

SUBARU Strategic Exploration of Exoplanets and Disks with HiCIAO/AO188 (SEEDS Project)

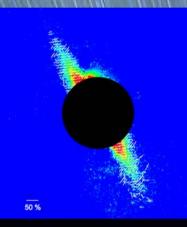
Ryo Kandori [NAOJ]

on behalf of Motohide Tamura [NAOJ, PI of SEEDS] and SEEDS/HiCIAO/AO team

2010 Sep 27 "Dust in Planetary Systems" workshop Univ. of Jena, Germany

Talk Outline

HiCIAO status in brief SEEDS status


- Project objective/goal, targets, observations, and current progress (mainly for exoplanet studies)
- Research organization in SEEDS project
- Early scientific results from SEEDS/ HiCIAO
 - Some exoplanet/companion candidates
 - "Fine structures" of protoplanetary disks
- Schedule, future instrumentation
- Summary

Subaru has an AC Coronagraph since 2001 CLAO + 36-actuator AO at Cass. First dedicated cold coronagraph on 8-m telescopes

Diversity of proto-

Planetary disks

Compact disk around massive YSOs

Fukagawa+04,+06; Tamura+06; Kudo+07; Itoh+05; Jiang+06; +

Young very low-mass

Companion

Subaru CIAO L-band 2002 of its Sce DHS, Tauaccret GQs Lup

- * HD142527: new-type (Fukagawa et al. 2006)
- FN Tau: first PP disk a discovered (Kudo et a
- Beta Pic: First NIR pol of debris disk dust (Ta 12000)

