
Physics of Planetary Systems — Exercises
Suggested Solutions to Set 5

Problem 5.1 (2 points)

The transit probability is just p = Rstar/a. The photometric amplitude is given by ∆F/F = (Rp/R∗)
2. An

expression for the transit duration was given in class:
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which can also be reformulated to
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The maximum RV amplitude (assuming an edge-on orbit, inclination i = 0◦) is
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These equations can be derived easily using Kepler’s laws and assuming circular orbits.

(a) With a = 0.1 au = 21.4 Rsun and Rstar = Rsun, we obtain p = 0.046. Neptune has a radius that is 0.035
times that of the Sun. The photometric amplitude is thus 0.0352 = 0.001225 = 0.12%. For calculating the
transit duration, we first assume Rstar � Rplanet. From Mstar = Msun and equation (2) we find τ = 4.1 hours.
Eq. (3) with Mp = 1.02×1029 g = 0.054 MJup and a = 0.1 au results in Kstar ≈ 4.8 m/s.

(b) For a start, we need to know the radius of a K0III star, which can range from 8 to 20 solar radii. We will
use an intermediate value, Rstar = 15 Rsun = 0.07 au. Thus, the transit probability for our case is p = Rstar/a =
0.07 au/2 au = 0.035 = 3.5%. The photometric amplitude is then given by ∆I/I = (1/15)2 = 0.004 = 0.4%.
This looks similar to a transiting Neptune! In order to calculate the transit duration, we need to assume a
stellar mass. Masses of red giants are well known and can span 1–2 Msun. Let us assume a solar mass for
the moment. Hence, a = 2 au implies an orbital period P = 2.82 years = 1030 days. The transit duration
is thus τ = 276 hours = 11.5 days, i.e. we now know it is not a transiting Neptune! Even if we assumed
R = 1 Rsun, we still get a transit time of 18.4 hrs. Thus the transit duration can be used to get an estimate of
how big your star is. (For the mass (1.7 Msun) and radius (9 Rsun) of the specific K0IIIb star Pollux, we obtain
p = 0.021 = 2.1%, ∆I/I = 0.012 = 1.2%, and τ = 127 hours = 5.3 days.) The resulting max. RV amplitude
is Kstar ≈ 16 km/s (for Mp = MSun, Mstar = 1.7MSun, ap = 2 au). Note that our assumption of Mstar � Mp
does not hold for this configuration, meaning that our estimates will be pretty rough.

Problem 5.2 (3 points)

Possible sources of false positives:
• Grazing eclipse by a binary: can easily be distinguished with radial velocity measurements which would

show an amplitude of several tens of km/s instead of hundreds of m/s.
• Transit of a main sequence star across a giant. A spectrum of the host star should reveal it is a giant.

Plus the transit duration will be too long. A transit across a giant star can take many tens of hours to
days.

• Eclipsing binary in background diluted by the light of a bright foreground object. This is difficult to
resolve with radial velocity measurements. Probably need very high resolution imaging, or spectra in
the infrared.

• Hierarchical binary, i.e. an eclipsing binary in orbit around a brighter star. High resolution imaging
is needed to resolve system, or infrared measurements. Depending on the orbital period of the binary
about the main star, one could see a radial velocity trend due to a binary star.
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Problem 5.3 (1 point)

First, one can try to image those inner holes directly – and this has been done successfully for a few objects!
Second, the evidence can be found in the SEDs of a large number of disks. In an SED, one can see the
signatures of the dust on top of the stellar photosphere in the IR and at longer wavelengths. This dust emission
comes from different disk regions. Roughly, the near-IR emission (1–5 µm) is dominated by dust close to the
star around the sublimation distance. The mid-IR emission traces the inner tens of astronomical units, and the
emission at longer wavelengths comes from farther out. Some disks show significant near- and far-infrared
excesses relative to their stellar photospheres, but exhibit mid-infrared dips. This hints at a gap between the
inner and outer regions. However, SEDs are not spatially resolved and their information must be supplemented
by imaging to confirm a gap.

Figure 1: Schematic of a transitional disk structure (credit: A. Matter)

Bonus problem 5.4 (1 extra point)

The TOOMRE parameter indicates the ability of a fraction of a protoplanetary gas disk to collapse under its
own gravity. The straightforward version of the parameter is based on local quantities (reflecting the fact that,
well, the collapse is something local):
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Inserting Ω2
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The surface mass density Σ = Σ(r) can vary accross a disk, but if we assume an average value, such that
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we obtain
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which involves the total disk mass, a global parameter.
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Problem 5.5 (1 point)

Giant planets can form directly, when the disk is gravitationally unstable. The Toomre instability criterion is
expressed as

Q ≡ h
r

M?

Mdisk
< 2. (8)

Denoting ε ≡ Mdisk/M? and using the formula for the scale height, h = cs/ΩK or h/r = cs/vK, we rewrite
the criterion as
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For the sound velocity we have
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Here, the Kepler circular velocity is given by vK =
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Assuming M? =M�, we obtain vK = 30 km/s = 3 ·106 cm/s at r = 1 au. With ε = 0.01 and µ = 2 (molecular
hydrogen), the Toomre instability criterion is

T < TT = 4×10−4 2×1.7×10−24

1.4×10−16 × (3×106)2 ∼ 100 K, (14)

which is too cold! At Saturn’s distance of 10 au (meaning a much more extended disk of the same mass), the
required temperature is as low as 10 K, which is absolutely unrealistic. But for ε ∼ 0.1 instead of 0.01 the
critical temperature grows by two orders of magnitude, reaching reasonable values.

Bonus: Gammie’s cooling time (see lecture notes) can be translated to a critical temperature in the following
way:
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Using the same approximation as in Prob. 5.4, Mdisk ≈ Σπr2, we find
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For the same parameters as above we obtain

TG ≈ 1000 K. (17)

In total, the temperature must be between the two critical values:

TG . T < TT, (18)

which implies TG < TT or
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Whether the GI scenario is possible at all is most strongly determined by the mass ratio ε , with only a week
dependence on distance. In the above example, where TG � TT, the scenario appears highly unlikely. Again,
only for greater mass ratios (such as ε = 0.1) would it become possible.
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