

Advantages in Taiwan:

- Many high mountains
- Western Pacific longitude
- Low latitude
- variability studies

LULIN OBSERVATORY 鹿林天文台

Altitude 2862 m; often above the inversion layer

... seen from Yusan (Jade Mt) 玉山 4000-m

Scientific Activities at Lulin

Time Variability

- Part of global network
- Mass data processing
- Data mining
- TAOS (Taiwan, USA, Korea)
- **LELIS** (NCU)
- Taiwan Oscillation Network (NTHU)
- **Sprite** (NCKU)
- Taiwan Earth-Shine Network (NTHU)
- Atmospheric Experiments

NCU/Lulin Observatory from Yusan North Peak

So far, discoveries of 10+ supernovae, 800+ asteroids, 1 comet, variable stars ...

Discovery images of Comet Lulin

Stellar occultation by an asteroid observed at Lulin

One of the supernovae found at Lulin

Astereoseismology

Lulin in sync with a space telescope

Dynamical classes for the Kuiper-Belt Objects (KBOs) or Trans-Neptunian Objects (TNOs)

Classical, Scattered, and Resonant

Project Overview

- ☐ Census of the small objects in the solar-system family
- □ An array of wide-field telescopes (D=50 cm, f/1.9, FOV=3 sq. deg) to monitor brightness changes of ~1,000 stars at 5 Hz rate
- □ Looking for a 'blink' of starlight (occultation) when an object (> 2 km) moves in front of a distant star
 Frequency of events → population of "interveners"
- □ Data rate a few 100 GB per night; only "interesting" data downloaded via the dedicated E1 connection
- Real-time data analysis (light curves, statistics)
- Requiring coincidence detection of the same event by all telescopes to guard against false positive

TEST DRIVE

2006 Feb 06 three TAOS telescopes detected a suspected occultation of TYC 076200961 ($m_V \sim 11.83$) by (**286**) **Iclea** ($m_V \sim 14.0$ mag, D ~ 97 km)

TAOS Results

- 2005-2009 several billion photometric measurements have been collected
- No event was detected, setting a stringent upper limit to the KBO population.
- Stellar variability on timescales from < 1 s to months
- Mass data processing

Bernstein & Trilling (2004)

Zhang et al. (2009)

Panoramic Survey Telescope

Rapid Response System

PS1 consortium members

 \square To patrol the entire observable sky (3π) several times a month

☐ An array of 4 telescopes, located in Hawaii, each of D=1.8 m, equipped with a 1.4 gigapixel camera of an Orthogonal Transfer Array CCD detector (= 40 cm square focal plane)

→ 7 square-degree FOV with 0.26" pixels

- □ Detection of moving, transient, and variable celestial objects down to very faint limits
- Very deep cumulative sky images

- Wide-Field Imaging
- ☐ Short Duty Cycle
- **□** Efficient Operations

Hawaii, USA

Detector Technology

Independently addressable orthogonal transfer CCDs (cells)

- Reducing cost by increasing yield
- Fast readout: Gigapixels in 2 s
- On-Chip guiding
- Minimizing effects of bright stars
- Compensating for image motion

1.4 giga pixels Several TBs/night

PS1 Key Projects

1. Inner solar system

after the control of the control of

- 2. Outer solar system
- 3. Low-mass stars, brown dwarfs and young stars
- 4. Exoplanets by stellar transit surveys
- 5. Milky Way structure and Local Group

- 6. M31
- 7. Massive stars and supernova progenitors
- 8. Cosmology with variable stars and explosive transients
- 9. Galaxies
- 10. AGNs and high redshift quasars
- 11. Cosmological lensing
- 12. Large scale structure

Status of the PS1 System

- ☐ Tests runs in 2008/9
- ☐ Science Consortium operational starting 1 Jan 2009
- □ Commissioning starting mid-March 2009
- □ Full survey started May 2010, for duration of 3 years
- ☐ Different data release policy (immediate, 1 year, > 3 year)
- The Taiwan team has joined, in addition to science verification, in the SW pipeline developments, data quality assessment, the *Image Processing Pipeline*, the *Moving Object Processing System*, and *Published Science Processing Subsystem*, etc.
- ☐ A solar-system alert server/client set up between NCU and Hawaii; an *in situ* pc cluster node

The Lulin 2 m Telescope

- PS1 will find many peculiar objects/phenomena, and Lulin will follow them up in the first opportunity
- → Secure the discoveries
- Equipped with niche instruments, the Lulin 2 m will be very competitive scientifically
- ☐ Telescope already in Taiwan
- But the site is not, currently clearing the environmental impact assessment ...
- Ready in 2-3 years?

First-Light Instrument 2008~10

- Four-Color Simultaneous Imager
 - ✓ Deep- and fully-depleted CCDs
 - \checkmark r, i, z, y bands
 - → Simultaneous colors up to 1 micron, suitable for variability study against sky

Optical Design

Conceptual Design of the Instrument

Fully depleted CCD

Next-Generation Instrument > **2011?**

A JHKs simultaneous imager with polarizers 2K x 2 K x 18 micron chips JHKs to 19-20 mag (10 sigma) in 15 min integrations

High-dispersion spectrograph; UltraPhot

Teledyne HAWAII-2RG

Teledyne SIDECAR/ASIC

SIRIUS (IR Camera) + Polarizer

Lulin telescopes in Taiwan, 1 m, 0.4 m, NCU operated, proposal competition; access, inc. ToO, straightforward

Tenagra telescopes, mainly 0.8 m, in southern Arizona, whole night every other night, until June 2011

Community in Taiwan has access to CFHT (5-10 nights per semester); to Subaru (instruments)

SMA, AMiBA, ALMA, Pan-STARRS, PTF

Conclusions

- OIR astronomy in Taiwan has seen time domain as the next frontier in observational astronomy.
- We joined international projects such as TAOS, Pan-STARRS, PTF, etc. and global campaigns such as the WET, GASP.
- We have developed the capability of mass data processing, analysis tools (HHT), and access to a variety of small telescopes, e.g., in Taiwan, Arizona, and to team up with observatories in other longitudes.
- We have a lot to contribute to YETI.