Transiting Planets in the open cluster Trumpler 37

Ronny Errmann School for Physics, Astronomy and Maths at the University of Hertfordshire Hatfield, United Kingdom

Trumpler 37

- Open cluster in Cepheus
- Age: 4 Myr (Kun et al. 2008)

Open cluster Trumpler 37 in B-, V-, and R-Filter with FoV of the STK (M. Mugrauer)

Trumpler 37

- Open cluster in Cepheus
- Age: 4 Myr (Kun et al. 2008)
- 774-900 probable member stars (using literature data, Errmann et al. 2013)
- Size: ≈ 1.5°
- 17000 stars in the field of view (FoV)
 of the Schmidt-Telescope Camera
 (STK) at the Jena Observatory

Open cluster Trumpler 37 in B-, V-, and R-Filter with FoV of the STK (M. Mugrauer)

Trumpler 37

- Open cluster in Cepheus
- Age: 4 Myr (Kun et al. 2008)
- 774-900 probable member stars (using literature data, Errmann et al. 2013)
- Size: ≈ 1.5°
- 17000 stars in the field of view (FoV)
 of the Schmidt-Telescope Camera
 (STK) at the Jena Observatory
- Distance: 870 pc (Contreras et al. 2002)
- Extinction: 1.67 mag (Sicilia-Aguilar et al. 2004)

Open cluster Trumpler 37 in B-, V-, and R-Filter with FoV of the STK (M. Mugrauer)

Observation started 2009 - single observatory:

- Big data gaps
- Alias frequencies (et al. earth rotation)

Light curve of star GM Ceph

Single telescope:

- Big data gaps
- Alias frequencies (et al. earth rotation)
- → Network of telescopes (Young Exoplanet Transit Initiative: YETI)
 - Different longitudes
 - Size of main mirror: 0.25 m to 2 m

Single telescope:

- Big data gaps
- Alias frequencies (et al. earth rotation)
- → Network of telescopes (Young Exoplanet Transit Initiative: YETI)
 - Different longitudes
 - Size of main mirror: 0.25 m to 2 m

CTK: Cassegrain telescope Camera (Jena Observatory)

YETI Campaigns:

- 2010, 2011: 188 data sets*
- + 156 additional nights with Jena Observatory 2009 2011

Most observations in the R-Band:

- 62153 images
- 793 h total exposure time

^{*}One data set equals one Observational night with one telescope

Comparison of the phase coverage between YETI network and observations with a single telescope

- Improved phase coverage for multiples of a day
- Complete phase coverage for orbital periods up to 15 days (for stars in the FoV of all telescopes)

Data analysis

 Standard data reduction and calibration for every data set (each (mosaic pointing) of each night of each telescope)

Bias, Dark, and Flat correction

Part of the Schmidt-Telescope Camera: original image

Part of the Schmidt-Telescope Camera: reduced image

Data analysis

- Standard data reduction and calibration for every data set (each (mosaic pointing) of each night of each telescope)
- Optimised aperture photometry for every data set

Photometric precision

(night 2013-08-30, 115 data points each)

for 10s exposure time:

163 stars: σ < 5 milli-mag

for 120s exposure time:

690 stars: σ < 5 mmag

5351 stars: σ < 30 mmag

Combining data of different nights and telescopes

Aperture photometry for each night

Combination of the data sets:

Combining data of different nights and telescopes

Aperture photometry for each night

Combination of the data sets:

- Differential photometry with individual comparison stars for each star
 - Comparison stars:
 - Small separation,
 - · Similar colour and
 - Similar brightness
 - → small influence of the optical effects of earth atmosphere (e.g. refraction) and the optical elements in the telescope (e.g. wavelength depended sensitivity)

Part of the Schmidt-Telescope Camera: reduced image with star and comparison stars

Combining data of different nights and telescopes

Aperture photometry for each night

Combination of the data sets:

- Differential photometry with individual comparison stars for each star
 - Comparison stars:
 - Small separation,
 - · Similar colour and
 - Similar brightness
 - → small influence of the optical effects of earth atmosphere (e.g. refraction) and the optical elements in the telescope (e.g. wavelength depended sensitivity)
- Differential Photometry for each telescope
- Combining light curves from different telescopes with overlapping observing times

Part of the Schmidt-Telescope Camera: reduced image with star and comparison stars

Search for transit signals, eclipses and variability

Search for period signals:

- Lomb-Scargle-Periodogramm (Scargle 1982, Lomb 1976): Sinusoidal signals Search for strongest signal
- String length (Dworetsky 1983):

 Any periodic signal

 Search for local,

 significant minimums

Search for transit signals, eclipses and variability

Search for period signals:

