2024, results due: 11 Nov 2024.

Problem 4.1

Estimate the surface temperature of Earth if it were a blackbody and only heated by the 90 mW/m² coming from inside. (1 point)

Problem 4.2

A planet's lithosphere is typically confined to the upper layers where the temperature does not exceed ≈ 1200 K. Calculate the limiting depth of Earth's lithosphere, assuming a heat flux density of 90 mW m⁻² from the interior and a thermal conductivity of 3 W m⁻¹ K⁻¹. (1 point)

Problem 4.3

Estimate the total gravitational energy transformed into heat during the agglomeration of Earth and Jupiter, respectively. If that heat had been released at a constant rate over the past 4.5 Gyr, what heat flux densities (in W/m^2) would have resulted at the surfaces of the two planets? Assume that the planets have constant mass densities. (2 points)

Bonus problem 4.4

For every radioactive decay of a ⁴⁰K atom (half life of $t_{1/2} = 1.248 \times 10^9$ yr) an energy portion $\Delta E = 1.3$ MeV = 2.1×10^{-13} J is released as heat. Assume a homogeneous asteroid (with $\rho = 2$ g/cm³) that contains a fraction of 0.02 % by mass in K, of which again a fraction of 0.15 % is in the isotope ⁴⁰K. Let the material's heat conductivity equal 2 W m⁻² K⁻¹. What is the critical asteroid size above which the (equilibrium) core temperature exceeds 1000 K? (2 points)

Figure 1: Artist's impression of the InSight lander (touch-down on 26 Nov 2018) with its instruments, including the seismometer SEIS and the underground "thermometer" HP³, the latter of which suffered from problems during the drilling process. (NASA/JPL-Caltech)