
The Solar System – Exercises
Possible solutions to Problem Set 3

Problem 3.1

As given in the lecture, the geometric flattening εF, the rotation parameter ξ ≡ ω2R3/GM, and the gravitational
moment J2 are related via

J2 =
2
3
εF −

1
3
ξ, (1)

We can estimate ξ from Jupiter’s equatorial radius Req ≈ 71000 km, its total mass M ≈ 1.9 × 1027 kg, and its
rotation period P = 10 hours = 2π/ω:

ξ =
4π2

P2

R3

GM
= 0.086. (2)

When this result is combined with ε = 0.065, we obtain

J2 =
2
3

0.065 −
1
3

0.086 ≈ 0.015, (3)

which corresponds well to reference values in the literature.
Some additional thoughts: Could a rotating and flattened planet have J2 = 0? The answer is: yes! But what
would J2 = 0 mean in this context? J2 = 0 would mean that there is no low-order deviation from a spherical
gravitational field. How is this compatible with a flat planet? If, for example, most of the planet’s mass is located
in a small spherical core, surrounded by a tenous gaseous atmophere, that atmosphere would not contribute
much to the total gravitational field in the exterior but it would still form a flattened surface under the combined
action of centrifugal force and the core’s gravity. So, looking at the combination of J2 and ξ (or J2 and εF, or ξ
and εF), we can derive some information on how the mass is distributed inside the planet.
The gravimetric flattening is given by

εG ≡
gpole − geq

gpole
=

5
2
ξ − εF = 2ξ −

3
2

J2 = 0.15, (4)

where gpole and geq are the free-fall accelerations at the poles and the equator, respectively.

Problem 3.2

In hydrostatic equilibrium, without rotation, the gradient of the pressure p is given by

∇p = g(r)ρ(r). (5)

For shallow depths (or low heights) the density ρ and the free-fall acceleration g ≈ 10 m s−2 can be assumed
constant, resulting in

dp
dr

= −gρ (6)

or

∆p = gρ∆r. (7)

Letting ∆p = 3 × 108 Pa, we obtain

∆r =
∆p
ρg
≈

3 × 108 Pa
3000 kg m−3 · 10 m s−2

= 104 m = 10 km. (8)
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Below a depth of roughly 10 km rocks yield under the pressure and can be deformed plasticly. Note that
this critical pressure is 2–3 orders of magnitude lower than the bulk modulus K0 ∼ 100 GPa, meaning that
compression is insignificant in these first 10 km. We can safely assume that ρ is constant.
Vice versa, the maximum height to which styrofoam can be stacked is given by

∆r =
∆p
ρg
≈

2 × 105

20 kg m−3 · 10 m s−2
= 103 m = 1 km. (9)

That tower could reach a height of 1 km – but only if it does not have to support any weight other than its own.

Bonus problem 3.3

Let’s have a look at the contribution of a given mass element to the central pressure – and what happens when
we move that mass element inwards. From the (spherically symmetric) equation for hydrostatic equilibrium,

dp
dr

= −g(r)ρ(r), (10)

we can obtain the integral

p(r) = −

∫ r

r′=R
g(r′)ρ(r′)dr′, (11)

where the free-fall acceleration is given by

g(r) =
GM<r

r2 , (12)

with

M<r =

∫ r

r′=0
4πr′2ρ(r′)dr′ =

4πr3ρ<r

3
. (13)

The contribution of a thin spherical shell (S) of thickness x � r to the total central pressure consists of two parts.
The first part is the direct pressure exerted by the shell itself

p1 =

∫ r

r′=r+x

GM<r′ρ(r′)
r′2

dr′ ≈
GM<r

4πr4

∫ r

r′=r+x
4πr′2ρ(r′)dr′ =

GM<r MS

4πr4

(
=

Gρ<r MS

3r

)
, (14)

where ρ<r is the average density for all material closer than r. The second part is indirect: the additional pressure
by the shells that are further out caused by the gravitational pull towards our individual shell:

p2 =

∫ r

r′=R

GMSρ(r′)
r′2

dr′. (15)

The blue region depicted in Fig. 1 causes p1, while the red region causes p2.
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Figure 1: An inner shell (thick line) is attracted by the (blue) mass interior to it and attracts the (red) mass
exterior to it. When the shell is “teleported” inwards, the (hatched) region is passed and does no longer pull the
shell inwards, but instead gets pulled inward by the shell, the effect on the central pressure being the same.

If we now check what happens when we move that individual shell (without moving or squeezing the others) by
a short distance ∆r, both parts change. For the first part we find

∆p1 = ∆r
dp1

dr
= ∆r

(
∂p1

∂r
+

∂p1

∂M<r

dM<r

dr

)
= ∆r

(
−

4p1

r
+

p1

M<r
4πρr2

)
=

p1∆r
r

(
−4 + 3

ρ

ρ<r

)
, (16)

The first term (−4) is caused by the fact that the attraction increases when the distance is reduced. The second
term (+3ρ/ρ<r) modifies the pressure because the attracting inner mass M<r changes when the shell’s radius r
changes.
For the second part, the contribution by the outer shells, we find

∆p2 = ∆r
dp2

dr
= −∆r

GρMS

r2 = −3
p1∆r

r
ρ

ρ<r
. (17)

This indirect part compensates the second term in ∆p1: if the individual shell is moved inwards, it will feel less
attraction from the (hatched in Fig. 1) shells that it has passed on its way. But this reduction is compensated
because it will now pull these other shells towards the center, increasing their contribution to the central pressure.
We obtain a total change in central pressure,

∆p1 + ∆p2 = −4p1
∆r
r

= −
4Gρ<r MS

3r2 ∆r. (18)

Moving mass closer to the center, we have ∆r < 0, and hence, ∆p1 + ∆p2 > 0: the central pressure increases.

Problem 3.4

In ground mode, the mode of lowest frequency, the wavelength corresponds to the distance of Earth’s radius
back and forth (to the center and back out):

λ ∼ 2R⊕. (19)

Given a typical P-wave propagation speed vP ≈ 10 km/s, the period is

T =
1
f

=
λ

vP
=

2R⊕
vP
≈

1.28 × 104 km
10 km/s

= 1280 s ≈ 21 min. (20)
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For spherically symmetric pulsations (contraction/expansion) of Earth as a whole, the longest measured period is
20 min, which is in good agreement. But the slowest actually measured mode has T ≈ 54 min. That mode is more
related to S waves (which propagate at lower speeds) and characterized by deformations similar to the periodic
quenching and stretching of a football right after the contact with the foot. [Numbers from: T. G. Masters & R.
Widmer: “Free Oscillations: Frequencies and Attenuations”. In: “Global Earth Physics: A Handbook of Physical
Constants”, T. J. Ahrens (Hrsg.), AGU reference shelf, American Geophysical Union, Washington, DC, 1995]
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