AB Aur

ers

prote

best c

ass (0.1 Mo) star directly

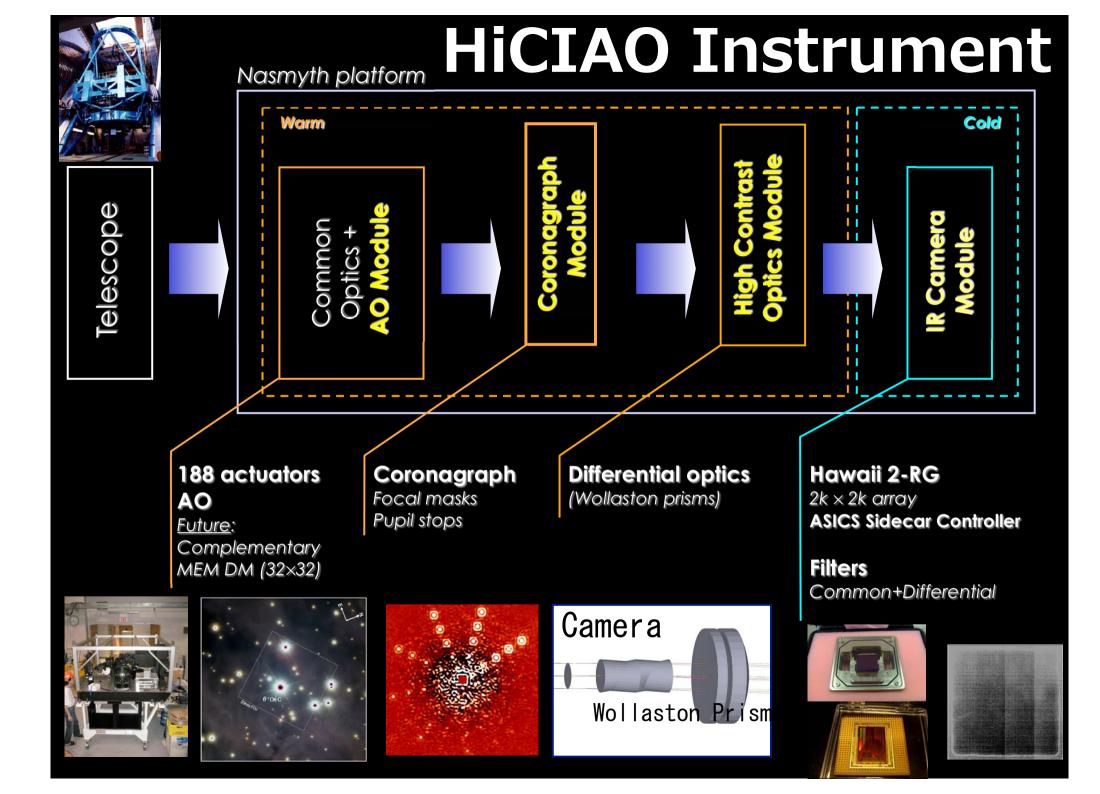
hology discovered

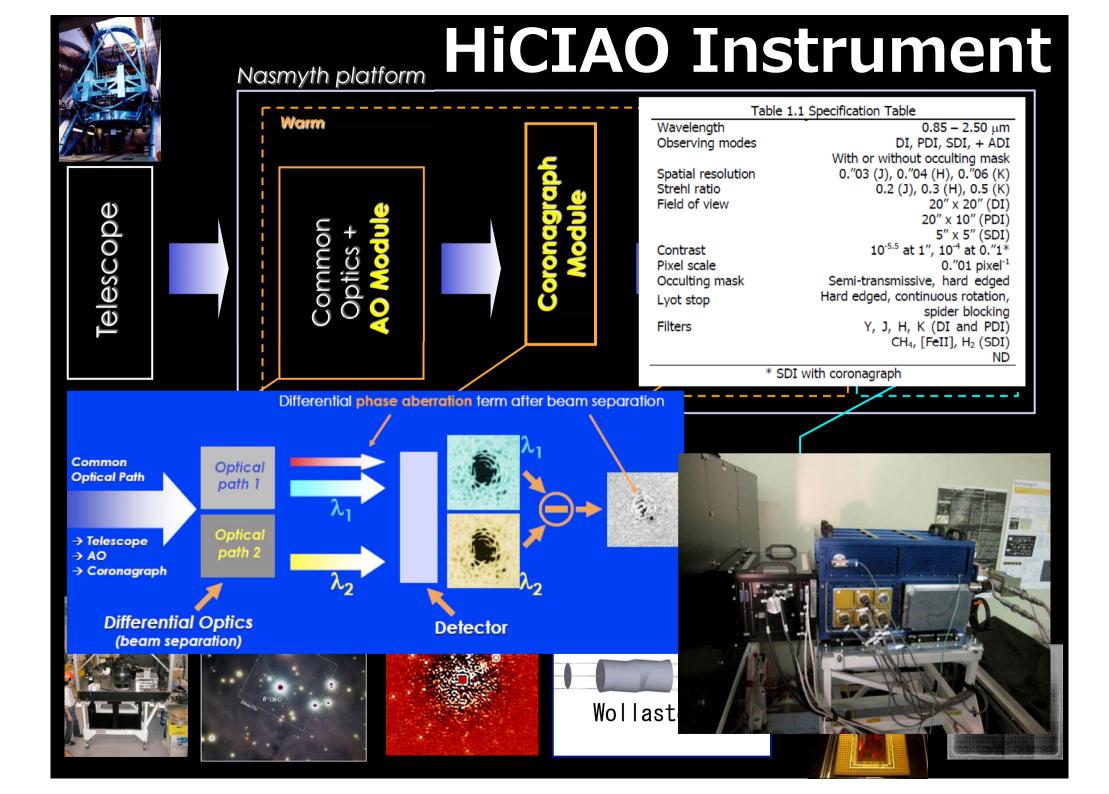
EN Tab

HD 142527

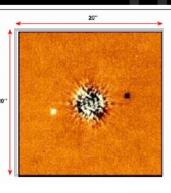
Improvement after 2007-2008

arc sec


- low order adaptive optics (AO36->AO188+Subaru),
- lack of differential capabilities (CIAO->HiCIAO),
- limited upgrade flexibilities accepting various coronagraph ideas and AO upgrades.


Subaru/HiCIAO

- HiCIAO: High Contrast Instrument for next generation Adaptive Optics
 - For Subaru 8.2m telescope
 - Based on a previous Japan/MEXT grant (Tokutei)
 - PI & CoPIs: Motohide Tamura (NAOJ), Klaus Hodapp (UH), Ryuji Suzuki (NAOJ; now TMT)
- Combined with the curvature-sensing AO with 188 elements (Hayano, Takami et al.) and SCExAO1024 upgrade (Guyon, Martinache et al.)
- Commissioned in 2009 (including Princeton/MPIA teams for angular differential imaging and commissioning)
- Specifications and Performance
 - 2048x2048 HgCdTe and ASIC readout
 - Wavelengths: 1 2.5 microns (NIR)
 - <u>Observing modes: DI, PDI (dual beam), SDI (quad beam), & ADI; w/wo occulting masks (>=0.1"</u>
 - Contrasts: 10^-6 at 1", 10^-4 at 0.15" (SDI)



DI

PDI

(1) FOV for the **Direct Imaging mode** (the cross marks the center of the field)

Obs Modes

DI (Direct Imaging) mode - FoV: 20"x20"

PDI (Polarization Differential) mode

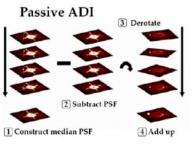
- Single Wollaston
- FoV: 10"x20" (x2, simultaneous)

SDI (Spectral Differential) mode

- Double Wollaston × 2k on
- FoV: 5"x5" (x4, simultaneous)

Filters Common+Differential

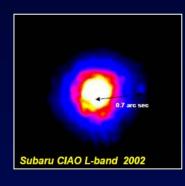
ADI (Angular Differential) mode - Obs in "Pupil-stable" mode - Combination with DI, PDI, SDI

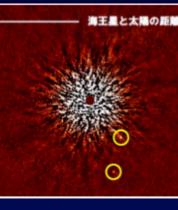

(2) Layout and FOV for the two images in single Wollaston PDI mode.

