Staub in Planetensystemen/惑星系の「うちゅうじん」

Sep. 27 - Oct. 1, 2010, Jena, Germany

Formation of cosmic crystals by eccentric planetesimals

<u>H. Miura</u>¹, K. K. Tanaka², T. Yamamoto², T. Nakamoto³, J. Yamada¹, K. Tsukamoto¹, and J. Nozawa¹

¹Tohoku Univ., Japan ²Hokkaido Univ., Japan ³Tokyo Inst. of Tech., Japan

This study has been already published. (Miura+2010, ApJ 719, 642-654)

COSMIC CRYSTALS

NASA / JPL-Caltech

Introduction: Morphodrom (snowflake)

Snowfrake changes its shape depending on temperature (undercooling) and supersaturation (density of water vapor) (Nakaya diagram)

From Prof. Furukawa, Hokkaido Univ. http://www.lowtem.hokudai.ac.jp/ptdice/

Morphologies of crystals reflect their formation condition

> relationship morphologies v.s. formation condition ↓ "morphodrom"

Introduction: Evaporation + condensation experiments

Introduction: Morphodrom (forsterite)

Introduction: Condensation in non-equilibrium

Introduction: Candidate of cosmic crystal formation

I. Dust evaporation

I. Dust evaporation Shock-wave heating

How strong is the gas frictional heating?

I. Dust evaporation **Dust in hot gas**

input parameters:

planetesimal radius	$R_{\rm p}=100~{\rm km}$
gas number density (pre-shock)	$n_0 = 10^{15} { m ~cm^{-3}}$
shock velocity	$v_{\rm s}=8~{\rm km~s^{-1}}$
gas/dust mass ratio	$\xi=0.01$
dust radius	$a_{ m d}=1~\mu{ m m}$

post-shock gas (far from shock front):

- temp. ~ 1700 K
- density ~ 4×10^{-8} g cm⁻³
- no relative velocity to dust

dust temperature > 1500 K

• evaporate significantly (90% in mass evaporates away, in this case)

I. Dust evaporation **Evaporation**

input parameters:

planetesimal radius	$R_{\rm p}=1-1000~\rm km$
gas number density (pre-shock)	$n_0 = 10^{13} - 10^{15} \ {\rm cm}^{-3}$
shock velocity	$v_{\rm s} = 5-60~{\rm km~s^{-1}}$
gas/dust mass ratio	$\eta=0.01-0.1$
dust radius	$a_{ m d}=1~\mu{ m m}$

"significant vapor generation by planetesimal bow shock"

2. Rapid cooling of silicate vapor

2. Rapid cooling of silicate vapor Expansion of shocked gas

2. Rapid cooling of silicate vapor One-zone model

Eq. of motion for vertical direction:

$$\frac{dv_r}{dt} = -\frac{1}{\rho}\frac{\partial p}{\partial r},$$

One-zone approximation:

$$v_r \sim \frac{dR}{dt}, \quad \frac{\partial p}{\partial r} \sim -\frac{p}{R},$$

Eq. of expansion:

$$\frac{d^2\tilde{R}}{d\tilde{t}^2} = \frac{1}{2}\tilde{R}^{-2\gamma+1},$$

with normalization as

- radius: ${ ilde R}=R/R_{
 m p}$

• velocity:
$$ilde{v}_r = v_r/c_{
m c0}$$

solution:

• expansion velocity

$$\tilde{v}_r = \frac{d\tilde{R}}{d\tilde{t}} = \left[\frac{1 - \tilde{R}^{-2(\gamma-1)}}{\gamma(\gamma-1)}\right]^{1/2}$$

• radius of shocked gas

$$\frac{\tilde{t}}{\sqrt{\gamma(\gamma-1)}} = \int_1^{\tilde{R}} \frac{dy}{\sqrt{1-y^{-2(\gamma-1)}}}$$

2. Rapid cooling of silicate vapor Analytic solution

cooling rate of silicate vapor:

$$\begin{split} -\left(\frac{dT}{dt}\right) &\simeq (0.25 - 0.35) \times T_0/t_{\rm s0} \\ &\simeq 2000 \left(\frac{R_{\rm p}}{1~{\rm km}}\right)^{-1} \left(\frac{T_0}{2000~{\rm K}}\right) \\ &\times \left(\frac{c_{\rm s0}}{3.7~{\rm km~s^{-1}}}\right)~{\rm K~s^{-1}} \end{split}$$

small planetesimal → rapid cooling
large planetesimal → slower cooling

"rapid cooling of silicate vapor"

3. Condensation of cosmic crystals

3. Condensation of cosmic crystals Homogeneous nucleation

Dillmann and Meier 1991, J. Chem. Phys. 94, 3872

"delay of nucleation by surface free energy"

3. Condensation of cosmic crystals Cooling parameter Λ

nucleation and growth in monotonically cooling gas (Yamamoto and Hasegawa 1977, Prog. Theo. Phys. 58, 816)

Only two non-dimensional parameters determine

- (actual) condensation temperature,
- size distribution of condensed grains.

Cooling timescale:

 $\Lambda = \tau_{\rm sat} / \tau_{\rm coll}$

collision interval of vapor molecules

Surface energy of a vapor molecule:

monomer radius $=rac{4\pi a_0^2 \gamma_{
m s}}{k_{
m B}T_{
m e}}$

3. Condensation of cosmic crystals Diagram of condensed particles

3. Condensation of cosmic crystals

Conclusions

- Dust evaporation and condensation experiments showed that cosmic crystals with various morphologies were formed from highly-supercooled (supersaturated) silicate vapor. The morphology depends on temperature and supercooling (morphodrom).
- Planetesimal bow shock is one of the candidates for the cosmic crystal formation. It evaporates um-sized fine silicate particles behind the shock front. The silicate vapor cools rapidly due to the adiabatic expansion.
- Depending on the shock conditions (planetesimal radius, shock velocity, gas number density, and dust-to-gas mass ratio), variety of cosmic crystals in sizes (nm-size to um-size) and morphology (bulky, platy, whisker, and so forth) was produced.