
DFG Priority Programme 1992

<u>Follow-up observations of YETI</u> <u>planet candidates</u>

Prof. Dr. Ralph Neuhäuser - Jena Prof. Dr. Ronald Redmer – Rostock Dr. Nadine Nettelmann – Rostock Dr. Markus Mugrauer – Jena Anna Julia Poser - Rostock **Richard Bischoff - Jena**

Transit technique

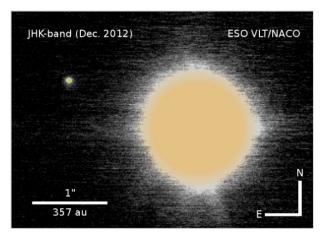
• information about planet radius R_P

Why young transiting planets ?

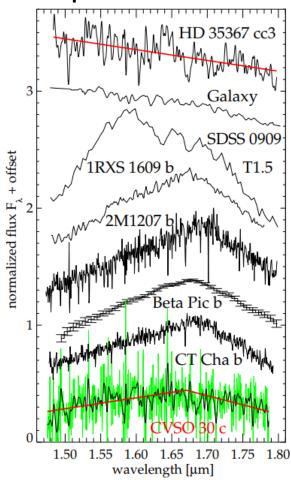
Problem: Almost all known transiting planets are old

• almost all detected planets are $\sim 10^9$ yr old

studying planet formation:
 mass and radius of young planets needed

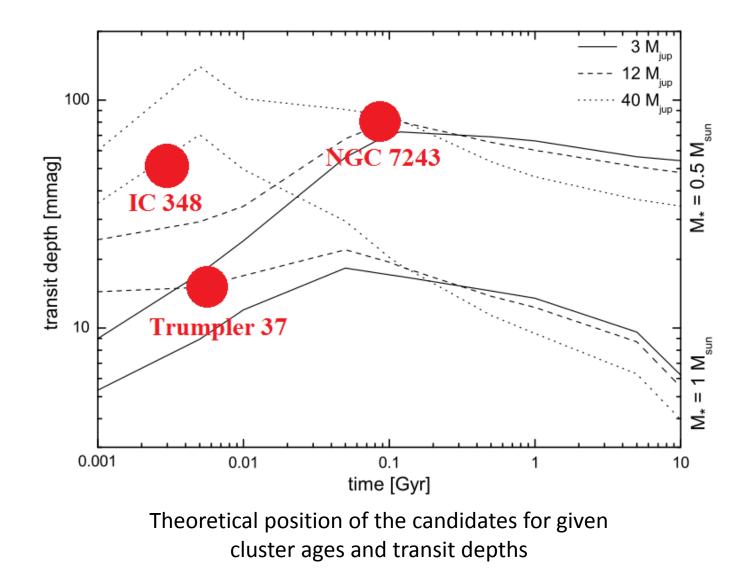

• so far only two young transit planets known:

- **K2-33b** a Neptune-sized transiting planet (not observed by YETI)
 - discovered and analyzed by David et al. 2016
 - M-type star with:


 $M_{\text{star}} = (0.31 \pm 0.05) \text{ M}_{\odot}$ $d \approx (139 \pm 11) \text{ pc}$ $age \approx 5 \text{ Myr} - 10 \text{ Myr}$ $P = (5.42513 \pm 0.00029) \text{ d}$

 $R_{\text{Planet}} = (1.49 \pm 0.16) \, \text{R}_{\text{Neptune}}$ $a = (0.0409 \pm 0.0023) \, \text{AU}$ $M_{\text{Planet}} \approx 1 \, \text{M}_{\text{Neptune}}$

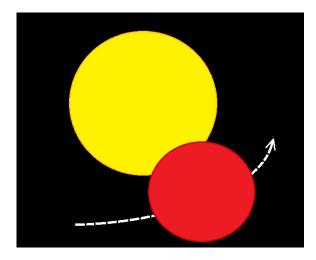
young star CVSO 30 with both, a transit planet and a direct imaging planet


- *left:* Direct image of CVSO 30 c and its host star, common proper motion confirmed
- *right:* H-band spectrum of CVSO 30 c in comparison to other planetary candidates and background objects (from Schmidt, Neuhäuser et. al 2016)