(3) Layout and FOV for the four images in dual Wollaston **SDI mode**. Wavelength in each channel can be selectable in each run, if necessary. 1.625um

Keue Jorganan

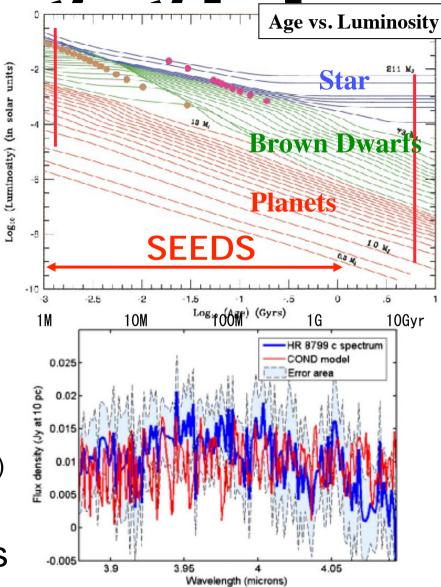
ADI


(4) Concept of (passive) ADI mode.



SEEDS – Strategic Exploration of Exoplanets and Disks with Subaru

- First "Subaru Strategic Observations"
- 120 nights in 5 years on Subaru with HiCIAO and AO
- Direct imaging and census of giant planets around ~500 solartype and massive stars in the outer regions (a few - 40 AU)
- Exploring protoplanetary disks and debris disks for origin of their diversity and evolution at the same radial regions
- Direct linking between planets and protoplanetary disks

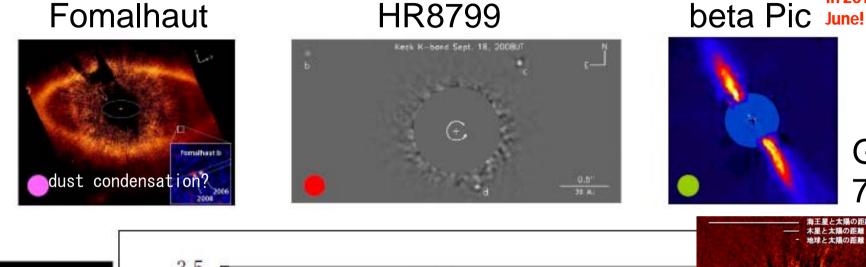

Solar-System Scale (<50AU)

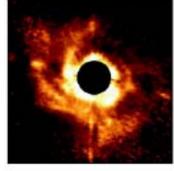
disk data shown later

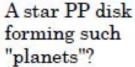
Why direct imaging [DI]?

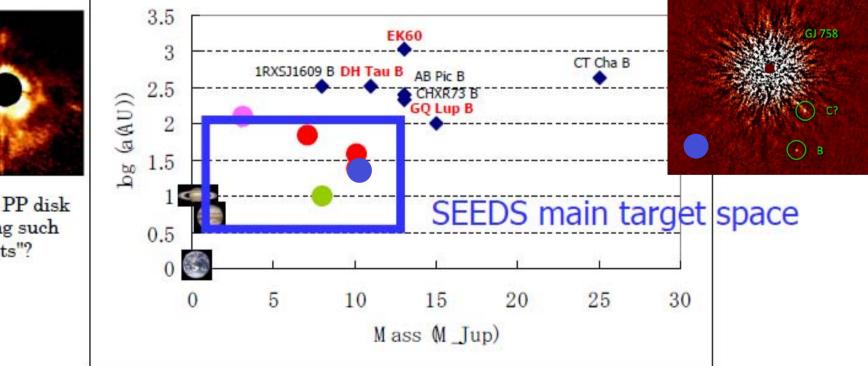
- Exoplanets detection
 - Direct methods to explore beyond a few AU
 - -Spectroscopy of exoplanet atmosphere
 - -DI is the best way to investigate Jupiter-mass planets around young stars in the outer regions where they form
 - RV & Transit studies: confined to the inner region (<6 AU for 15 yr) around less active star (complementary with DI)
- Circumstellar disks
 - -Protoplanetary / Debris disks
 - -Planet signatures

Spatially resolved VLT/NACO 3.88–4.10 μm spectroscopy of HR 8799 c (Janson et al. 2010)

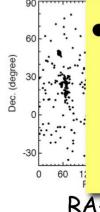

SEEDS – Where should we study by direct imaging technique?


