Physics of Planetary Systems — Exercises
Suggested Solutions to Set 8

Problem 8.1 (2 points)

We first need to compute the Einstein Radius, 6g,
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We then need to calculate the magnification from:
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where u is defined as u = f3/6g, and f3 is the impact parameter in radians. Asymptotically, it can be approxi-
mated as
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The duration of the event is given by
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with Rg = Og Dy, being the the projected Einstein Radius. The involved distances are Dy, =2 kpc, Ds = 10 kpc,
Dy s = 8 kpC

a) Assuming .# =1 ./, we obtain 6z = 1.8 mas, u = 0.01/1.8 = 0.00552, and thus, u = 181. With
Rg = 6Dy, = 5.4 x 10" cm and an assumed velocity v ~ 200 km/s, the transit duration is t = 31.2 d.

b) A =1 My, leads to: O = 0.0556 mas, u = 0.01/0.0556 = 0.18, u =5.63, Rg = 1.66 x 10'? cm,
t=23.1h.

¢) M =1 .Mleads to: g = 1.5 x 107! rad = 0.00312 mas, u = 0.01/0.00312 = 3.2, u = 1.013, Rg =
924 x 10" cm, ¢ =1.3 h.

Problem 8.2 (2 points)

Imagine you measure the arrival times of pulses from a pulsar (with .Z, = 1.4 .#) and you note that the
times deviate periodically (with a period P = 1 yr) by up to £1 ms from those expected for constant intervals.
What is the minimum mass of a possible companion that could cause this deviation. Hint: assume a circular
orbit.

Neglecting relativistic effects, the true times at which the pulsar emits its pulses are given by

t, = to +nP. 3)

In contrast, the times at which the pulses arrive at the barycenter of the solar system are

=t + : “)
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where r(t,) is the distance at the time of pulse emission and ¢ the speed of light. The radial velocity of the
pulsar is composed of the (near-constant) system velocity and the variation due to orbital motion around the
barycenter:

= Vr = Vgys + Ave (). (3)

The resulting distance is

t
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where Ar is the pulsar’s distance from the common barycenter with its companion. Hence we find
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If no companion were present, we would expect the pulses to arrive at times ), + nP’, i.e. with constant
intervals P'. However the radial displacement (Ar) causes a variation in light travel times, and hence, the
pulse timings from those expected, Az, . The maximum (semi-)amplitudes of radial displacement and timing
variations are related to the semi-major axis of the pulsar’s orbit, apyisar, via:
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where i is the inclination of the pulsar—companion orbit relative to the plane of the sky. Using Kepler’s third
law,

a3

Pory = 2r GH (9)

with .#Z = Mpuisar + M comp, and the definition of the barycenter,
M s
a = Apulsar T Acomp = Apulsar <1 + %pu Sdr) ) (10)
comp
we obtain
a3 (1 + »%pulsar>3 3 %2 A ! 3%2
Py =27 pulsar Mcomp - putsar? pulsar eq.z(g) ' (C tmax) pulsar (11)
or G(%pulsar + %comp) G/lgomp G («//comp sin i) 3
and after solving for the minimum mass,
. 1 (2 M psar \

M eompsini = cAtmaX\*/G <PO‘;S‘“> : (12)
Assuming Apuisar = 1.4 M, Pory = 1 yr, and Aty = 1 ms, we find

Meompsini =5 x 10** kg = 0.8 Mzarn, (13)

i.e. we may have detected an Earth-mass planet (if the inclination is not too far away from 90°).
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Extra info: the difference between emitted and observed pulse periods P and P’, respectively, is due to the
simple, “acoustic” doppler effect.

Problem 8.3 (3 points)

The 3D equation of mass growth rate is:

da

L pova (14)
In 2D, the following changes are needed. Firstly, p is replaced by surface density, X. Secondly, the cross
section for collision ¢ without gravitational enhancement is 2s instead of 7£s%. With gravitational enhancement,
it is therefore

V2 1/2
6 =2 (1+ 2) (15)
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instead of
2 vgsc
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Collecting all results together and using v} < Vesc as in the 3D case, we obtain the 2D equation of mass
growth rate:

W/

T X228 Vesc (17
or
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where the power of the mass in the right-hand side is less than unity, so it is not a runaway growth. The
exponent (2/3) is the same as for the oligarchic growth.

Problem 8.4 (2 points)
The mass of finished oligarchs is given by

27bx)3 /2

-
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Assume b =10 and £ = 10 g cm~2 at 1 au. Then

(2:3-10-10)*%(1.5-10"%)*  600%2-3-10% 600-25-3-10%*  600-10-10%
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To get the result at 5 au, we have to multiply this by (3/10)3/? (to account for difference in X) and by (5/1)3
(to account for difference in r). This gives:

Migo =014 - (3/10)3/2 .53 2 0145, - 20 ~ 2.4, (20)
The orbital separation of isolated oligarchs is given by
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Numerically, at 1au

.1026 1/3
Ar~10-1.5-1013<362?033) %1.5-1014(

1/3
o 106) ~10"? cm ~ 0.07au (22)

Again, to get the result at 5 au, we have to multiply this by 5 (to account for the difference in r) and with 20'/3
(to account for difference in .#s,). This gives:

Ar~0.07au-5-2.7~ 1 au (23)



