
Physics of Planetary Systems — Exercises
Suggested Solutions to Set 9

Problem 9.1 (2 points)

To address the question of how planetary radii and temperatures are related, we need the temperatures.
Measuring the temperatures is very difficult or completely unfeasible is most cases, so that we have to rely
on estimates based on the typical irradiation from the star, depends on the stellar luminosity, L∗, and the
star-planet distance, r. Equating absorbed stellar radiation (over the cross section of the planet) and emitted
thermal radiation (over its whole surface), we find
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where R∗ and T∗ are the stellar radius and temperature, respectively, and A the planet’s Bond albedo. In solar
units, we have

Tp = 279 K×T∗[T�]

√
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, (2)

where we assumed 4
√

1−A≈ 1. After extracting the tabulated values for Mp, Rp, R∗, T∗(= Teff), and r(assumed
≈ a) from https://exoplanet.eu/, we can filter for Mp > 0.3MJup, calculate Tp and plot Tp vs Rp.

The resulting distribution is shown in Fig. 1. For low temperatures (Tp . 1300 K), all planets have their
radii close to the Jupiter radius, which is expected from electron degeneracy pressure in equilibrium with
gravity. For higher temperatures (Tp & 1300 K) the extra heat from the stars puffs the outer planet envelopes
up, leading to drasticly increased radii.

Extra info: we could have made our lives a bit easier by plotting Tp vs Rp directly on the exoplanet
website because the database already provides the calculcated temperatures.

Problem 9.2 (2 points)

Based on the measured radii and masses of stars and substellar companions shown in Fig. 2 (and in the lecture
notes), we can deduce the following relations:

(a) 3RJup =⇒ (150 . . .400)MJup = (0.15 . . .0.4)M� =⇒ stars,
(b) 1RJup =⇒ (1 . . .100)MJup =⇒ gas giants, brown dwarfs, or low-mass stars,
(c) 0.3RJup =⇒ (0.01 . . .0.05)MJup = (3 . . .15)M⊕ =⇒ super-earths and neptunes, and
(d) 0.1RJup =⇒ . 5M⊕ =⇒ sub-earths to super-earths.

Bonus problem 9.3 (2 extra points)

Following up on a previous problem, we can start with the orbital separation of isolated oligarchs:

∆r = brH = br
(

Miso

3M∗

)1/3

, (3)
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Figure 1: Radii vs calculated temperatures of confirmed planets with masses Mp > 0.3MJup. Dashed lines
indicate the two rough temperature regimes.
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Figure 2: Measured radii and masses of stars and substellar companions as presented by Hatzes & Rauer
(2015; see also the lecture notes).
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where

Miso =
(2πbΣ)3/2r3

(3M∗)1/2 (4)

is the isolation mass, such that the separation becomes
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where we assumed a power-law density distribution,

Σ = Σ0(r/r0)
−3/2, (6)

with reference density Σ0 at reference distance r0.
Thus, if we move outward in the disk, we pass one oligarch per ∆r, i. e. the total number N increased by

one for each ∆r, or:
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≈ ∆N

∆r
. (7)

For the total number in the range from rin to rout, we obtain
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After setting the arbitrary reference radius r0 = rin, we find
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where rin = 1 au and rout = 30 au.
With our estimated ∆r = 0.07 au at rin = 1 au (see previous problem set), the final result is

N ≈ 30. (10)

Extra info: note that the factor 4 ultimately comes from the exponent in eq. (6). If we assumed the same
density at the inner edge but a shallower slope, say −1 instead of −3/2, we would end up with fewer (but
more massive) oligarchs – and vice versa. For a more general density distribution, Σ = Σ0(r/r0)

−x, with a
slope x 6= 2, we would obtain
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Problem 9.4 (2 points)

We can solve the known equation for the (blackbody) equilibrium temperature,

T = T∗
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, (12)
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for the distance d to obtain

d = R∗

(
T
T∗

)−2√1−A
4

. (13)

Assuming T∗ = T⊕ = 5800 K, R∗ = R⊕ ≈ 7×108 m, A≈ 0, along with TH2O = 170 K and TCO = 20 K, the
resulting distances to the icelines are

dH2O ≈ 2300 R⊕ ≈ 2.7 au and dCO ≈ 42000 R⊕ ≈ 200 au. (14)

These are only rough estimates because both temperatures, for thermal equilibrium and sublimation, depend
on other parameters (such as the albedo and the actual gas pressure/density) and can therefore vary over time
or from system to system. For example, a grain of pure water ice will have a much higher albedo (and lower
equ. temperature) than an ice grain that is contaminated by “dirt”. Regardless of these details, the H2O ice
line can be important for planetesimal formation in the terrestrial region, while the CO ice line could be more
relevant for the “outer edges” (such as the Kuiper belt). Whether ice lines have a dominant effect on the final
structure of systems is still an open question.
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