confirmed in 2010

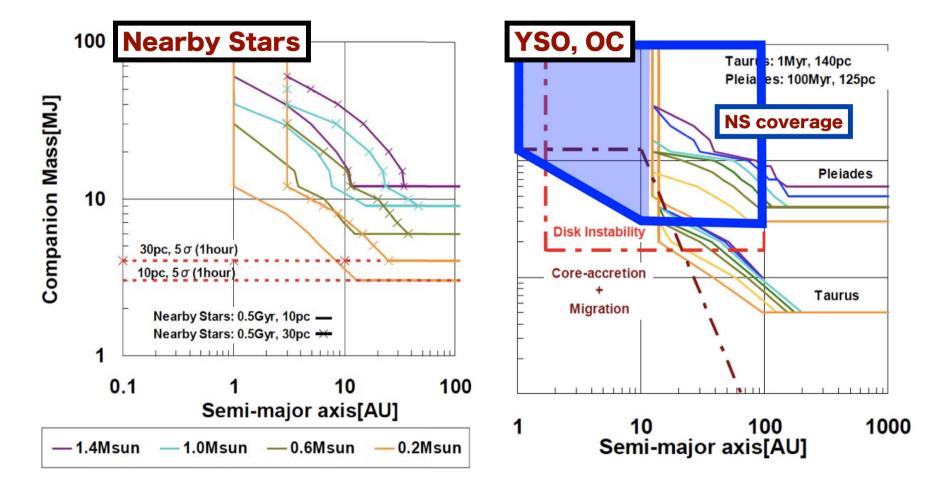

GJ


星と太陽の距離 球と大陽の距離

758



Target Category


	Planet searches (in methane SDI/ADI mode)			Disk Se (in PDI		
Category	(a)	(b)	(c)	(d)	(e)	Total number
	SFR YSOs	Open cluster & Moving Group	Nearby stars	Protoplanetary disks	Debris disks	
Number	90	100	140+37	130	70	567
Distance	~140 pc	<125 pc	<30 pc	~140 pc	<130 pc	
Age	1-10 Myr	10~100 Myr	100 Myr - 1 Gyr	1-10 Myr	5 Myr - 6 Gyr	
Comment	Tau/Sco	UPleiades/ several MGs	subcategory	TTS/HAeBE/ polarized sources	SST/AKARI sample	

Giant gas planets (~1-13 M _J) in
the outer region (> a few AU) around nearby (< 140 pc), young (self-luminous), solar-type stars.
-DEC H-mag R-mag Sp-Typ

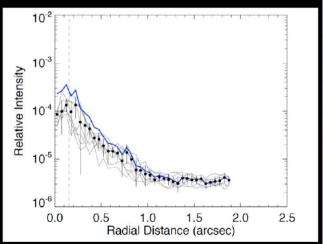
Feasibility

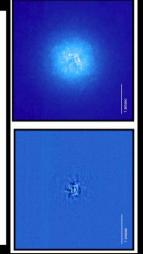
Category	Expected Planet Detection Performance					
YSOs	>2 MJ for >15 AU	>0.5 MJ for >100 AU				
Open Clusters	>5 MJ for >12 AU	>3 MJ for >30 AU				
Nearby Stars	>10 MJ for a few AU	>1 MJ for >25 AU				

 Planetary-mass detection is available in all the category (based on simulated contrast performance of HiCIAO).

Performance Verification

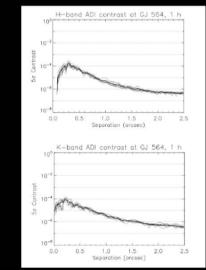
MASKS/	0.15"	0.3"	0.5"	1"	1.2"	1.5"
MODES						
DI(H)		(-4.14)	(-4.51)	(-5.46)	(-5.7)	(-6.09)
DI(K)		(-4.45)	(-4.62)	(-5.60)	(-5.7)	(-6.09)
SDI(H)	-3.94	-4.26	-4.65	-5.32	-5.42	
ADI(H)		-3.7	-4.3	-5.4	-5.6	-6.0
ADI(K)		-4.3	-4.7	-5.5	-5.7	-6.0
PDI(H)	-4.0	-4.6	-4.8	-5.8	-6.0	-6.1
CS(H)	-3.70	-4.0	-4.5	- 5.2	-5.4	~-5.7
CIAO(K)					-4.3	~-4.7

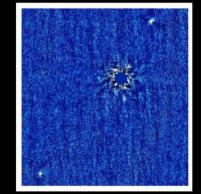

HiCIAO PV report (09 Sep)


Observed contrast in each mode

Expected contrast (computer simulation)

Spectral Differential Imaging (SDI)


Suitable subtraction among channels is crucial.
Highest contrast at closest distance achieved.



Angular Differential Imaging (ADI)

- Can apply with DI, SDI, and PDI.
- LOCI reduction technique.

Center of the final image from H band ADI observations of 1RXS1609. The bright spot on the upper right is the 8 MJ planet discovered by Lafrenière et al. (2008). The similarly bright spot on the lower left is a background star.

Performance Verification

MASKS/	0.15"	0.3"	0.5"	1"	1.2"	1.5"
MODES						
DI(H)		(-4.14)	(-4.51)	(-5.46)	(-5.7)	(-6.09)
DI(K)		(-4.45)	(-4.62)	(-5.60)	(-5.7)	(-6.09)
SDI(H)	-3.94	-4.26	-4.65	-5.32	-5.42	
ADI(H)		-3.7	-4.3	-5.4	-5.6	-6.0
ADI(K)		-4.3	-4.7	-5.5	-5.7	-6.0
PDI(H)	-4.0	-4.6	-4.8	-5.8	-6.0	-6.1
CS(H)	-3.70	-4.0	-4.5	- <mark>5</mark> .2	-5.4	~-5.7
CIAO(K)					-4.3	~-4.7

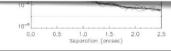
HiCIAO PV report (09 Sep)

Observed contrast in each mode

Expected contrast (computer simulation)

Spectral Differential Imaging (SDI) Angular Differential Imaging (ADI)

Confirmation of contrast performance


- Consistent (even better) value with simulation
- >10 times improvement than CIAO (10^{-5~-6})
- Performance verification report approved by SAC

Start of SEEDS Science Run (2009 Oct 30)

0.0 0.5 1.0 1.5 2.0 2.5 Radial Distance (arcsec)

Relative Intensity

the upper right is the 8 MJ planet discovered by Lafrenière et al. (2008). The similarly bright spot on the lower left is a background star.

