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Barries Against Dust Growth in PP disks
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The “Charge Barrier” Against Dust Coagulation?

X PP-disks are weakly ionized
by various high-energy sources:

» COSMIC rays (e.g., Umebayashi & Nakano 80)
» stellar X-rays (e.g., Glassgold et al. 97)

% Dust particles in an ionized gas:
(on average) get negative charges!

(first discovered in astrophysics (Spitzer 41),

now better known in plasma physics)

* “Assymmetric” (¢<Q)#0) charging
= Coulomb barrier between
colliding particles

Cosmic rays

X-rays
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Prelude: Grain Charging in a Fully lonized Gas

® number density: 1n; = 1, (< |Q|ny)
e thermal speed: v; K U, (< m; > m,) \. ot
= incident flux: 7,0, K 1,0, i P—

= the grain charges up until the Coulomb force 7 N
equilibrates these fluxes.

Equilibrium Condition: | —eV ~ kgT

V' = Q/a: surface potential of the grain (e.g.,Spitzer 1941)

kgT T — independent
»> V-~ e —10 mV(102 K) of grain size a

> Q:aVN—afewe( : )( d ) x q 4

0.1 um/\102 K




Prelude: Collision of Charged Grains

Consider a collision between two charged grains

Hitting Condition: | Exin > Ee |
1

® Fi., = 5Mred(Av)2 . Kinetic energy ‘) <-

Q1Q2

® [, —
el a1 + a»

. electrostatic energy

. 2 a T
Using Q =V, Egy ~ V2~ (G2 ym) (102 K)kBT o

If the relative velocity is driven only by Brownian motion (Ey;, ~ kgT ),

collision is severely inhibited at @ >> (. 1um!!



This Work

® Dust Charging in weakly ionized gases

® The role of the size distribution
® The effect of settling/turbulence



Dust Charging in Weakly lonized Gases

X Dust charge distribution na(2)
X lon & electron number density ni, ne

are mutually dependent!
— Must be computed
simultaneously!
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Electron Deficiency Effect (Okuzumi 2009)

MMSN + cosmic rays + X-rays, r=5AU, z=H
Fractal growth, D=2 (0.1um monomer)
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Weak ionization prevents small aggregates
from being strongly charged :




Coagulation of Charged Dust: Simulations

( )
» Smoluchowski’s method to follow the evolution of size distribution

» Collisional cross section

1 MMy o Q1Q2 _  a1a2 V2
2M, + My a1+ ao a1+ as

Eg
oef = m(a1 + ap)? (1 — ) Exin =
Eyin

X Av : Relative velocity = Brownian motion + settling + turbulence
X V : Dust surface potential 4= analytic solution by Okuzumi (2009)

» “Hit-and-stick” (fractal) aggregation model (Okuzumi et al. 2009)

- no compaction nor fragmentation
- determines the porosity of collision products using an empirical
formula obtained from N-body calculations

» Local (0-dim.) simulation (advection is neglected)
\_ .

Key parameters: ionization rate T, “drift acceleration” g
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The Outcome of Dust Growth

Three types of outcomes dependingon T & g :
(Okuzumi et al. submitted)

“Orderly” growth
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» No-charging cases
» Relatively narrow
size distribution
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The Outcome of Dust Growth

Three types of outcomes dependingon T & g :
(Okuzumi et al. 2010a, submitted)
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» When g is high
» Charge does not
affect the growth

“Bimodal” growth
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» Low g but low T

» Electron deficiency
effect!

“Freezeout”
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» Low g & High T
» Growth stops in the

Brownian motion
regime
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Application to Protoplanetary Dust Growth

(Okuzumi et al. 2010b, submitted)

v MMSN model (Hayashi 81), isothermal
v Cosmic rays, stellar X-rays, %Al
v' Monomer size: 0.1um

Orderly

|
w
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v’ Includes turbulence-driven collision velocity § 2
(out ignores turbulent diffusion) C_EU 1

» At depth=0.1g/cm?, orderly growth 1AU 10AU 100AU

. ) hel tric dist AU
4= High collision velocity 4= Low gas density eliocentric distance  [AU]

The maximum size of the
“frozen” aggregates in the disk

» At depth=102g/cm?, bimodal growth
4= Electron deficiency = Weak ionization

» At intermediate depths, freezeout! 1077 J (0.1mm, 103 g/cc) 4
(<< Mcomp~ 104 g)
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Dust Transport Across Frozen-zone Boundaries

@ulent mixing growth &
o °°o compaction
- s —°°—°L o-_\_ Lsettling
| “frozen” zone < Oe
o e e : - _" :_:/
~1 AU < radial infall

(Okuzumi et al. 2010b, submitted)
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ns=1, a=0.1um, =0

Dust Growth Timescales
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Conclusion

fragmentation
Charging! bouncing?

radial drift
—
0.1um mm cm m >1km

fractal growth compaction

e Charging prevents dust growth before compaction occurs!
o At least, the “frozen” tiny aggregates are retained in the disk
over a timescale of 10° years! 15



