## Byurakan Observatory



Movsessian

Youn planetary systems, Jena 2010

Byurakan Astrophysical Observatory was founded in 1946 on the initiative of academician Viktor Ambartsumyan who became the first director of the observatory, and main directions of astrophysical investigations were determined by him. First studies at the Byurakan Observatory related with the instability phenomena taking place in the Universe, and this trend became the main characteristic of the science activity in Byurakan.



## Telescopes

2.6m reflector1m Shmidt0.5m Shmidt0.5m Cassegren0.4m Cassegren





Movsessian

Youn planetary systems, Jena 2010

## 2.6 m Telescope of Byurakan Observatory



Movsessian

Youn planetary systems, Jena 2010

## 2.6m telescope



- In operation: since 1976, at the altitude of 1406 m.
- Constructed by LOMO (St. Petersburg)
- Mounting is equatorial with a fork mounting type.
- Aperture 260 cm and an aperture ratio of 1: 3.8
- Mirror material: sitall

## Control room of 2.6m telescope



# Current instrumentation of 2.6m telescope



ByuFOSC2
Byurakan Faint Object Spectral Camera
SCORPIO

Spectral Camera with Optical Reducer for Photometrical and Interferometrical Observations

#### • VAGR

Multi-pupil spectrograph (TIGER)

## Detectors



#### • TK 1Kx1K

#### • Loral 2Kx2K



|                     | Loral 2Kx2K | TK 1Kx1K  |
|---------------------|-------------|-----------|
| size                | 2063x2058   | 1045x1045 |
| Pix. size<br>Max QE | 15<br>40%   | 24<br>80% |
| R/O noise           | 5           | 3         |

#### **ByuFOSC2** Byurakan Faint Object Spectral Camera



Collimator f. Beam size Camera f. Field scale slit width slit length Sp. range dispersion Detector 150mm 39.5mm 92mm 5.5x11 arcmin 0.63 arcsec/pix 2 arcsec 5 arcmin 4200-6900 AA 2.7A/pix Thomson 1060x1028 (half obscured)

### SCORPIO

Spectral Camera with Optical Reducer for Photometrical and Interferometrical Observations



| Collimator f. | 146mm           |
|---------------|-----------------|
| Beam size     | 37.5mm          |
| Camera f.     | 106mm           |
| Field         | 14x14 arcmin    |
| scale         | 0.42 arcsec/pix |
| slit width    | 2 arcsec        |
| slit length   | 7 arcmin        |
| Detector      | Loral 2058x2063 |

## **SCORPIO** optical design



- (1) field lens
- (2) collimator
- (3) camera
- (4) grism
- (5) filter's wheels
- (6) **-** CCD

## GRISMS

#### GR 600 VPHG 1200 VPHG 1800

2.7A/pix 0.9A/pix 0.5A/pix 3900-7200 5800-7600 6000-7200





#### Wide band UBVR<sub>c</sub>I<sub>c</sub> (Jounson-Cousins)

Mid band FWHM= 160-400 Å:

H $\alpha \Delta \lambda = 85A$ [SII]  $\Delta \lambda = 85A$ 

Movsessian

Youn planetary systems, Jena 2010

## Trumpler 37



#### Long-slit mode



## VAGR multi-pupil spectrograph



#### Optical layout of spectrograph



#### Main parameters of spectrograph

| Enlarger focal length     | 10mm                |
|---------------------------|---------------------|
| Micro-lenses array        | 40x40 lenses        |
| Micro-lenses diameter     | 1.19 mm             |
| Micro-lenses focal length | 8.9 mm              |
| Collimator focal length   | 250 mm              |
| Collimator aperture ratio | f/2                 |
| Collimated beam           | 30 mm               |
| Camera focal length       | 110 mm              |
| Camera aperture ratio     | f/2                 |
| Grism                     | 600 groves          |
| CCD                       | Loral 2058x2063 pix |
| Field                     | 40x40 arcsec        |
| Scale                     | 1 arcsec/micro-lens |
| Wavelength range          | 400A                |
| Spectral resolution       | 1800                |
| Recorded data cube        | 40x40x250           |

## Spectral image of continual lamp for subtraction of spectra from each pupil



#### Spectral image of neon lamp for wavelength calibration



Restored image of PV Cep and associated reflection nebula (right) with profiles in Hα, and restored image of the outflow superposed on the nebula (right).



Thank you