SEEDS History

(2004)	Son UICIAO project officially started					
(2004)	Sep HiCIAO project officially started					
(2007)	Mar 27 SSO Call for Proposal issued					
	Jul 31 Application submitted to Subaru (Two proposals)					
	Aug 8 SEEDS got through the first screening					
	Nov 14 Hearing by the TAC & (other?) referees					
	Dec 3 HiCIAO Telescope First Light without AO188					
(2008)	Feb 1 First SEEDS workshop					
()	Feb 12 Reply to SAC on SEEDS "team formation" and each role					
	Mar 28 SEEDS proposal accepted by SAC & TAC (PV required)					
	Mar-Sep Extensive target re-selection in each category started					
	Sep 3-4 SEEDS all-category meeting (Mitaka)					
	Dec 21 HiCIAO Telescope First Light coupled with AO188					
(2009)	Jan 17 SEEDS all-category meeting (Mitaka)					
	Mar 9-12 Kona workshop					
	Oct 1 Performance Verification passed					
	Oct 30-Nov 1 1st SEEDS run					
	Dec 22-25 2nd SEEDS run					
	Jan 22-24 3rd SEEDS run					
	(Feb, Apr, Jun 4-6 SEEDS runs allocated but cancelled)					
	AO-DM broken!					
(2010)	Nov Resume run					
(2014)	End of SEEDS Survey Subaru/HiCIAO image of					
	1RXS J160929b (8 Jupiter-mas					
	Recently confirmed.					

SEEDS Histo

HiCIAO First Light with A0188

on the Subaru 8.2m Telescope 2008.12.21-23

			0 0	
(2004)	Sep HiCIAO	pro	• •	5"
(2007)	Mar 27 SSO Ca	ll fo	With/without Lyot stop &	
	Jul 31 Applica	tion Statement	continuous synchronization (suppressing spider pattern)	
	Aug 8 SEEDS	goi First light members at the summit &		HL Tau, JHKs composite
	Nov 14 Hearing		625um 🧧	(made from Stokes I)
	Dec 3 HiCIAO	Tel	*	
(2008)	Feb 1 First SE	ED III	600um 🧿 👩 1.575um 5	"
	Feb 12 Reply to		Ļ	
	Mar 28 SEEDS	prc PAREN	1.644um	
	Mar-Sep Extensi			HL Tau in PDI
	Sep 3-4 SEEDS	HiCIAO/AO188 at the Subaru Nasmyth platform Tita	n in methane SDI (4-band simultaneous)	(2-polarization simultaneous)
	Dec 21 HiCIAO	Telescope First Light c	oupled with AO188	
(2009)	Jan 17 SEEDS	all-category meeting (N	/iitaka)	
	Mar 9-12 Kona w	orkshop	A Antonio	
	Oct 1 Perform	ance Verification pass	9 0	
	<u>Oct 30-Nov 1</u>	1st SEEDS run		
	<u>Dec 22-25</u>	2nd SEEDS run	A second second	
	<u>Jan 22-24</u>	3rd SEEDS run		
	(Feb, Apr, Jun	4-6 SEEDS runs alloc	cated but cancelled	l)
	AO-DM broken!			
(2010)	Nov	Resume run		
(2014)		End of SEEDS Surve	y Subaru/HiCIA	
			Recently conf	9b (8 Jupiter-mass) irmed
			Recently com	

Science Run Progress

• SEEDS Science Run (10 nights in 3 runs)

- 2009: <u>10/30 11/1 (3)</u>, <u>12/22 12/25 (4)</u>
- 2010: <u>1/22 1/24 (3)</u>

Category	Number	Observations Mo		1ode
		ADI(DI)	PDI	SDI
Debris Disk	8	5	4	0
YSO	11	1	11	0
Open Cluster	9	7	2	0
Moving Group	11	11	0	0
Nearby Star	20	18	1	1
TOTAL	58	42	18	1

SDI mode is still in engineering phase (commissioning w/ ADI and w/ new filter sets planned)

※ N of objects with short effective exposures (<20 min) : 23/58 (~40%)</p>

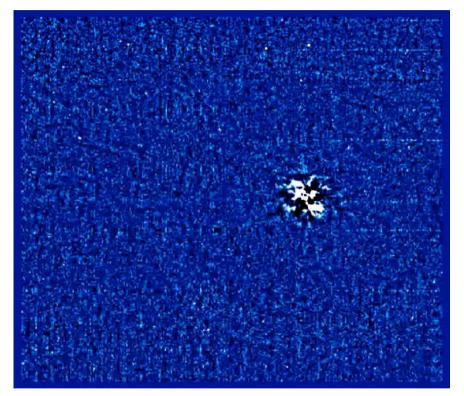
※ Nearby Star category has 8 sub-samples (Chromospheric age, Kinematic age, Planet-host stars, TPF/ SPICA samples, High-mass stars, M dwarfs, Brown dwarfs, White dwarfs).

