Techniques for direct imaging of exoplanets

Aglaé Kellerer Institute for Astronomy, Hawaii

- 1. Where lies the challenge?
- 2. Contrasts required for ground observations?
- 3. Push the contrast limit Recycle!

1. Where lies the challenge? The telescope aperture?

Take an 8m telescope observing at 1µm wavelength.

1. Where lies the challenge? The coronagraph?

Current coronagraphs achieve contrast levels up to 10⁻¹⁰ for diffraction limited wavefronts.

1. Where lies the challenge? Adaptive optics & speckle suppression techniques

remove wavefront distortions

For the speckles that made their way to the detector: Spectral Differential Imaging (Racine et al., PASP 1999) Angular Differential Imaging (Marois et al, ApJ 2006)

The primary difficulty of high-contrast imaging is

get a large telescope, design a coronagraph,

flatten the wavefront and suppress the residual speckles.

Techniques for direct imaging of exoplanets

- 1. Where lies the challenge?
- Large telescopes are only required for the coolest exoplanets
- The primary issue for exoplanet imaging is scatter in the atmosphere and on the imperfect telescope optics
- 2. Contrasts required for ground observations?

2. What are the contrasts achievable from ground? Comparison of 4 exoplanet surveys

4m telescope Adaptive Optics Lyot coronagraph

6m & 8m telescopes Adaptive optics

Spectral Differential Imaging

8m telescope Adaptive optics

Angular Differential Imaging

8m telescope Adaptive optics Lyot coronagraph

- Spectral Differential Imaging
- Angular Differential Imaging

The most sensitive survey (NICI): contrasts down to ~10^{-6.5}

Liu et al, SPIE 2010

2. What are the contrasts achievable from ground? The ultimate limit

Contrast at 0.5" separation	Acceptable wavefront error Single exposure	Acceptable wavefront error 2500 exposures	Required AO correction frequency [Hz]	Required magnitude (H band)
10-6	λ /4400	λ /88	930	6.9
10 ⁻⁷	λ /14000	λ /280	2900	3.2
10 ⁻⁸	λ /44000	λ /880	10 ⁴	-0.6
10 ⁻⁹	λ /140000	λ /2800	3·10 ⁴	-4.3
10-10	λ /440000	λ /8800	10 ⁵	-8.1

Stapelfeldt, IAU symposium, 2006

The ultimate contrast limit for a solar type star at 10pc (H=3) is 10^{-7} With added speckle subtraction techniques: 10^{-8}

Techniques for direct imaging of exoplanets

- Where lies the challenge?
 (correction of residual speckles)
- 2. Contrasts required for ground observations?
 For a solar twin at 10pc, required contrast > 10-8
- 3. Push the contrast limit Recycle!

See e.g. Codona & Angel, ApJ, 2004; Labeyrie, EAS, 2004; Putnam et al 2006

External occulters: stellar light never enters the telescope.

Conclusions

1. Where lies the challenge?

Large telescopes are only required for the coolest exoplanets

The primary issue for exoplanet imaging is scatter in the atmosphere and on the imperfect telescope optics

2. Contrasts required for ground observations?

For a solar twin at 10pc, the maximum achievable contrast from ground is 10^{-8}

3. Push the contrast limit - Recycle!

The contrast limit can be increased to $\sim 10^{-10}$ by recycling the photons absorbed by the coronagraph, and producing destructive interferences with the speckles.