
Physics of Planetary Systems — Exercises
Suggested Solutions to Set 4

Problem 4.1 (4 points)

The provided script downloads the light curve for TOI 715 and computes a periodogram (Fig. 1), which
clearly peaks at a period

(c) P = 19.29 d = 0.0528 yr. (1)

Given a stellar mass M∗ = 0.23M� (and assuming that the companion candidate is of much lower mass), we
obtain an orbital semi-major axis

(d) a =
3

√
GM∗P2

4π2 = 1 au× 3
√

M∗[M�]P[yr]2 = 0.086 au. (2)

The phase-folded light curve shown in Fig. 2 is then fitted with a simple box transit model. The best-fitting
transit duration is

(b)
∆F
F

= 0.0039±0.0002 = (3.9±0.2)‰, (3)

which is related to the ratio of radii:

Rp

R∗
=

√
∆F
F

−→ Rp = R∗

√
∆F
F
≈ 0.063R∗ −→ Rp� R∗. (4)

From the fitted transit duration,

(a) τ = 0.079 d, (5)

and the general relation (see lecture)

τ = Ttr =
PR∗

a

√
(1+Rp/R∗)2−b2

π

(1− e2)

1+ esinω︸ ︷︷ ︸
=1, for e=0

Rp�R∗
≈ PR∗

a

√
1−b2

π

b�1
≈ PR∗

πa
, (6)

we can then deduce the stellar radius,

(e) R∗ = πa
τ

P
= 0.00111 au = 0.24 R�, (7)

Figure 1: Periodogram for the TOI 715 light curve.
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Figure 2: Light curve of TOI 715, phase-folded to a period of 19.29 d.

the transit probability,

(f) ptr =
R∗
a

= π
τ

P
= 1.2 %. (8)

and the radius of the planet candidate,

(g) Rp = R∗

√
∆F
F
≈ 0.063 R∗ = 0.015 R� ≈ 1.6 R⊕. (9)

Finally, the expected RV amplitude is given by

K1 = M2 sin i 3

√
2πG
PM 2

1
, (10)

where the inclination is close enough to 90° (because it’s a transit) to assume sin i≈ 1. To get an estimate, we
need an estimate for the companions mass. Based on its radius, we can assume that this is a “super earth”, i.e.
something similar to Earth in composition, just a bit larger. Assuming equal densities, we find

Mp

M⊕
=

(
Rp

R⊕

)3

≈ 4.4, (11)

and hence,

(h) K1 = 2.8 m/s. (12)

Problem 4.2 (3 points)

Assume power laws

c2
s ∝ T ∝ r−ξ and Σ ∝ r−ζ , (13)

so that

ν = α
c2

s

ΩK
∝ r−ξ+3/2. (14)

Substitute these into the formula for the radial velocity

vr =−
3ν

2r
− 3

Σ

∂

∂ r
(Σν) =− 3

Σ
√

r
∂

∂ r

(
Σν
√

r
)

(15)
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to get

vr ∝
ν

r
∝ r−ξ+1/2 (16)

Now, the stationary continuity equation,

∂ (Σrvr)

∂ r
= 0, (17)

requires Σrvr = const or

r−ζ · r · r−ξ+1/2 = r−ζ · r−ξ+3/2 = const, (18)

whence

ζ =−ξ +3/2. (19)

Therefore, a general solution is

T ∝ r−ξ , ν ∝ r−ξ+3/2, Σ ∝ rξ−3/2. (20)

To be “physical”, these solutions must have at least ξ > 0 (the farther out from the star, the colder). On the
other hand, ξ < 3/2 is a reasonable requirement because the surface density is not expected to grow outward.
These limitations are not strict though.

Note that a steepening temperature profile (σ ↑) results in a shallower density profile and vice versa. This
can be understood by looking again at the continuity criterion. The product rvr is roughly proportional to
ν and thus to c2

s and T . Hence the product ΣT is conserved in the stationary case. The profiles of the two
quantities must therefore compensate.

Plotting several of these solutions, for instance for ξ = 0, 1/2, 1, and 3/2 is straightforward. Hopefully
you will not do that in linear scale . . . log-log is the most natural scale to plot power laws.

Bonus problem 4.3 (2 extra points)

As shown in the lecture, the radial momentum equation for the gas disk has the form

−ρ
v2

φ

r
=−∂ (ρc2

s )

∂ r
−ρ

GM?

r2

where

ρc2
s = nµmp · kT/(µmp) = nkT = p (pressure). (21)

Keeping our approach a bit more general, let us assume that pressure is a power law of distance from the star:

p =C · r−a. (22)

Then, the pressure gradient term in the radial momentum equation can be written as

−∂ (ρc2
s )/∂ r =−dp/dr = aCr−a−1 = ap/r = aρc2

s/r,

and the whole equation simplifies to

−ρ
v2

φ

r
= a

ρc2
s

r
−ρ

v2
K

r
or

v2
φ = v2

K−ac2
s

or
vφ ≈ vK(1−η),
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where we define

η ≡ a
2

c2
s

v2
K

for convenience.
From the equations of viscous accretion, we obtain (see Prob. 4.2)

T ∝ r−ξ , Σ ∝ rξ−3/2.

When inserted into eq. (21) this results in

p = nkT ∝ ΣT ∝ r−3/2. (23)

Comparison of eqs. (22) and (23) shows that a = 3/2, and hence

vφ ≈ vK(1−η) with η =
3
4

c2
s

v2
K
.
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