Direct imaging and Spectroscopy of Exo-Planets

Ralph Neuhäuser

with Markus Mugrauer, Tobias Schmidt, Simone Fiedler, Martin Reidemeister, Gracjan Maciejewski, Katharina Schreyer, Stefanie Rätz, Ronny Errmann (Jena), and Andreas Seifahrt (now UC Davis)

Astrophysikalisches Institut und Universitäts-Sternwarte <u>www.exoplanet.de</u> <u>www.astro.uni-jena.de</u> Friedrich-Schiller-Universität Jena

The brown dwarf desert: 20 to 50 Jup masses

Grether & Lineweaver 2006

Objects below ~ 35 Jup masses form differently, i.e. planets ...

Luminosity vs. age (stars, brown dwarfs, and planets)

(Burrows et al. tracks for masses 10 to 70 M_jup)

Determination of mass

By comparison with evolutionary models & tracks (hot start)

<u>Observables:</u> Luminosity L Temperature T Gravity log g Radius R Age (of host star)

Model yields <u>mass</u> of the companion

Example given here: GQ Lup b and Burrows et al. 1997 models 20-25 M iup (4 to 36 M iu

→ 20-25 M_jup (4 to 36 M_jup), figure from Andreas Seifahrt PhD thesis (red: 25 Jup)

Calibrating tracks with eclipsing double-lined brown dwarf – brown dwarf binary (2M0535 in Orion region, i.e. few Myr)

→ Masses from Kepler s 3rd law:
A has 59.5 4.8 M_jup but spots
B has 37.5 2.9 M_jup

(Stassun et al. 2007 Nat. & ApJ)

		Observabl	es:		
Object	Luminosity	Magnitude	Temperature	Age	References
name	$\log(L_{\rm bd}/L_{\odot})$	$M_K [mag]$	T _{eff} [K]	[Myrs]	

Reference object (eSB2 brown dwarf - brown dwarf binary 2M0535):

2M0535 A	-1.65 ± 0.07	5.29 ± 0.16	2715 ± 100	0.1-3	Stassun 07
В	-1.83 ± 0.07	5.29 ± 0.16	2820 ± 105	0.1-3	Stassun 07

Directly detected planet candidates:

DH Tau b	-2.75 ± 0.10	8.31 ± 0.23	2750 ± 50	0.1-4	Itoh 05
GQ Lup b	-2.38 ± 0.25	7.67 ± 0.16	2650 ± 100	0.1-3	Neuh. 05
2M1207 A	-2.76 ± 0.05	8.35 ± 0.05	2425 ± 160	5-12	Chau. 05a
Ъ	-4.75 ± 0.06	13.33 ± 0.12	1590 ± 280	5-12	Chau. 05a
AB Pic b	-3.76 ± 0.06	10.85 ± 0.11	2040 ± 160	20-40	Chau. 05b
CT Cha b	-2.68 ± 0.21	8.83 ± 0.50	2600 ± 250	0.1-4	Schmidt 08
1RXSJ1609 b	-3.57 ± 0.15	10.36 ± 0.35	early L	1-10	Lafr. 08
HR 8799 b	-5.1 ± 0.1	12.66 ± 0.11		30-1000	Mar. 08
c	-4.7 ± 0.1	11.74 ± 0.09		30-1000	Mar. 08
d	-4.7 ± 0.1	11.56 ± 0.16		30-1000	Mar. 08
Fom b	≤ -6.5	$M_{\rm H} \geq 23.5$		100-300	Mar. 08
eta Pic b		$M_{\mathrm{L}^{\prime}}=9.8\pm0.3$		8-20	Lagr. 09

Model derived masses:								
Object	Burrows 1997	Chabrier 2000	Baraffe 2003	Marley 2007	Baraffe 2008			
name	(L, age)	(L, T, K, age)	(L, T, K, age)	(≥ 10 Jup)	$(\geq 10 \text{ Myrs})$			

Reference object (eSB2 brown dwarf - brown dwarf binary 2M0335):

2M0535 A	50 (45-60)	55 (30-60)	50 (45-80)	
в	37 (33-46)	45 (40-50)	43 (40-65)	true 37.5 jup

Itoh et al. Subaru

(Schmidt, RN, Seifahrt, Conf. Proc., astro-ph)

Marois et al. 2008

(Schmidt, Neuhäuser, Seifahrt, 2009, AIP Conf. Proc. 1158, 231, also on astro-ph)

Problem: Hot-start model tracks may not be valid for objects younger than ~ 10 Myrs

CT Cha b and Drift-Phoenix (Helling, Hauschildt):

- T= 2600 K 250 K
- $A_V = 5.8$ 0.8 mag

 $Log g = 4.0 \quad 0.5 dex$

- ➔ Mag, A_V and distance give luminosity L
- ➔ L and T give radius (~ 2.2 0.7 R_jup)

