Physics of Planetary Systems — Exercises — Set 8

Problem 8.1

(2 points)

Consider a lens at a distance of 2 kpc and a source at a distance of 10 kpc. Calculate the magnification and duration of a microlensing event where the lens passes at a closest distance of 0.01 milliarcseconds from the source for the following lenses:

- (a) a Sun-like star,
- (b) a Jupiter-mass planet, and
- (c) an Earth-mass planet.

Problem 8.2

(2 points)

Imagine you measure the arrival times of pulses from a pulsar (with $\mathcal{M}_* = 1.4 \mathcal{M}_{\odot}$) and you note that the times deviate periodically (with a period P = 1 yr) by up to ± 1 ms from those expected for constant intervals. What is the minimum mass of a possible companion that could cause this deviation. *Hint: assume a circular orbit.*

Problem 8.3

(2 points)

Instead of a 3-dimensional disk of planetesimals, consider a 2-dimensional one: all planetesimals are still spherical, but their centers all lie in one and the same plane. Show that in such a flat disk the runaway growth is not possible.

Hint: systematically replace all 3D quantities in the formulas of runaway growth by their 2D counterparts.

Problem 8.4

(2 points)

Assume the surface density of the planetesimal swarm in the early Solar System to be $\Sigma = 10 \text{ g cm}^{-2}$ at 1 au and 3 g cm⁻² at 5 au. Estimate the masses and orbital separations of finished oligarchs at these distances.

Figure 1: Left: Luminous Red Galaxy 3-757 bends the light of a bluish background galaxy into an Einstein ring/horseshoe (ESA/Hubble and NASA). Right: interface of HAL 9000 from "2001: A Space Odyssey" (Wikimedia Commons).