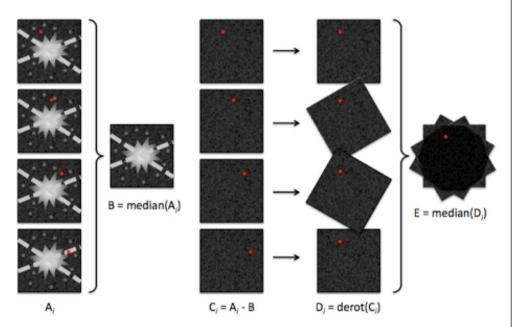
Data Reduction

SEEDS Science Data

- Data archive: Mitaka, Princeton, N
- Release of data quick look im
- Lol (Letter of Intent)
 ✓ Most of objects have Lols
- Data delivery, analysis, paper

Data reduction


- Release/Distribution of Pipelines
 - ✓ ADI (written in IDL, using LOCI algorithm: Lafreniere+2007)
 - $\boldsymbol{\cdot}$ code distributed among members.
 - \checkmark PDI (written in both IRAF and IDL)
 - $\boldsymbol{\cdot}$ code distributed among members.
 - \checkmark SDI (written in both IRAF and IDL)
 - $\boldsymbol{\cdot}$ code developed, but the mode is still in the engineering phase.


+ Chttp:	//seeds.mtk.nao.ac.jp/SEEDS/QL/			¢	Q. Google		
	ブル Yahoo! Japan Google マップ You"		ュースマ お役立ちマ				
On the A	g Data Re	quest Form 3.6	4*60 / 1.4 - G	HIP21818_a.jpg	LP247-	13.jpg 66 98*3 -	Google 検索
	SEL		Look and da	ta Request			
			ng Stellar Object				
	Thumbnail	Object Name	Obs. date (HST)	mode/band	Exp. time	LoI	
1.	I: Q: U;	AB Aur	2009 Oct. 30	PDI/H	20 min	LoI: J. Hashimoto, M. Fukagawa	
2.	I:Q:U;	AB Aur	2009 Oct. 31	PDI / J	20 min	LoI: M. Fukagawa	
3.	I: Q: V: V:	AB Aur	2009 Oct. 31	PDI / K	8 min	LoI: M. Fukagawa	
4. 📾	I: Q: U:	DL Tau	2009 Nov. 1	PDI/H	22 min.		
5.	I: Q: U:	DM Tau	2009 Nov. 1	PDI / H	32 min.		
6.	Q:	DN Tau	2009 Dec. 22	PDI+ADI / H	12 min.		
7.	I: Q: U:	AA Tau	2009 Dec. 22	PDI/H	47 min.		
8. 🖿	ADI:	DM Tau	2009 Dec. 23	PDI+ADI/H	32.9 min.		
9.	J: 200 0: 10 U:	UX Tau	2009 Dec. 23	PDI/H	44 min.		

19

ADI/LOCI Pipeline

Imaging obs in pupil-stable mode (i.e., sky rotates)

Construct local reference PSF in each local area

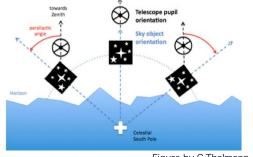
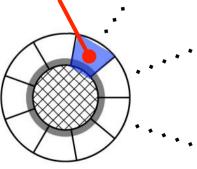



Figure by C.Thalmann

LOCI algorithm

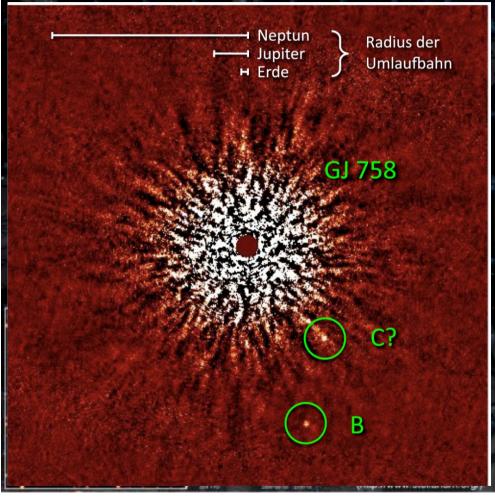
Locally Optimized Combination of Images

Lafreniere et al. (2007)

ADI/LOCI Pipeline Intensity emphasized x4 **Before LOCI** After LOCI Significant suppression of PSF/speckle pattern. 5000800 1E+04 2E+04 4E+0 2000 **Construct local reference** H-band ADI contrast at GJ 564, 1 h PSF in each local area 101 Contrast **LOCI** algorithm 10 b Q Locally Optimized 10 **Combination of Images** 10 0.0 0.5 1.0 1.5 2.0 2.5 Lafreniere et al. (2007) Separation (arcsec)

