
Physics of Planetary Systems — Exercises
Suggested Solutions to Set 2

Problem 2.1 (2 points)

In the lecture the observed radial velocity amplitude of the primary (star), K1 = vobs, was derived:
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where f is the mass function. Hence we have

vobs = K1 =
3
√

2πG f/P√
1− e2

. (2)

Assuming M1�M2 and e≈ 0, we get an approximate
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Now we can expand with the suggested units (and replace some variables): M2 = mp in Jupiter masses, P in
years, and M1 = ms in Solar masses:
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The pre-factor is constant and can be computed directly from its constituents. Alternatively, we can tranform
it further, considering that 1 yr is Earth’s orbital period:
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from which we obtain
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and finally,
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Problem 2.2 (2 points)

Recall the mass function given in the lecture:
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As instructed, we have to consider identical host star mass and orbital inclination for both given cases. Let mc
and me (both� mstar) be the masses of the circular and eccentric planets, and fc and fe their respective mass
functions. Taking the ratio of the mass functions and now using that stellar masses and sin i are the same for
both stars, we have
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and thus me = 0.43 mc. So, the planet in the more eccentric orbit has about 40% of the mass of the one in the
circular orbit.

Bonus problem 2.3 (1 extra point)

The actual analytic solution of the integral is not trivial. However, to solve our initial problem, a simple
comparison is possible: When comparing the disk to a homegeneous ball of the same radius and mass, we
note that the mean distance between two particles in a disk, r12, is smaller than that in the ball. The matter is
more densely packed in the disk, the binding energy is higher. Hence, U will have a greater absolute value.

Mathematically, the gravitational binding energy of any extended object can be expressed as
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where both integrals cover the full object. Essentially, the result is
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The gravitational bond grows with the mean inverse distance, i. e. the bond is stronger if the mean distance is
shorter.

Extra info: A more detailed analysis could start with the potential energy of a homogeneous sphere of
uniform density with radius R and mass M :
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.

This integral can be understood as a piece-wise assembly of the sphere from individual shells of mass dM .
This simple approach works because the gravitational potential of a spherical shell is the same as that of a point
of the same mass. Each shell of radius r and width dr adds a bit of binding energy when it is layered atop the
already existing inner ball of radius r and mass M (< r). But M (< r) = 4/3πρr3 and dM (r) = 4πρr2dr,
which results in
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The potential energy of a uniform thin disk is obviously
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where we integrate over the Cartesian plane and Σ = M /(πR2
disk) is the surface density. Hence,
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Let’s get back to a more quantitative solution. In polar coordinates we have

U =− GM 2

2π2R4
disk

∫ Rdisk

0

∫ Rdisk

0

∫ 2π

0

∫ 2π

0

r1dr1r2dr2dφ1dφ2√
r2

1 + r2
2−2r1r2 cos(φ1−φ2)

.

2



Physics of Planetary Systems – Exercises – Set 2 – Suggested Solutions

With α = φ1−φ2 (and |d(α,φ2)/d(φ1,φ2)|= 1) this can be simplified to
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We can go further and substitute r1→ Rdiskr′1 (with dr1 = Rdiskdr′1) and r2→ Rdiskr′2 (with dr2 = Rdiskdr′2) to
obtain
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where the integral is definite – and independent from the disk properties. Hence, we already know that the
result has the expected proportionality:
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Ballabh (1973, AP&SS, Vol. 24, p.535) computed the gravitational potential energy using Legendre’s
complete elliptic integral of second kind
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as the modulus. His result is
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Thus C = 8/(3π). This value is approximately a factor
√

2 larger than for the gravitational potential of a
homogeneous sphere with equal mass and radius.

Problem 2.4 (2 points)

From the virial theorem, the condition for the Jeans radius or mass is K = |U |/2, where
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so that
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giving the Jeans radius
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which contains an additional factor 1/5 (and µ , of course).
We now re-derive the Jeans mass:

M ∼ µmp ·n ·
4
3

πR3 or R∼
(

3
4

π

)1/3( M

nµmp

)1/3

(11)

Substituting this into (9) yields
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or
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The difference to the result derived in the lecture is the additional factor ≈ 5.5/µ2, which is actually close
to unity for a mix of molecular hydrogen (H2) with a bit of helium (He) with an effective µ ≈ 2 . . .2.5.

Problem 2.5 (2 points)

The potential energy of a homogeneous sphere of uniform density with radius R and mass M is
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The total energy of a spherical cloud if an ideal gas is E = K +U or, explicitly,
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As in the initial state T ≈ 0, R≈ ∞, and hence E ≈ 0, and the energy is conserved (E = const), for the final
state we find
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and
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2GM µmp

5kR
With µ = 2, this gives (in cgs units)

T ≈ 4 ·7 ·10−8 ·2 ·1033 ·2 ·10−24

5 ·1.4 ·10−16 ·200 ·1.5 ·1013 K≈ 500 K.

(You obtain similar results when invoking the virial theorem or the Jeans criterion instead, as kinetic and
gravitational energy are equated in all three cases, just with slightly different prefactors. However, note that
the virial theorem would only apply if we allowed for loss of energy, e. g., due to radiation.)
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