MAMMUT for ESOVLT UT's and VLTI

Dr. Stefano Minardi

Friedrich Schiller University, Jena

Equivalent Telescope Diameter

Equivalent Telescope Diameter

Equivalent Telescope Diameter

Star Photospheric Images

Principle of interferometry

Principle of interferometry

Van Cittert Theorem

Principle of interferometry

A₂

 A_1

Measurement of phase and amplitude of the visibilities is crucial

Interferometric set-ups are extremely sensitive to vibrations of mirrors.

$$\Gamma_{12}(\tau) = \left\langle A_1(t)A_2(t+\tau) \right\rangle$$
Non-constant phase relationship
$$=$$
smaller coherence

Vibrations faster than detection time:

- \star Reduce contrast of fringes.
- 🖈 Reduce detection dynamic.
- 🛧 Make fringe tracking more difficult.

Motivation: vibrations at VLTI

10 Hz < Vibration frequency <1000 Hz

The problem:

- * Residual OPD of 400 nm r.m.s. originating in UT's
- * Mirrors M9-20 are monitored by PRIMA metrology.
- * Mirrors MI-M8 partially monitored by accelerometers.
- * Mirrors MI-M8 are moving to follow the stars.

The MAMMUT project

MAMMUT is a metrology system for VLTI based on telecom fiber technology designed and developed for ESO.

It mainly addresses the need for:

a) A metrology system accessing the moving parts of the UT.

b) High speed vibration tracking with nanometric accuracy.

OPD

MAMMUT requirements

Frequency response (-3 dB): I - 100 Hz Pure delay: < 100 μs Resolution: < 1 nm Linearity: 1% Range (excluding DC component): ±5 μm Noise PSD: < 1 nm²/Hz (=10 nm r.m.s.) Laser wavelength: between 1350nm and 1400 nm Length of fiber interferometer: 250+250 m

MAMMUT beacon

Active phase modulation achieved via fiber-stretchers
Keeps the OPD constant for several hours
Phase noise level is below 20 nm r.m.s.
PSD < 10⁻¹ nm²/Hz

MAMMUT fringe sensor

Measures the phase from feedback signal required to track fringes

Automatic phase unwrapping

Phase control via Electro-Optical Modulator

Low noise

Minardi et al. Astr. Nach. 330, 518 (2009). Spaleniak et al. SPIE 7734-145 (2010).

MAMMUT fringe sensor

•Linearity better than 1%

•Range up to 10 μ m

•Frequency response >300 Hz

New directions:

The discrete beam combiner

Exoplanet transits

Exoplanet transits

Nova/Supernova explosion

Nova/Supernova explosion

Require simultaneous beam combination of many telescopes

Beyond 4-Telescope Combination

Benisty et al. A&A 498, 601 (2009).

Beyond 4-Telescope Combination

Benisty et al. A&A 498, 601 (2009).

Beyond 4-Telescope Combination

Can 3D geometry ease scalability?

Benisty et al. A&A 498, 601 (2009).

Output intensity pattern

Complex visibilities over all baselines obtained from linear transformation of output intensities

3x3 DBC performance

3x3 DBC performance

3x3 DBC performance

Could reach performance of existing beam combiners

Conclusions

- Photonic technologies can be profitably used for internal metrology of moving telescopes
- MAMMUT can deliver a stable phase reference with +/-10 nm jitter over a baseline of up to 500 m
- We have started investigating the potential of 3D photonics for the combination of an arbitrary large number of telescopes

Thanks to ...

Prof. Ralph Neuhauser

Thomas Pertsch

Arkadi Chipouline

Stephan Kraemer

Lourdes Patricia Ramirez

Frank Giessler

Manfred Rothhardt

Martin Becker

Izabela Spaleniak

Reinhardt Geiss

Nadya Chakrova

Martin Hohmann