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Problem 1.1

The gravitational force that acts on the pendulum has two components: Earth pulls (ideally straight) downward,
while the belltower (and the hill) pull horizontally. The tangent of the pendulum’s angle is hence given by the
ratio of these two force components:

tanα =
Ftower

F⊕
. (1)

(For small angles we have tanα ≈ α.) Both components can be calculate via Newton’s law:

Ftower =
GMtowermpendulum

d2 , (2)

F⊕ =
GM⊕mpendulum

R2
⊕

, (3)

where d is the distance between pendulum and tower. The angle is thus given by

α ≈
Mtower

M⊕

(R⊕
d

)2
. (4)

The mass of the pendulum cancels out in the ratio, but we still need estimates for d and Mtower. The distance
can be estimated with a map: d ≈ 250 m. The mass estimate is more uncertain. Based on a diameter of 35 m
and a height of 130 m, the volume is very roughly given by Vtower ≈

π
4 × 352 × 130 m3 ≈ 105 m3. Given that

most of that volume is filled with air, a density ρtower ∼ 100 kg/m3 seems appropriate, from which we obtain
Mtower ≈ 107 kg and

α ≈
107

6 × 1024

(
6 × 106

250

)2

≈ 10−9 (rad) = 0.2 mas (milliarcseconds), (5)

which is an angle that is too small to be measured even by the biggest optical telescopes.
For the Hausberg, we could assume a typical density ρhill ≈ 2700 kg/m3 (corresponding to average rock), a
volume Vhill = height × width × length ≈ 200 m × 500 m × 1000 m = 108 m3, and a distance dhill = 2 km. The
resulting angle is then

α ≈ 5 × 10−7 = 0.1′′ (arcseconds), (6)

which is much better, but still not easy. The Schiehallion experiment worked better because the mountain was
more massive and the measurement were done directly on the mountain slopes. That way, the difference between
the two measurement on either sides was ±6′′.

Problem 1.2

From the maximum apparent separation, β = 10′, the true separation (and hence the orbital semi-major axis) can
be obtained::

aC = βaJ ≈ 2π
10′

360°
4.2a⊕ = 2π

10
360 · 60

4.2a⊕ = 0.012a⊕. (7)

The orbital period of 17 days corresponds to 0.046 years, or

PC = 0.046P⊕. (8)
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With Newton’s version of Kepler’s 3rd law, P2 ∝ a3M−1, we can relate the Callisto–Jupiter system to the
Earth–Sun system:

MJ

M�
=

(
aC

a⊕

)3 (
PC

P⊕

)−2

. (9)

After inserting the known quantities, the resulting mass ratio is

MJ

M�
= (0.012)3(0.046)−2 ≈ 0.0124−2 ≈ 10−3. (10)

Jupiter has roughly one thousandth of a Solar mass.

Bonus problem 1.3

When a planet is moving in the opposite direction for some time, it must change direction twice and hence come
to an apparent halt twice. The time between these two moments is then the time span that we are looking for. At
the points where the apparent motion stops briefly, the planet has only a radial velocity component relative to
Earth. The relative velocity vector must therefore be parallel to the relative position vector between planet and
Earth. Figure 1 shows this setting in the non-rotating Solar reference frame.
For a pair or parallel vectors, the cross product vanishes

(r − r′) × (v − v′) = 0 (11)

r × v − r′ × v − r × v′ + r′ × v′ = 0. (12)

On a circular orbit, the velocity vectors are perpendicular to the radial position vectors. In addition, if the two
orbits are coplanar, all velocities and position are in the common plan, all cross products point perpendicularly
away from that plane, i. e. towards the z direction if the plane is spanned by x and y. Letting α be the angle
between r and r′, we obtain

rv − r′v sin(90° + α) − rv′ sin(90° − α) + r′v′ = 0

rv − r′v cosα − rv′ cosα + r′v′ = 0
rv + r′v′

r′v + rv′
= cosα

r/r′ + v′/v
1 + (r/r′)(v′/v)

= cosα. (13)

With v = 2πr/P ∝ r/r3/2 ∝ r−1/2 (according to Kepler’s 3rd law) for the orbital velocities, we find

r/r′ + (r/r′)1/2

1 + (r/r′)3/2 = cosα. (14)

An alternative route to the same result begins with stating that the velocity components that are perpendicular to
d muss be equal if they are to cancel out (see Fig. 1).

v sin β !
= v′ sin β′. (15)

To obtain the angles β and β′, we can start with the trianle formed by r, r′, and d = |d|. The inner angles of this
triangle are 90◦ − β′, 90◦ + β, and α. The cosine law then results in

d2 = r2 + r′2 − 2rr′ cosα, (16)

whereas the sine law gives us

sin(90◦ − β′)
r

=
sin(90◦ + β)

r′
=

sinα
d

, (17)

and hence,

cos β′ =
r
d

sinα (18)
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and

cos β =
r′

d
sinα. (19)

Inserting these results and sin2 β(′) = 1 − cos2 β(′) back into eq. (17), we find

v

√
1 −

r′2

d2 sin2 α = v′
√

1 −
r2

d2 sin2 α. (20)

Now we can multiply by d and substitute sin2 α = 1 − cos2 α:

v
√

d2 − r′2 + r′2 cos2 α = v′
√

d2 − r2 + r2 cos2 α. (21)

In combination with eq. (18), this leads to

v
√

r2 − 2rr′ cosα + r′2 cos2 α = v′
√

r′2 − 2rr′ cosα + r2 cos2 α

v
√

(r − r′ cosα)2 = v′
√

(r′ − r cosα)2

v(r − r′ cosα) = v′(r′ − r cosα), (22)

and finally, again, eq. (16)
For Mars (♂), with a mean distance r′ ≈ 1.5r, the resulting angle is

α = ±16°. (23)

Taking into account the synodic orbital period

Psyn =
(
1/P⊕ − 1/P♂

)−1
= 780 days, (24)

the time span around opposition during which Mars moves from East to West is roughly

t =
α

2π
Psyn = ±35 days, (25)

or a total of ≈ 70 days.
For very distant planets (r′ � r or r/r′ → 0) eq. (16) approaches

cosα→ 0, also α→ ±90°. (26)

The very distant planet moves in the opposite direct for a full quarter of a (synodic) year before and another
quarter of a (synodic) year after opposition – because it basically stands still and only moves with respect to the
stellar background because Earth moves.
For very close planets (r′ → r), we obtain

cosα→ 1, also α→ 0°. (27)

The angle approaches zero – but the time span does not because the length of the synodic year approachs infinity
as the planets’ orbits come closer. From P′ = P · (r′/r)3/2 (Kepler’s 3rd law, again . . . ) we obtain

Psyn =
P

1 − (r/r′)3/2 , (28)

and

t =
P

1 − (r/r′)3/2

arccos r/r′+(r/r′)1/2

1+(r/r′)3/2

2π
. (29)

This general solution is shown in Fig. 2. The theoretical limit for r′ → r can then be approached with multiple
iterations of l’Hôpital’s rule:

t(r′ → r) = ±
P

√
2 · 3π

= ±
365 days
√

2 · 3π
≈ ±27.4 days, (30)

corresponding to a total 2|t| ≈ 55 days.
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Figure 1: Positions of Sun, Earth, and Mars shortly before opposition, when Mars’ apparent motion (as see
from Earth) changes direction. In that moment, the relative velocity vector is parallel to the relative distance
vector and the relative motion is purely radial.

4



Bilder/Gegenlaeufigkeit-eps-converted-to.pdf

Figure 2: Time spent in East–Western motion as a function of heliocentric distance ratio r′/r (see eq. 31).
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