Schmidt, Neuhäuser, Seifahrt, ... Hauschildt, 2008 A&A

GQ Lup: VLT / Sinfoni JHK-band spectra: R=4000, S/N > 100

Conclusion:

Given the age ranges and all models, Planet status is dubious in all cases but maybe Fomalhaut b and HR 8799 bcd

<u>Problem:</u> Hot-start models differ a lot and may not be valid below ~ 10 Myrs

Solution: Fitting higher-resolution spectra to model atmospheres \rightarrow T, Av, and g Mag, Av, and distance give luminosity L L & T give radius R then <u>R & g give mass</u>

<u>Problem here:</u> Gravity determination not yet precise enough (0.5 dex)

Direct imaging planets can constrain and probe

Planet formation time-scale (youngest star with planet)
 Migration scenarios (most exo-Jupiters at snow line ?)

→ massive large disks (?) → wide sub-stellar companions could form in disk instability (?)

Summary:

- → Direct detection of planets is possible (wide separations)
- → Mass determination still very challenging (model dependent)
- → JHK spectra and model atmospheres yield T, g, R, then mass
- direct imaging of young planets can constrain planet formation time-scale and migration theories

NB 1:

PZ Tel – new brown dwarf companion

Mugrauer et al. 2010, A&A in press, arXiv:1008.4506

JHK colors give spectral type (late M) → brown dwarf of ~ 40 Jup masses (at age and distance of host star)

NB 2:

Planet transit observations in Jena

90-cm telescope in Großschwabhausen (GSH) near Jena

Three telescopes with four instruments for imaging, photometry, Lucky Imaging, and spectroscopy

Wasp-10: 9 light curves of 8 transits from 4 different observatories

Mid-transit times error +/- 18 to 45 sec Maciejewski et al. 2010b MNRAS in press

Wasp-10: after removing Wasp-10b from RadVel data,

one new frequency: 12 days (rotation period of star)

- 12 day rotation period also seen in WASP photometry (Christian et al. 2009)
- Peak-to-peak photometric variation ~ 20 milli-mag, typical for spotted star

Gyro-chronology : 12 day rotation for K5 dwarf star gives

- Age 200 to 350 Myrs
- (intermediate between Pleiades and Hyades)
- i..e two quite young planets

Youth can also explain the large radius of Wasp-3b (1.3 Jup radii for 3 Jup masses) a 10% effect !

Time from mid-transit (d)

Maciejewski et al. 2010b MNRAS in press

Wasp-10: TTV best explained by additional planet Wasp-10c with 0.1 Jup mass in outer 5:3 MMR with 5.23 day period

(Wasp-10b: 2 Jup mass With 3.09 day period)

Maciejewski, Dimitrov, Neuhäuser, ..., <u>Tachihara, Takahashi</u>, ... 2010b MNRAS in press

Table 4. Outer-perturber solutions which reproduce the observed O - C variation. P^{ttv} indicates which periodicity in the O - C diagram (P_1^{ttv} or P_2^{ttv}) is reproduced by a solution, a_c denotes the semi-major axis of the perturbing planet, M_c is its mass, P_c is its orbital period, K_c is the expected semi-amplitude of the radial-velocity variation and χ^2_{red} is the lowest value of reduced chi-square for direct model fitting.

No.	P^{ttv}	a_{c} (au)	$M_{\rm c}$ $(M_{\rm J})$	$P_{\rm c}$ (d)	$K_{\rm c}$ (m s ⁻¹)	$\chi^2_{\rm red}$
1	1	0.0536	0.10	5.2293	14.2	1.5
2	2	0.0539	0.10	5.2647	14.1	2.5
3	2	0.0682	0.55	7.4962	69.1	2.8
4	1	0.0686	0.55	7.5677	68.9	2.8

Young Exo-planet Transit Initiative (YETI)

network of telescopes at all longitudes to observe 24 / 7 in order not to miss a transit

<u>Transit search in young clusters started</u> with Schmidt Teleskop Kamera (STK) at 90 cm:

Few Myrs cluster Trumpler-37 with 18000 stars.

Other clusters later.

Other telescopes around the world are participating to cover all longitudes to observe 24 / 7.

SUBARU A0188/IRCS

Hiroshi TERADA

Rad Vel follow-up with Keck on 26 & 28 Feb 2010

Summary:

- → Direct detection of planets is possible (wide separations)
- → Mass determination still very challenging (model dependent)
- → JHK spectra and model atmospheres yield T, g, R, then mass
- direct imaging of young planets can constrain planet formation time-scale and migration theories

- →New brown dwarf companion found to PZ Tel
- → Planetary Transit Timing Variations find new planets in Wasp-3 & -10
- Young cluster monitoring to find very young transiting planets