
The Solar System – Exercises
Possible solutions to Problem Set 4

Problem 4.1

The temperature of a blackbody, T , is related to the flux density emitted from its surface, F+ via

F+ = σT 4, (1)

where σ is the Stefan–Boltzmann constant and the resulting dimension is power per surface area. Assuming that
this flux density is matched by the heat flow from Earth’s interior, q = 90 mW, we obtain

q = σT 4 and T =

( q
σ

)1/4
= 35 K. (2)

Earth’s surface would be much colder than it is today, despite the fact that it features hot springs and active
volcanoes, with giant magma chambers underneath.

Problem 4.2

The given thermal conductivity κ = 3 W m−1 K−1 and the heat flux density q = 90 mW m−2 determine the
temperature gradient dT/dz at depth z:

q = κ
dT
dz

or
dT
dz

=
q
κ
. (3)

If κ and q are constant, a simple relation results:

∆T
z

=
q
κ
. (4)

From a known surface temperature T0 = T (z = 0), the temperature at depth results:

T (z) = T (0) + ∆T = T (0) + z
q
κ
. (5)

For Earth the mean surface temperature is T (0) ≈ 288 K.
A rough estimate could be obtained from a blackbody analysis of incident and emitted radiation flux density:

Fin = Fout (6)
L�πR2

4πr2 (1 − A) = 4πR2σT (0)4. (7)

The left-hand side of that equation depends on the solar luminosity, the distance r to Earth, Earth’s albedo A and
radius R. The right-hand side depends on the Stefan–Boltzmann constant σ, the equilibrium temperature and
again the radius. We obtain

T (0) =
1
2

4

√
(1 − A)L�
πσr2 , (8)

which results in T (0) = 278 K for A = 0.
The depth where a temperature T (z) = 1200 K is reached is then given by

z(T ) =
κ∆T

q
=
κ · (T − T (0))

q
≈ 30 km. (9)

For other planets, the surface temperature can be different: drastically higher in the case of Venus, which has
a dense atmosphere with a strong greenhouse effect. On the other hand, Mars supposedly has a much lower
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heat flux coming from its (smaller) interior and its crust is therefore expected to reach those temperatures only
at much greater depth. The heat conductivity brings additional uncertainties into the calculations as it may be
different. The current Mars mission InSight carried a heat probe with drilling capabilities with it, but the actual
drilling could not reach the depths originally intended and could not bring as many insights into Mars’ surface
layer as hoped for.

Problem 4.3

When a cloud of matter collapses under its own gravity to form a compact object, gravitional binding energy is
released and transformed into heat. The gravitional binding energy of a ball of uniform density is given by

U =
3
5

GM2

R
=

16
15
π2Gρ2R5, (10)

where M, R, and ρ are the ball’s mass, radius, and bulk density, respectively. For Earth, we obtain

U⊕ ≈ 2.23 × 1032 J. (11)

That equation can be derived from an integral, in which we add spherical shells of mass dM and radius r on top
of an already existing ball of mass M<r = 4πρr3/3:

U =

M∫
0

GM<rdM
r

=

R∫
0

GM<r4πρr2dr
r

=

R∫
0

16π2Gρ2r4dr
3

=
16π2Gρ2r5

15

∣∣∣∣∣∣R
0

=
16π2Gρ2R5

15
. (12)

The energy per surface area is

U
A

=
U

4πR2 =
4πGρ2R3

15
=

GMρ

5
, (13)

which results in

U⊕
A⊕
≈ 4 × 1017 J/m2. (14)

When assuming a constant release rate over 4.5 billion years, we obtain

U⊕/A⊕
4.5 Gyr

≈ 3 W/m2, (15)

which equals roughly 30 times the current heat flow from Earth’s interior.

Extra info: we could also deduce a shrink rate Ṙ that releases gravitational binding energy at a rate that is
sufficient to sustain today’s surface heat flux density q = 90 mW/m2. Balancing these powers results in

4πqR2 = U̇ =
dU
dR

Ṙ = −
3
5

GM2

R2 Ṙ. (16)

We find that a very small shrink rate would suffice:

Ṙ = −
20πqR4

3GM2 = −1.3 × 10−12 m/s ≈ −40 µm/yr. (17)
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Bonus problem 4.4

