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Bonus problem 2.1

The tower has linear dimensions on the order of ∼ 100 m, which corresponds to 1 part in 4 × 105, considering
Earth’s circumference of 4 × 107 m. The gravitational potential would therefore need to be developed to terms
that have periods on that length scale and hence as many as hundreds of thousands of nodes or order n & 4 × 105.

Bonus problem 2.2

We will address the problem in two ways. First, we use the well-known solution of the two-body problem that
we have at hand. Relative to the asteroid it is passing, the spacecraft is on an unbound, hyperbolic trajectory (see
Fig. 1). On such a trajectory, the distance to the asteroid depends on semi-major axis a, orbital eccentricity e and
true anomaly θ:

r(θ) =
a · (1 − e2)
1 + e cos θ

. (1)

The distance is minimal for θ = 0:

q ≡ r(θ = 0) = a · (1 − e). (2)

The spacecraft approaches from and vanishes to infinity at specific angles θ±:

cos θ = −1/e bzw. θ± = ± arccos(−1/e). (3)

If the spacecraft were passing along a straight line, the two angles would differ by 180°. The gravitational
deflection by an angle α can then be expressed as

θ+ − θ− = 180° + α bzw. θ+ = 90° + α/2. (4)

and (with eq. 3)

sin(α/2) = 1/e bzw. e = 1/ sin(α/2) ≈ 2/α. (5)

For any trajectory around it, the asteroids mass Mast and semi-major axis a are related to the total (specific)
energy as given by the energy constant h,

h
2

=
v2

2
−
µ

r
, (6)

where h

h = −
µ

a
and µ = G(Mast + mcraft) ≈ GMast. (7)

At a great distance (r → ∞), where the asteroid’s gravitational attraction is insignificant, the unbound spacecraft
travels at relative velocity v∞ = 10 km/s. We obtain the semi-major axis,

−
µ

2a
=

h
2
≈

v2
∞

2
. (8)
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Figure 1: A spacecraft passes an asteroid (centered on the origin) on a hyperbolic trajectory.
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Equation (2) leads to a = q/(1 − e), and hence,

µ = −av2 =
qv2

e − 1
≈

qv2

e
≈
αqv2

2
. (9)

Assuming α = 1′′ = 2π
360·60·60 rad ≈ 1

2 × 105 rad, q = 108 m and v = 104 m/s we are left with

µ ≈
1016

2 × 105 m3 s−2, (10)

and finally,

MAsteroid =
µAsteroid

G
≈

5 × 1010

7 × 10−11 kg ≈ 1021 kg. (11)

The largest main-belt asteroid, (1) Ceres, has a very similar mass.
If we do not want to use the formalisms of classical celestial mechanics, we can take a different route. The
deflection angle being so small (1′′), the motion (parallel to the x axis) can be approximated as linear and
with constant velocity. The asteroid exerts just a slight perpendicular force that results in a small perpendicular
velocity component at the end of the fly-by. The absolute acceleration is given by

g =
GM
r2 , (12)

while the perpendicular component is

g⊥ ≈ gy =
GM
r2 cos θ ≈

GM
r2

y
r
. (13)

The accelerations along the x axis before and after the fly-by cancel out. The current distance is

r2 = x2 + y2. (14)

The perpendicular velocity component is then

ẏ(t) =

∞∫
t=−∞

gydt. (15)

Assuming a constant velocity ẋ = v = const, we find

dx = vdt, (16)

ẏ(t) =

∞∫
x=−∞

gy

v
dx =

∞∫
x=−∞

GM
vr2

y
r

dx (17)

=
GM

v

∞∫
x=−∞

y dx
(x2 + y2)3/2 , (18)

and given the smallness of the deflection angle,

y(x) ≈ const. (19)

The integral equation could be solved directly with tabulated integrals or with a computer algebra system (such
as Mathematica). Alternatively, we can do with pen and paper, reformulating first:

ẏ(t) =
2GM

v

∞∫
x=0

y dx
(x2 + y2)3/2 =

2GM
v

∞∫
x=0

y dx

x3
[
1 +

(
y
x

)2
]3/2 . (20)

Substituting

ξ ≡ y/x and dξ = −
y
x2 dx, (21)
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we obtain

ẏ(t) = −
2GM

vy

0∫
ξ=∞

ξ dξ
(1 + ξ2)3/2 . (22)

The enumerator is now the derivative of the discriminant in the denominator (joined by an additional factor of 2
that will be compensated by the outer derivative of the square root). This simplifies the integration drastically:

ẏ(t) =
2GM

vy
1

(1 + ξ2)1/2

∣∣∣∣∣∣0
ξ=∞

=
2GM

vy
. (23)

The defelection angle is then given by

α ≈ tanα =
ẏ
v

= 2GMv2y. (24)

With the minimum distance y = q, we obtain

α ≈ tanα =
ẏ
v

=
2GM
qv2 or (again) M =

αqv2

2G
. (25)

Problem 2.3

The angular precession frequency (of the longitude of the ascending node, Ω) caused by the flattening is given by

ωΩ = −
3
2

J2ω cos i
[

Req

a(1 − e2)

]2

= −3π
J2

P
cos i

[
Req

a(1 − e2)

]2

, (26)

where ω is the satellite’s orbital frequency (also called mean motion), P its orbital period, i its orbital inclination,
a and e its orbital semi-major axis and eccentricity, respectively. The central body is characterized by the
combination of its gravitational moment J2 and its equator radius Req. For the combination of Moon (i ≈ 29°,
a = 384 400 m, e ≈ 0, P = 27 days) and Earth (J2 ≈ 0.0011, Req ≈ 6400 km) we obtain

ωΩ ≈ 1.1 × 10−12/s =
2π

180 000 yr
. (27)

That precession period of 180 000 years exceeds the Moon’s actual precession period (of 18.6 years) by roughly
four orders of magnitude, indicating that effects other than Earth’s slight flatness dominate. The perturbations
by the Sun and the other planets (most notably Jupiter) are more important, which is why the Moon’s orbit is
actually precessing relative to the ecliptic plane, not Earth’s equatorial plane.
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