
Physics of Planetary Systems — Exercises
Suggested Solutions to Set 7

Problem 7.1 (2 points)

The scattering of a laser beam tuned to the sodium D lines of the mesopheric sodium layer can be used for
sensing of the wavefront disturbances introduced by the atmosphere. Subsequently, adaptive optics (AO)
corrects the wavefront with deformable mirrors to remove the atomspheric seeing.

Assume that the laser illuminates a sodium-rich layer with a thickness δhNa = 11.5 km at an altitude of
hNa = 90 km (Fig. 1). If d denotes the distance between the telescope and the laser emitter, the pointing offset
for the laser is α = d/hNa. From a simple geometrical consideration, the angular diameter of the artificial
guide star is

βlaser =
α δhNa

hNa
=

d δhNa

h2
Na

= 206265′′
d δhNa

h2
Na

.

If the emitter is mounted on the rim of a telescope with a diameter of 4 m, i. e. d = 2 m, the result is
βlaser = 0.59′′. While this width appears to be bad for observing the artificial star in the AO system, it is
actually not a big problem because the measured position (in terms of the photocenter) is not as sensitive to
the width on sky.

Extra info: the aperture of the laser optics will also influence the size of the “star”. As always, the diffraction
limit of the laser projector is given by β0,laser ≈ 1.2λlaser/Dlaser, which is then the apparent size of the artificial
guide star as seen from the ground. Here, λlaser is the wavelength at which the laser operates and Dlaser the
diameter of its aperture (0.3 m for the VLT’s laser facility). The minimum apparent size is given by

β0,laser ≈ 1.2
λlaser

Dlaser
≈ 1.2

0.5 µm
0.3 m

= 0.4′′, (1)

which is already comparable with the above βlaser. So, in total, the artificial star is an elongated spot that
covers an area 0.4′′× (0.4′′+0.6′′) = 0.4′′×1.0′′ wide.

Problem 7.2 (1 point)

For the direct-imaging technique, which is complementary to most of the other techniques, as it works best
for large planet separations, we have the best chances to find planets around young, nearby stars in order to
keep the luminosity quotient between star and planet as well as the projected separation of close planets at a
favorable level. The companion of β Pictoris at a distance of 19.3 pc within a young association is a very
good example for these advantages.
First we have to determine at which projected angle β Pictoris b could be found by using the Rayleigh criterion
(characterising the diffraction limit)

αR(a.k.a. β0) = 1.22
λ

D
at the given wavelength 2.2 µm and the size of the VLT of 8.2 m as well as the fact that the companion was
found at 3 times this diffraction limit

αVLT = 3αR = 3.66
λ

D
= 3.66

2.2 µm
8.2 m

≈ 9.8×10−7rad≈ 0.2 ′′.

Taking into account that this corresponds to the projected separation between star and planet at the distance
d = 19.3 pc of the stellar primary, we can calculate the projected separation a of the planet in au:

a = d tanαVLT ≈ 4au.

We can repeat that for the given parameters of the Extremely Large Telescope (ELT) and find

αELT = 3αR = 3.66
λ

D
= 3.66

2.2 µm
39 m

≈ 1.9×10−7rad≈ 0.04 ′′
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Figure 1: Geometry of the problem: telescope and laser emitter on the ground, artificial laser guide star in the
mesosphere. The average seeing layer is in between, relatively close to the ground.

and, hence
a = d tanαELT ≈ 0.8au.

This value is of course only reachable if future adaptive optics (AO) systems reach the same performance as
for the VLT or better.

Extra info: The reduction of the possible imageable separation might not seem to change by a huge amount
from 4 to 0.8 au or 20 % of the value of the VLT, corresponding to the increase in mirror size. However, in
addition to the fact that high-mass planets will be imageable at distances comparable to the Astronomical
Unit, the orbital period of such planets decreases (around an object of solar mass for example) from > 7.7
years to > 242 days, corresponding to a reduction to only 8.6 % of the original 7.7 years. Hence, the ELT will
not only allow to find and follow planets along their shorter orbits, but will help to combine several planet
search techniques for the same closer in planets, as e. g. imaging, radial velocity, astrometry and possibly also
the transit technique.
Lecavelier Des Etangs et al. (2009) investigated the possibility that β Pictoris b might be a transiting planet, as
in November 1981 strong and rapid photometric variations were observed for β Pictoris, that were attributed
to the transit of a giant comet or a planet orbiting at several au.

Problem 7.3 (2 points)

To be able to integrate the growth, it is easier to first convert from masses to radii. The relation

m =
4πρs3

3
(2)

corresponds to

ṁ = 4πρs2ṡ. (3)
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This can be combined with the given growth rate,

ṁ =−const× s2
ρgasż, (4)

to obtain

4πρs2ṡ =−const× s2
ρgasż, (5)

and hence,

4πρds =−const×ρgasdz. (6)

Note that the constant is negative because the altitude z decreases. Both sides of the equation can be integrated
separately, resulting in

4πρ (sfinal− s0) =−const×
0∫

z0

ρgasdz≈ const×
Σgas

2
, (7)

because the column density (or surface mass density) is related to the volume mass density via

Σgas =

∞∫
−∞

ρgasdz, (8)

and z0 ≈ ∞. Solving for the final grain radius, we obtain

sfinal = s0 + const×
Σgas

8πρ
. (9)

As long as the initial radius is small (0≈ s0� sfinal), the final radius is independent from it:

sfinal ≈ const×
Σgas

8πρ
. (10)

Bonus problem 7.4 (2 extra points)

Deriving an actual value for sfinal requires estimates for Σ, ρ , and in particular, “const”. For the gas column
density and the grain bulk density we can assume typical values (at ∼ 1 au):

Σgas ∼ 1000 g/cm2, ρ ∼ 1 g/cm3. (11)

The constant can be obtained from a comparison with the growth equation given in the lecture:

ṁ = σρdustvsett, (12)

where vsett =−ż, σ = πs2, and ρdust ∼ 0.01ρgas. Hence we find

ṁ∼−0.01πs2
ρgasż, (13)

and comparison with equation (4) shows that

const∼ 0.01π. (14)

With these numbers, the final radius is then given by

sfinal ∼ 0.01π× 1000 g/cm2

8π×1 g/cm3 ∼
10
8

cm∼ 1 cm. (15)
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Problem 7.5 (1 point)

On Earth’s surface, the vertical free-fall acceleration is given by

z̈ =−g
∫
...dt
=⇒ ż(t)− ż(0) =−gt

∫
...dt
=⇒ z(t)− z(0)− tż(0) =−1

2
gt2, (16)

where z is height, ż vertical speed, and g≈ 9.8 m/s2 the free-fall constant (which we assume to be constant).
Hence, we find

z(0) = z(t)− tż(0)+
1
2g

[ż(0)− ż(t)]2 , (17)

which can be simplified to

z(0) =
1

2g
[ż(t)]2 (18)

if we assume start at rest (ż(0) = 0) and finish on the ground (z(t) = 0). For ż(t) = −1 cm/s, the required
initial altitude is then

z(0)≈ 1
20 m/s2 [0.01 m/s]2 = 5 µm, (19)

which is surprisingly small!
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