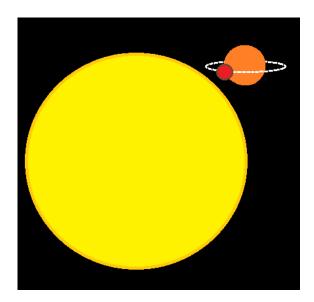
 close & wide planet may allow conclusions about dynamics

YETI-Candidates

- in Trumpler 37 (PhD thesis Errmann 2015) $d \approx 870 \text{ pc}$ age of cluster $\approx 4 \text{Myr}$ $P = (0.736867 \pm 0.000004) \text{d}$ $\Delta R = (11.7 \pm 0.5) \text{ mmag}$
- in NGC 7243 (Garai et al. 2016) $d \approx 750 \text{ pc}$ age of cluster $\approx 76 \text{ Myr}$ $P \approx 4.380383(12) \text{ d}$ $\Delta R \approx 80 \text{ mmag}$
- in IC 348 (Fritzewski et al. 2016) $d \approx 315 \text{ pc}$ age of cluster $\approx 2 \text{ Myr}$ $P \approx (5.123874 \pm 0.000063) \text{d}$ $\Delta R \approx 50 \text{ mmag}$

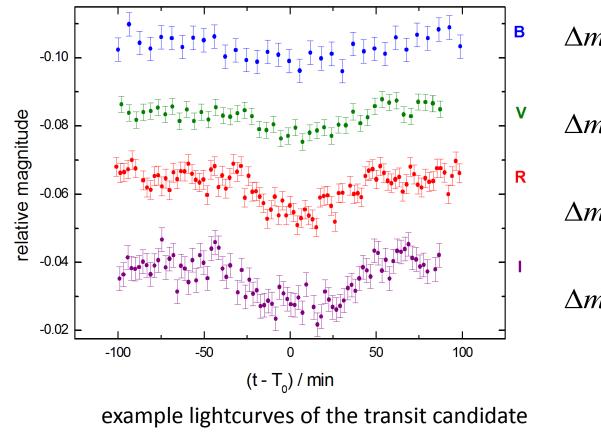


Possible false positives

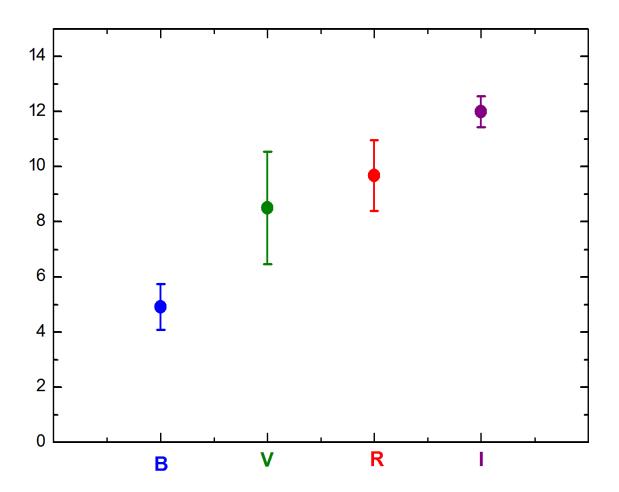

different non planetry objects can mimic a transit signal:

- eclipsing binary with early main sequence star orbiting around giant star
- degenerated low mass star or brown dwarf
 (same size as jupiter like planet)

– grazing eclipse of a binary star



 – eclipsing binary with bright foreground star in the optical PSF


Multiband photometry

- planet should cause the same depth in BVRI filters
- studying possible colour effects with YETI
 - W. P. Chen, P. C. Huang at Lulin Observatory
 - M. Fernández at Observatory Sierra Nevada
 - Z. Garai at Stará Lesná Observatory
 - G. Maciejewski at Torun Observatory
 - P. Zielinski at Adiyaman and Suhora Observatory

$$\Delta m_{\rm B} = (5.3 \pm 1.3) \,\mathrm{mmag}$$
$$\Delta m_{\rm V} = (6.9 \pm 0.9) \,\mathrm{mmag}$$
$$\Delta m_{\rm R} = (10.7 \pm 0.8) \,\mathrm{mmag}$$
$$\Delta m_{\rm I} = (12.7 \pm 0.9) \,\mathrm{mmag}$$

in Trumpler 37

average transit depths (in mmag) for different filters with 2σ error bars for the candidate in Trumpler 37