21

SEEDS Early Science Result


GJ 758 Thalmann et al. 2009, ApJL, 707, 123
HAT-P-7 Narita et al. 2010, PASJ, 62, 779
LkCa15 Thalmann et al. 2010, ApJL, 718, 87
AB Aur Hashimoto et al. Nature, Submitted
GJ 758 Janson et al. Submitted

Since 2009 Oct-

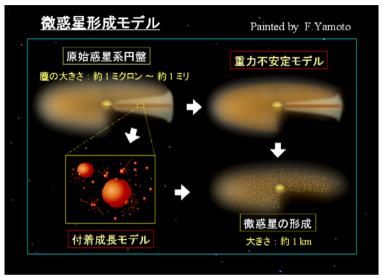
Direct Imaging of Planet Candidates around Solar-Type Stars

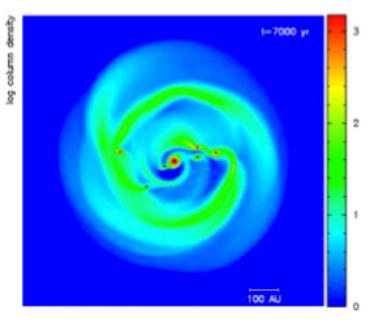
- Distance:15.5 pc
- G9 Type
 - V=6 mag
 - Mass=0.97Mo
- No RV planets so far
- Age
 - Not straightforward
 - Best estimate: 700Myr (Takeda) et al. 2007; isochrone)
 - Max 8.7Gyr (but associated with a large uncertainty estimated from stellar rotation)
- Observations (in commissioning!)
 - May and Aug 2009 (3 months)
 - Proper motion test : association of GJ 758 b was confirmed (10 sigma).

GJ758=HD182488=HIP95319

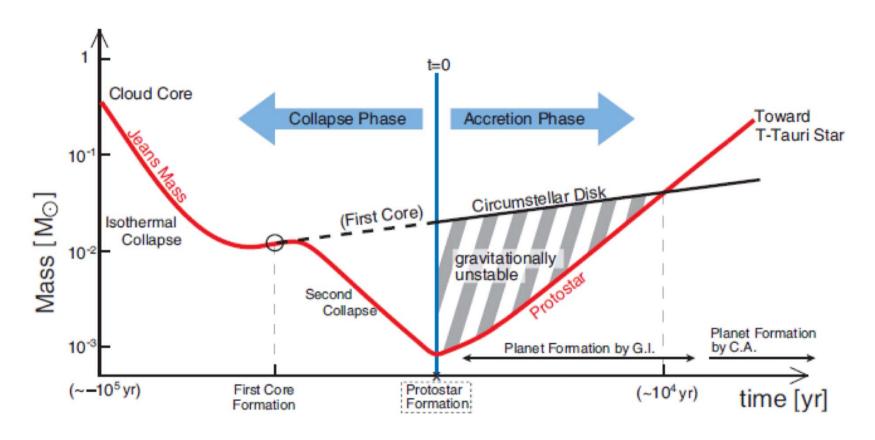
Thermal emission from planets detected as 1.6 micron infrared radiation.

Thalmann et al. 2009


White and black pattern near the central star (Speckle noise)


Directly images Planets: G vs. A starsImage: Stars <t< th=""></t<>							
distance	"whether the wide-orbit giant planet is						
age	common or not."						
primary	0.97 M _{solar} (solar-T,G-type)	primary	1.5 M _{solar} (A-Type)				
companion	Mass (Jupiter masses) Separation (AU, apparent)	companion	Mass (Jupiter masses) Separation (AU, apparent)				
В	10 M」 (max:40) 29 AU	В	7 M」(max:36) 68 AU				
C?	12 M」(max:47) 18 AU	С	10 M」(max : 50) 38 AU				
-	These are wide-orbit, "outer planets"	D	10 M」(max:50) 24 AU				

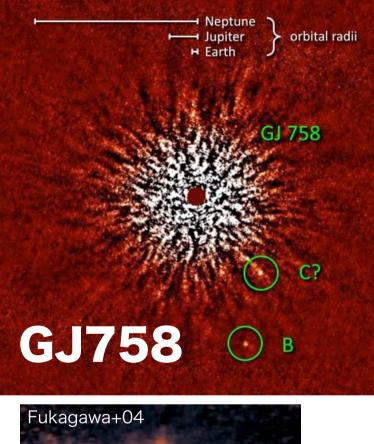
Outer Planets Formation Mechanisms


- Standard model (CA: core accretion)
 - Timescale problem for outer planets
 - Up to ~10 AU or less is probably possible
 - GJ758B at ~Neptune is too far away
 - Possible outward migration to 100s of AU
- Gravitationally instability model (GI)
 - Probably better for outer planets than CA model
 - But based on hypothetical massive large disks
- Planetary scattering
 - interaction among multiple planets

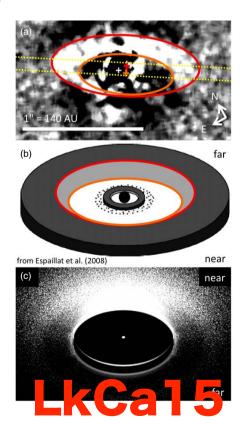
New ideas?

