

Stellar variability in IC 348

YETI Observations

Dario Fritzewski Leibniz Institut für Astrophysik Potsdam (AIP)

19 October 2018

Stellar variability in IC 348

Dario Fritzewski-19 October 2018

Outline

1 The Open Cluster IC 348

2 Observations and Time Series Analysis

3 Results

4 What we have learned

Stellar variability in IC 348

Dario Fritzewski-19 October 2018

Basic Facts on IC 348

- ► Located in the Perseus molecular cloud (03^h 44^m 34^s, +32° 09′ 45")
- Median age between 2 Myr and 6 Myr (Luhman+ 2003, Bell+ 2013)
- ${\bf \nu}~\approx 470~members~including~several~brown~dwarfs~{\tiny (Luhman+~2016)}$
- Distance: 316 pc (Herbig 1998)
- Several photometric surveys in the literature.

(Herbig 1998, Cohen+ 2004, Littlefair+ 2005, Nordhagen+ 2006)

 143 stars are periodically variable or candidates (Cieza & Baliber, 2006)

Colour-Magnitude-Diagram of IC 348

CMD from Gaia DR2

Colour-Magnitude-Diagram of IC 348

- CMD from Gaia DR2
- Selection based on proper motion

Colour-Magnitude-Diagram of IC 348

- CMD from Gaia DR2
- Selection based on proper motion
- Refine cluster membership based on parallax.
- recovers 220 members from Luhman+ (2016)

Observations and Data Analysis

Stellar variability in IC 348

Dario Fritzewski-19 October 2018

6/24

The Observations in Numbers

- 2.4 year timebase
- 8 involved observatories
- 125 nights of observations

- 17846 frames obtained
 - 10808 frames from Jena
- 1001 stars in the field of view analysed

The Advantage of YETI

- Better phase coverage for any given period
- Advantage for periods that are multiple of 1 d
 → reducing alias

The Advantage of YETI

- Better phase coverage for any given period
- Advantage for periods that are multiple of 1 d
 → reducing alias

Time-Series Analysis

Three methods were deployed

- Generalised Lomb-Scargle periodogram (Zechmeister & Kürster 2009)
- Gregory-Loredo Bayesian periodogram (Gregory & Loredo 1992)
- String-length algorithm (Dworetsky 1982)

Common properties of the methods

- Work on arbitrary spaced data
- Use predefined trial periods

Workflow of Period Determination

- Independent application of methods to light curve (LC)
- Two of three should give same period within 10% margin
- Search within 10% range with finer grid
- Agreement on 1% level
- \rightarrow Accept period after manual inspection of LC.

Results

Dario Fritzewski-19 October 2018

Stellar Rotation of PMS stars

- Rotational variability observable due to star spots.
- \blacktriangleright Young stars have large spots \rightarrow easier to detect
- Found 87 periodic stars in IC 348, including 33 new
- Well studied cluster, finding new periods still possible

Comparison with Previous Work

- Comparison with prior work of Cieza & Baliber (2006) shows:
 - Most previously found periods have a ratio of 1:1, 1:2, or 2:1
 - few periods diverge without a proper reason
 - 24 periods could not have be recovered

Bimodal Period Distribution in IC 348

- Stars in young OC are either fast or slow rotators
- Discovered in ONC (Herbst 2000)
 - Bimodel distribution with $P_{\rm rot} \approx 2 \, {\rm d}$ and $P_{\rm rot} \approx 8 \, {\rm d}$
 - Two populations due to accretion history (Meibom+ 2013)
- Not statistically significant in our data

V695 Per – An AA Tauri System

- Magnetic interactions of the disc's inner edge with the star
- Inner edge of the proto-planetary disc is warped
- Periodic occultation of the star (P = 7.55 d, orbital period)

V909 Per – An UX Orionis System

- Clumps in proto-planetary disc occult the star
- Different clump sizes \rightarrow varying shape and depth
- Fading of 0.6 mag in a few days
- Two other stars in IC 348 show this behaviour (Barsunova+ 2013)

V718 Per – An Unusual System

- Long-lasting eclipse of 3.5 yr (Nordhagen+ 2006)
- Stable, extended, dusty structure" (Grinin+ 2008)
- ▶ Period: 4.7 yr \rightarrow eclipse lasts for 75% of a cycle

Non-periodic Variability

Variability Among the Field Stars – Periodic Variability is not Limited to Open Cluster –

Dario Fritzewski-19 October 2018

W UMa Binaries and Other Variables

- Four contact binaries in the field identified
- All have a similar period and are background stars

Additional members of IC 348

- Some *field* stars show fast rotation (P < 10 d).
- May be additional members of IC 348.

Dario Fritzewski-19 October 2018

Additional members of IC 348

- Some *field* stars show fast rotation (P < 10 d).
- May be additional members of IC 348.
- Gaia confirms those stars as possible members.

A Visual Summary

Conclusion

- YETI improves the phase coverage for all periods.
- ▶ 87 periodic stars in IC 348 identified (33 new).
- Wide range of photometric variable objects detected.
- Rotation periods can identify member candidates.

Thank You for Your Attention!

Long-term photometry of IC 348 with the Young Exoplanet Transit Initiative network

D. J. Fritzewski,^{1,2*} M. Kitze,¹ M. Mugrauer,¹ R. Neuhäuser,¹ C. Adam,¹ C. Briceño,³ S. Buder,^{1,4} T. Butterley,⁵ W.-P. Chen,⁶ B. Dinçel,^{1,7} V. S. Dhillon,^{8,9} R. Errmann,^{1,10} Z. Garai,¹¹ H. F. W. Gilbert,¹ C. Ginski,^{1,12} J. Greif,¹ L. K. Hardy,⁸ J. Hernández,^{13,14} P. C. Huang,⁶ A. Kellerer,¹⁵ E. Kundra,¹¹ S. P. Littlefair,⁸ M. Mallonn,² C. Marka,^{1,16} A. Pannicke,¹ T. Pribulla,¹¹ St. Raetz,^{1,17} J. G. Schmidt,^{1,18} T. O. B. Schmidt,^{1,19} M. Seeliger,¹ R. W. Wilson⁵ and V. Wolf¹ Affiliations are listed at the end of the paper

Accepted 2016 July 20. Received 2016 July 20; in original form 2016 June 28