- Lomb-Scargle-Periodogramm (Scargle 1982, Lomb 1976): Sinusoidal signals Search for strongest signal
- String length (Dworetsky 1983):

 Any periodic signal

 Search for local,

 significant minimums

Search for boxes:

- Approach of a transit with a box
 - Variation of the start (1)
 - Variation of the width (2)
 - Fitting the depth to the data (3)
 - → Significant signals

→ Plotting the light curves for periods and boxes, visual inspection

Example light curves

Follow-up

- Imaging with adaptive optics in the infrared to resolve the optical PSF
- Spectroscopy for radial velocity measurements to determine the mass

Calar Alto 2.2 m telescope

Isaac Newton telescope (INT, 2.2 m)

MMT (6 m)

Subaru telescope (8 m)

Keck telescope (10 m)

- Before follow-up from optical and infrared colours:
 - CMD and photometric spectral type consistent with membership in Trumpler 37
 - Low resolution spectroscopy: sun-like star

Period P = 1.36 d

- Before follow-up from optical and infrared colours:
 - CMD and photometric spectral type consistent with membership in Trumpler 37
 - Low resolution spectroscopy: sun-like star

Period P = 1.36 d

Modelling the light curve:

Depth:

 $\Delta R = 55 \text{ milli-mag}$

Duration:

 $t_{trans} = 160 \text{ min}$

Radius ratio:

$$R_{p}/R_{*} = 0.20$$

Assumption $R_{\star} \approx 1 R_{\odot}$:

$$\rightarrow R_p \approx 2 R_{Jup}$$

Contraction of the radius (data from Burrows et al. 1997)

- Before follow-up from optical and infrared colours:
 - CMD and photometric spectral type consistent with membership in Trumpler 37
 - Low resolution spectroscopy: sun-like star

No secondary transit

 → planetary transit possible, excluding the false positives

Transit candidate 1

- High resolution imaging IRCS and adaptive optic from the Subaru telescope
- Resolving the stars in the aperture of the YETI-telescopes up to 0.2"
- Several objects
 - Measuring the infrared brightness using PSF-photometry
 - Extrapolating to the optical
 - → All too faint for blended eclipsing binary

--- Aperture in the YETI-telescopes (4.5")

Reduced IRCS-Pictures of the secondary transit candidate in the H and K filter

- High resolution spectra from HIRES
- Close to the quadratures

Shift of absorption lines in the HIRES Spectra

- Cross correlation of the model spectra from the PHOENIX NextGen2 model with the HIRES spectra
 - Range of model spectra
 - → stellar parameters
 - Best matching model spectrum
 - → radial velocity
 - → amplitude of 35 km/s

HJD – 2455000	RV [km/s]
466.765 466.816 466.906 468.903 468.966	10.8 ± 2.3 14.1 ± 3.4 22.5 ± 2.4 -47.3 ± 2.1 -48.4 ± 2.7

HJD: heliocentric julian date

RV: radial velocity

Modelling of light curve and radial velocity curve together, using PHOEBE:

Assumptions:

- Mass and radius of primary component from tables
- Circular orbit

Light curve (R)

Radial velocity

PHOEBE: Physics of Eclipsing BinariEs

Errmann et al., 2014

T _{eff} [K]	<u>Primary star:</u> 6300 ± 300		<u>C</u> (ompanion:
γ [km/s]	-13.78 ± 0.13	*		
EW (Li) [mÅ]	< 5	**		
M [M _x]	1.05 1.38		M [M _x]	0.22 0.26
R[R _x]	1.16 1.26		R[R _x]	0.24 0.26
Spectral type	F4 G0		Spectral type	M5 M6

→ eclipsing binary

* : consistent with membership in Trumpler 37

** : not a young age → no member in Trumpler 37

Errmann et al., 2014

- Before follow-ups:
 - Optical and infrared colours: consistent with membership in Trumpler 37
 - Proper motion (Marschall & van Altena 1987): 4% membership probability in Trumpler 37

Phase folded and binned light curve in B, V, R, and I of the second transit candidate in Trumpler 37

- Before follow-ups:
 - Optical and infrared colours: consistent with membership in Trumpler 37
 - Proper motion (Marschall & van Altena 1987): 4% membership probability in Trumpler 37

Periode P = 0.74 d

Modelling of the light curve:

Depth:

 $\Delta R = 12 \text{ milli-mag}$

Radius: $R_p/R_* = 0.11$ $\rightarrow R_p = 1 R_{Jup}$

No secondary eclipse

 → planetary transit possible, excluding the false positives

Phase folded and binned light curve in B, V, R, and I of the second transit candidate in Trumpler 37

- High resolution imaging IRCS and adaptive optic from the Subaru telescope
- Resolving the stars in the aperture of the YETI-telescopes up to 0.2"