A New Model

- Calculation from realistic molecular cloud contraction
- Gravitational instability at an early phase (after second collapse) can occur at outer region (<~100 AU) regions


Inutsuka, Machida, Matsumoto 2010, ApJL, 718, 58

A New Model


To understand these models (CA, GI, or new ones) Understanding disk structures of <100 AU crucial \Rightarrow Already some hint from SEEDS observations!

SEEDS Early Science Result (since 2009 Oct)

GJ758: Thalmann et al. 2009, ApJL, 707, 123
HAT-P-7: Narita et al. 2010, PASJ, 62, 779
LkCa15: Thalmann et al. 2010, ApJL, 718, 87
AB Aur: Hashimoto et al, Nature, Submitted
GJ758: Janson et al. Submitted

AB-Aur

Polarization structure of inner disk (gaps, dips, and arms at > 20 AU) resolved!!

SEEDS Members

•N=106 from 29 institutes (Overseas: N=37 from 13 institutes)

- PI: Tamura, M. (NAOJ) Co-PI: Usuda, T., Takami, H. (NAOJ/Subaru)
- Co-Is: NAOJ Fukue, T. Hashimoto, J. Iye, M. Kandori, R. Kokubo, E. Kudo, T. Kusakabe, N. Matsuo, T. Miyama, S. Morino, J. Narita, N. Nishikawa, J. Sato, M. Suto, H. Takeda, Y. Watanabe, J. Yamashita, T. (Subaru) Egner, S. Frantz Fujiyoshi, T. Guyon,O. Hayano,Y. Hayashi,M. Ishii,M. Pyo,T.S. Takato,N. Terada,H. Usuda,S.K. Yutani, M. (ALMA) Saito, M. Tsukagoshi, T. Ukita, N. Kawabe, R. Univ. of Air Kaifu, N. Hokkaido Univ. Baba, N. Tohoku Univ. Kitamura, M. Tsukamoto, A. Yamada, T. Ibaraki Univ. Momose, M. Okamoto, Y. Riken Ebizuka, N. Univ. of Tokyo Kuzuhara, M. Sakon, I. GUAS Mayama, S. Suenaga, T. Takahashi, Y. Univ. of Tokyo Ueno, M. TiTECH Ida, S. Sato, B. JAXA/ISAS Enva, K. Kataza, H. Makitsubo, H. Nakagawa, T. Kanagawa Univ. Honda, M. Nagoya Univ. Inutsuka, S. Nagashima, A. Otsubo, T. Sumi, T. Yamamoto, K. Nagoya City Univ. Sugitani, K. Osaka Univ. Fukagawa, M. Shibai, H. Kyoto Univ. Muto, K. Kobe Univ. Hioki, T. Itoh, Y. Oasa, Y. TMT Suzuki, R. ASIAA Karr, J. Ohashi, N. Takami, M. Univ. of Hawaii (IfA) Hodapp, K. Princeton Dressing, C. Kasdin, J. Knapp,G.R. McElwain,M. Shen,Y. Spergel,D. Turner,E.L. Vanderbei,R. Blake,C. CSIC-INTA (Spain) Moro-Martin, A. NASA/Goddard Grady, C. NASA/JPL Serabyn, E. Univ. of Washington Wisniewski, J. Univ. of Toronto Janson, M. MPIA Brandner, W. Carson, J. Feldt, M. Goldman, B. Goto, M. Henning, T. Launhardt, R. Roccatagliata, V. Setiawan, J. Thalmann,C. Westfalische V Hertfordshire Gledhill, T. Ho If you are interested in joining SEEDS project, please contact the project PI (Motohide Tamura, Tavrov, A.V. NAOJ, motohide.tamura@nao.ac.jp).

Summary and Schedule 2009 ~2020

Summary

- SEEDS project: Subaru Strategic Observations
 - 120 nights in 5 years (~500 targets)
- Start of SEEDS science run after Oct 2009
 - 3 runs (10 nights) so far. 58 objects observed.
 - A0188 trouble: Feb-Nov 2010
- DI, PDI pipelines were released, and SDI mode is in engineering.
- 3 papers (GJ758,HAT-P-7,LkCa15 / DI) in publication and 2 paper M (AB Aur in PDI, GJ758 in DI) in submission.
 - GJ 758: First DI of candidate planet around a solar-type star
 - AB Aur: Revealing innermost (> 20 AU) disk structure

• Schedule 2010-2011

- Restart of SEEDS run (end of Nov 2010) after the recovery of A0188 (until Nov)

Follow-up of candidate companions (proper motion test, multicolor data)

- all sky 11/29(ENG), 11/30-12/2(SEEDS), 1/24(ENG/SEEDS), 1/27-31
- debris (SEEDS)

3. Spectroscopy of disks & massive planet Groun