
Physics of Planetary Systems — Exercises
Suggested Solutions to Set 3

Problem 3.1 (4 points)

The provided Python script creates a Lomb-Scargle periodogram (Fig. 1) and finds a peak amplitude at a
period

P = 4.23 d. (1)

Fitting the phase-folded RV data with a sinusoid (Fig. 2),

RV (ϕ) = vsystem +K1 sin(2πφ +∆), (2)

results in a system velocity

vsystem = (8.9±1.1) m/s (3)

and an RV (semi-)amplitude

K1 = (55.1±1.5) m/s. (4)

With the given stellar mass, M1 = (1.16±0.05)M�, the resulting minimum mass is (assuming M2�M1)

M2 sin i = K1
3

√
PM 2

1
2πG

= 9.2×1026 kg≈ 0.48 MJup. (5)

Bonus: a closer at the right panel of Fig. 2 reveals that the residuals (a) are spread more widely than the
error bars would allow and (b) do not quite follow a normal distribution but look rather bimodal. Both effects
hint at something systematic. If we now repeat our analysis with the residuals, we find a suspicious period of
1 day (Fig. 3). The intra-day residuals (Fig. 4) look more like a step function. This reflects the fact that the
data have been collected with at least two different instruments (or calibrations) at two different geographical
longitudes. Such effects could be accounted for in further analysis.

Figure 1: LOMB-SCARGLE periodogram of the original 51 Peg data, showing a peak at a period of 4.23 d.
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Figure 2: (Left) phase-folded light curve with fitted sinusoidal model and (right) residuals after subtraction of
the model.

Figure 3: Periodogram of the residuals, showing a peak at a period of 1 d.

Figure 4: Intra-day residuals, showing a calibration offset between two different observing locations.
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Bonus problem 3.2 (1 extra point)

Letting M ′
2 ≡M ′

2 sin i, errors can be estimated via

∆M ′
2 ≈

∣∣∣∣dM ′
2

dK1

∣∣∣∣∆K1 +

∣∣∣∣dM ′
2

dP

∣∣∣∣∆P +

∣∣∣∣dM ′
2

dM1

∣∣∣∣∆M1

=
M ′

2
K1

∆K1 +
1
3

M ′
2

P
∆P +

2
3

M ′
2

M1
∆M1

∆M ′
2

M ′
2

=
∆K1

K1︸︷︷︸
2.8%

+
1
3

∆P
P︸ ︷︷ ︸

small∗

+
2
3

∆M1

M1︸ ︷︷ ︸
2.9%

. (6)

The statistical error is dominated in equal parts by the stellar mass and the radial velocity amplitude.
∗ The smallness of the uncertainty in orbital period could be shown by tracing the width of the peak in the periodogram.

Bonus problem 3.3 (1 extra point)

Besides the above-mentioned issue with calibration offsets, stellar activity is the usual suspect for additional
noise that is not instrumental.

Problem 3.4 (1 point)

Assuming a rather high temperature of, say, 1000 K at 1 au from the Sun gives the sound speed

cs ≈

√
kT

µmp
∼

√
1.4×10−23 J/K ·1000 K

2 ·1.7×10−27 kg
∼
√

5×106 m2

s2 ∼ 2×103 m/s∼ 2 km/s. (7)

The Keplerian circular velocity at the same distance from the Sun is given by

vK =
√

GM?/r ≈ 30 km/s, (8)

which is much greater than the sound speed. Given that both temperature and Keplerian velocity decrease
with increasing distance, the inequality cs� vK holds as well at 10 au or 100 au.

Bonus problem 3.5 (2 extra points)

Let us begin with a look at the angular momentum that a mass element dm = 2πrΣdr (see Fig. 5) carries:

dL = ldm, where l ≡ rvK (= r2
ΩK). (9)

As the element drifts inward, the specific angular momentum l (i. e. angular momentum per mass) changes
according to

l′ =
dl
dr

= vK + rv′K. (10)

With

vK =

√
GM∗

r
and v′K =−vK

2r
, (11)

we obtain

l′ = vK−
vK

2
=

vK

2
=

l
2r

or dl =
vK

2
dr. (12)

For the inward radial drift, where dr < 0, we find dl < 0. That is, each mass element drifting inward loses
angular momentum. Because the total angular momentum must be conserved, it must be transferred outward.
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However, the question is whether the angular momentum “leaps” outward from mass element to mass
element more quickly than the mass drifts inward, i. e. whether angular momentum really moves outward
or just migrates more slowly inward. While the full answer will depend on the specific local conditions, the
following calculation can shed some light. The total angular momentum inside a given distance r0 can be
written as

Li(r < r0) =

r0∫
rmin

l 2πrΣdr =
m0∫
0

l dm, (13)

where m0 = m0(t) is the mass contained within r < r0. This quantity changes over time for two reasons: (a)
the material that is already in the inner disk (at r < r0) will lose specific momentum, its l will reduce; (b) fresh
material will enter the region from outside adding new angular momentum, m0 changes. The two contributions
are given by

dLi
dt (r < r0) =

(a)︷ ︸︸ ︷
m0∫
0

dl
dr

dr
dt︸ ︷︷ ︸

=l′vr<0

dm +

(b)︷ ︸︸ ︷
l(r0)

dm0

dt︸︷︷︸
=ṁ0

=

m0∫
0

l′vr dm + l(r0)ṁ0. (14)

In a static disk, where the mass flow is constant, we have ṁ0 = Ṁ =−2πrΣvr = const (with vr < 0). We can
simplify

dLi
dt (r < r0) =

r0∫
rmin

l′ vr2πrΣ︸ ︷︷ ︸
−Ṁ=const

dr + l(r0)Ṁ = − Ṁ
r0∫

rmin

l′ dr + l(r0)Ṁ = − Ṁ [l(r0)− l(rmin)] + l(r0)Ṁ

= Ṁl(rmin) (≥ 0). (15)

where vr < 0 still. It may seem odd that the change in total angular momentum is positive and depends on
what happens at the inner edge, but that is actually what is expected for the static disc: the fresh material
coming in from outer region compensates for the loss caused by material slowly drifting inward. And if the
inner edge moves inward (while the surface density in the rest of the inner disk stays the same), the total mass
and angular momentum in the inner disk will actually increase. This effect would be small though because
l ∝
√

r→ 0 as r→ 0, and hence, l(rmin)� l(r0) for rmin� r0.
If Ṁ(r) 6= const, net transport of angular momentum accross r0 could happen. For example, if Ṁ(r) were

to increase towards the star, more angular momentum would be lost for r < r0 than gained from inflow from
the outer region. Given (see lecture)

vr =−
3

Σ
√

r
∂

∂ r

(
Σν
√

r
)
=−3ν

2r
− 3

Σ

∂

∂ r
(Σν), (16)

this is equivalent to the question whether

Ṁ =−2πΣrvr = 6π
√

r
∂

∂ r

(
Σν
√

r
)
= 3πΣν +6πr

∂

∂ r
(Σν) (17)

increases, is constant, or decreases towards the star:

∂Ṁ
∂ r

= 3π
∂

∂ r
(Σν)+6π

∂

∂ r
(Σν)+6πr

∂ 2

∂ r2(Σν) = 9π
∂

∂ r
(Σν)+6πr

∂ 2

∂ r2(Σν)
?
R 0. (18)

The answer depends on the local slope and curvature of Σν as a function of r. Again, for a static disk, where
Σν = const, we find Ṁ = const, and hence, no net outward angular momentum transport accross r0.
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Figure 5: A narrow annulus of width dr drifts inwards, passing the dashed line that marks a distance of r.
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