Physics of Planetary Systems — Exercises — Set 6

Problem 6.1

(2 points)

Use the Gaia astrometric solution for "HIP 66074" (mass $\mathcal{M}_* \approx 0.7 \mathcal{M}_{\odot}$) to estimate semi-major axis (in au) and mass of the detected planet. *Hints: you can access the Gaia catalog via the VizieR data base. There, first select the validated, non-single-star orbital models (tbootsvc), then add the output column for semi-major axis (amaj), and finally enter the star's name at the very top.*

Problem 6.2

(2 points)

The ELT (Fig. 1) will have a primary mirror with a diameter of 39 m. Suppose you have a focal reducing instrument with focal ratio = 3 (resulting focal length = 3×39 m) and a CCD camera with 15-µm pixels. If you could measure the centroid position of stars to an accuracy of 1/100 CCD pixels, what is the lowest planet mass (in Jupiter masses) that you could detect astrometrically at 1 au from α Cen (distance = 1.34 pc). Assume a solar mass for the α Cen.

Bonus problem 6.3

(1 extra point)

What problems would you have in measuring the astrometric displacement discussed in the previous problem?

Problem 6.4

(2 points)

Estimate the temperature of a spherical dust grain at a distance r from the star. Assume that the grain absorbs all incoming stellar

radiation and then re-emits it at the same rate, thus residing in a thermal equilibrium. Make a numerical estimate for dust particles at 1 au from the Sun. Then, find the radius of the inner dust-free zone around the Sun, assuming that dust sublimates at T > 1500 K.

Problem 6.5

(2 points)

At which size does the boundary between "small" ($\Gamma \gg 2\Omega_K$) and "big" ($\Gamma \ll 2\Omega_K$) grains lie? Assume solar nebula conditions at 1 au and adopt a gas density of 10^{-9} g cm⁻³.

Figure 1: Model rendering of the Extremely Large Telescope on Cerro Armazones, under construction until 2027.