STK image of the star 523 in R filter

Reduced IRCS-Picture of the secondary transit candidate in the K filter

- High resolution imaging IRCS and adaptive optic from the Subaru telescope
- Resolving the stars in the aperture of the YETI-telescopes up to 0.2"

Reduced IRCS-Pictures of the secondary transit candidate in the H and K filter

- High resolution imaging IRCS and adaptive optic from the Subaru telescope
- Resolving the stars in the aperture of the YETI-telescopes up to 0.2"

- Brightness of star 4 and 2 in H and K → reason for signal, if eclipsing binary
- Other ground based searches:
 only few transit signals are real
 planets (O'Donovan et al. 2006,
 Street et al. 2007, Latham et al.
 2009)
 - → low probability that real transit

Reduced IRCS-Picture of the secondary transit candidate in the K filter

Results in Trumpler 37

- Combination of literature data
- Reduction and analysis of 793 h observational data of 12 telescopes
- 400 new variable stars
- Follow-up for two transit candidates
 - → false-positives
- Follow-up of young eclipsing binaries
 - → characterising the system properties

Future work

- Own observations for membership of stars in Trumpler 37
- Binning of the light curves → more transit signals?

Low probability for transiting planets in one open cluster

→ observation of several clusters with YETI

Extra slides

Observations

View Finder

Focus:

n

Diameter: 10"

Focal length: 2250 mm

f/D:

9

Camera CTK/CTK-II

Telescope

Focus:

Schmidt / Nasmyth

Diameter:

60 cm / 90 cm

Focal length:

1800 mm / 13500

mm

f/D:

3 / 15

Camera

STK

Guide Scope

Focus:

Refractor

Diameter:

10"

Focal length:

3000 mm

f/D:

15

Camera

RTK

Star 118 Jena / YETI

Light curves of the eclipsing, double lined binaries

Doubled lined young eclipsing binaries

- High resolution HIRES or HDS spectra
- Cross correlation with PHOENIX NextGen2 model spectra:
 Simultaneous use of two model spectra
 - → stellar parameters of both components: Teff, log g, v sin i
 - → orbital parameters: radial velocity
- Simultaneous modelling of light curves and radial velocities with PHOEBE
 - → Masses, radii
- Comparison with star formation models

HDS spectrum of star 522

HIRES: High Resolution Echelle Spectrograph at the Keck telescope,

HDS: High Dispersion Spectrograph at the Subaru telescope.

PHOEBE: PHysics Of Eclipsing BinariEs

Comparison of measured parameters with stellar models

- Components of system 118 don't have same age in models
- Age of both systems too high for membership in Trumpler 37

Observational data: 118: young, foreground 522: young, high membership probability

Isochrones from Tognelli et al. 2011

Paramerters of the eclipsing, double lined binaries

<u>118</u>				<u>522</u>		
System:			System:			
Period [d]	6,004907	± 0,000001		Period [d]	4,51685 ±	0,00002
γ [km/s]	-37,603	± 0,022		γ [km/s]	-12,0268 =	± 0,0008
Componen	t A	В			A	В
T _{eff} [K]	6450 ± 150	5990 ± 150		T _{eff} [K]	6520 ± 250	6530 ± 200
M [M _x]	$1,39 \pm 0,02$	$1,30 \pm 0,01$		M [M _{\$\pi\$}]	$1,30 \pm 0,01$	$1,24 \pm 0,01$
R[R _x]	$1,58 \pm 0,02$	$1,41 \pm 0,05$		R[R _o]	$1,47 \pm 0,01$	$1,43 \pm 0,05$
Spectral type	F4 F7	F9 G2		Spectral type		F3 F7
EW (Li) [mÅ]	15 ± 8	36 ± 3		EW (Li) [mÅ]	16 ± 7	28 ± 5
r [pc]	281 =	± 68		r [pc]	920 =	± 270

→ young foreground star

→ probably member in Trumpler 37

Distance from: $m_V - M_V = 5 \log(\frac{r}{10 \ pc}) + A_V$, M_V aus Spectral type

Comparison of measured parameters with stellar models

 Masses from model too high for system 522

Spectroscopic masses and radii:

 $\frac{118 \text{ A}}{\text{M} [\text{M}_{\odot}]} = \frac{118 \text{ B}}{1.39 (2)} = \frac{1.30 (2)}{1.41 (5)}$

 $\begin{array}{cccc} & \underline{522\,A} & \underline{522\,B} \\ \text{M} \left[\text{M}_{_{\odot}} \right] & 1.30 \ (1) & 1.24 \ (1) \\ \text{R} \left[\text{R}_{_{\odot}} \right] & 1.47 \ (1) & 1.43 \ (5) \end{array}$

Evolutionary tracks from Tognelli et al. 2011