In the first step, we derive the general shape of the radial temperature distribution, T (r). An asteroid’s interior
temperature distribution can be described with the heat equation discussed in the lecture on planetary interiors:

cpρ
dT
dt

=
1
r2

d
dr

(
κr2 dT

dr

)
+ H, (18)

where cp is the specific heat capacity at constant pressure, ρ the mass density, T the temperature, t the time, r the
distance from the body’s center, κ the thermal conductivity, and H the heat source density. The term κ dT/dr
corresponds to the local heat flux density. We can save a lot of work when we assume an equilibrium, where
dT/dt = 0. A constant κ (a homogenous body, that is) allows for further simplification:

0 =
κ

r2

d
dr

(
r2 dT

dr

)
+ H =

κ

r2

d f
dr

+ H, (19)

where we substituted f ≡ r2dT/dr. Assuming further that H = const and separating the variables, we can
integrate once:

−
Hr2dr
κ

= d f

−
Hr3

3κ
+ C1 = f , (20)

which introduces a constant C1. Now we know the qualitative behaviour of dT/dr. A second integration is
required to obtain T (r):

−
Hr3

3κ
+ C1 = r2 dT

dr
,(

−
Hr
3κ

+
C1

r2

)
dr = dT,

−
Hr2

6κ
−

C1

r
+ C2 = T, (21)

with a second constant C2.
The two constants can be determined from the boundary conditions. For r → 0, eq. (21) approaches a singularity.
This corresponds to a particular solution, where the temperature reaches infinitely high values at the center. That
solution is of no practical use (for an equilibrium situation), which is why we can safely assume C1 = 0. Then,
the second constant is equal to the central temperature: C2 = T |r=0 = T0. Finally, the temperature profile is given
by

T (r) = T0 −
Hr2

6κ
, (22)

and the central temperature by

T0 = T (R) +
HR2

6κ
. (23)

The radius that corresponds to a give T0 is

R =

√
6κ[T0 − T (R)]

H
≈

√
6κT0

H
, (24)

where we assumed T0 � T (R). Alternatively, we could assume a specific surface temperature T (R) as determined
by the distance to the Sun an the albedo of the surface. For Earth, the mean surface temperature is ≈ 280 K (and
rising . . . ).
In the second step, we need to estimate the heat source density H. The required density results from the number
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of radioactive decays per time and volume, ṅ40, which in turn is determined by the number of unstable 40K atoms
per volume, n40, and their lifetime τ40:

ṅ40 = n40/τ40. (25)

The lifetime is related to the halflife as

τ40 = t1/2 ln 2. (26)

We can further assume that the 40K atoms constitute a fraction x = 0.15 % = 1.5 × 10−3 of all K atoms,

n40 = xnK, (27)

which contribute a fraction y = 0.02 % to the the total mass density ρ,

µKunK = yρ, (28)

where µK = 39 multiplied by the atomic mass unit u = 1.67 × 10−27 kg result in the atomic mass of potassium
(which is dominated by 39K). Finally, the product of volumetric decay rate and energy released per decay
(∆E = 1.3 MeV = 2.1 × 10−13 J) is the power density

H = ṅ40∆E =
n40∆E
τ40

=
xnK∆E ln 2

t1/2
=

xyρ∆E ln 2
t1/2µKu

= 34
nW
m3 , (29)

assuming ρ = 2000 kg/m−3 and t1/2 = 1.248 × 109 yr. While that may seem like a small value, today’s Earth
(which emits q ≈ 90 mW/m2 through the surface) requires only an average

H =
4πR2q
4
3πR3

=
3q
R
≈ 40 nW/m3, (30)

which is a very similar value.
Inserting H = 34 nW/m3, κ = 2 W m−1 K−1 and T0 = 1000 K into eq. (24), we obtain

R ≈ 600 km, (31)

which corresponds to the size of a dwarf planet. Meaning that this decay alone would already make objects of
that size hot enough in their interiors to allow for melting and differentiation. Had we taken into account other,
more short-lived, isotopes, such as 26Mg (which decays to 26Al), the critical radius would be even smaller.
On a side note: the asteroid’s total rate of heat production (i.e. its intrinsic luminosity) is

L =
4π
3

R3H. (32)

The Stefan–Boltzmann law, L = 4πR2σT (R)4, then allows us to estimate the surface temperature that would be
caused by the internal heat alone:

4πR2σT 4 =
4π
3

R3H

σT 4 =
RH
3

T =

(RH
3σ

)1/4
. (33)

We obtain T (R = 600 km) ≈ 19 K � 1000 K, confirming our above assumption that T (R) � T0.
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