• checking the characteristics of transit candidate host star in Trumpler 37 with GAIA DR2:

$$T = (4906_{-88}^{+486}) K \qquad L = (0.827 \pm 0.097) L_{\odot}$$
$$R = (1.26_{-0.22}^{+0.04}) R_{\odot} \qquad plx = (1.7849 \pm 0.1019) mas$$
$$d = (560_{-30}^{+34}) pc$$

• Contreras et al. (2002): $d \sim 870 \text{ pc}$

 mass estimation with GAIA DR2 values and models from Baraffe et al.

$$T = (4906_{-88}^{+486}) K R = (1.26_{-0.22}^{+0.04}) R_{\odot} L = (0.827 \pm 0.097) L_{\odot}$$

for an age of 4 Mio yrs

Т [К]	R [R _⊙]	L [L _☉]	M [M _☉]
4850	1.882	1.738	1.50
4722	1.803	1.445	1.40
4611	1.727	1.202	1.30
4497	1.661	1.000	1.20
4438	1.627	0.912	1.15
4379	1.602	0.832	1.10

 mass estimation with GAIA DR2 values and models from Baraffe et al.

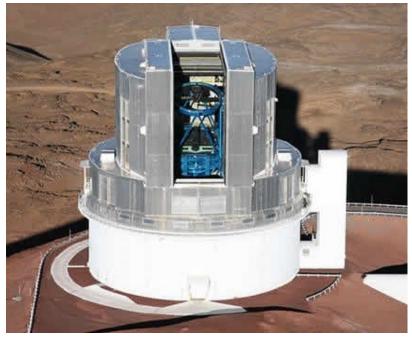
$$T = (4906_{-88}^{+486}) K R = (1.26_{-0.22}^{+0.04}) R_{\odot} L = (0.827 \pm 0.097) L_{\odot}$$

for an age of 13 Mio yrs

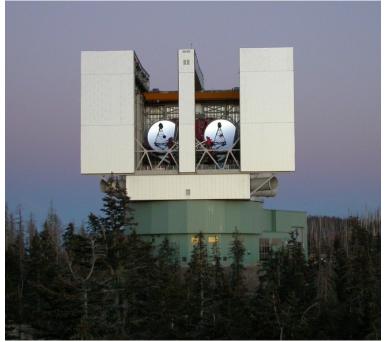
Т [К]	R [R _⊙]	L [L _⊙]	M [M _☉]
4543	1.176	0.525	1.05
4690	1.215	0.631	1.10
4848	1.263	0.776	1.15
5038	1.318	1.000	1.20
5482	1.468	1.738	1.30
6003	1.765	3.548	1.40

- for the other candidates not enough lightcurves are analyzed so far
- GAIA DR2: no light sources detected around candidates that can cause transit signals

distances of host stars consistent with cluster distances

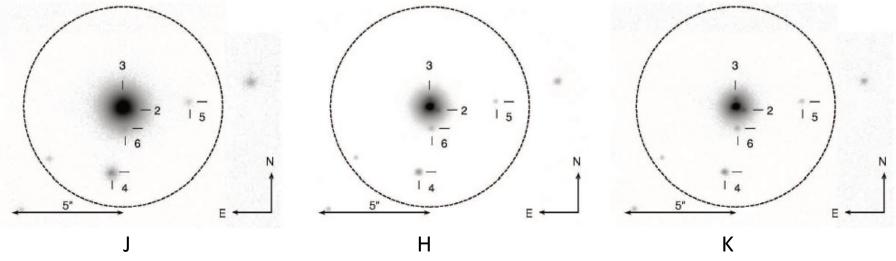

- nevertheless unresolved eclipsing binary in PSF possible
- IR photometry with AO necessary

• observing time granted for AO imaging at


Subaru Telescope (Hawaii) in autumn 2018

Large Binoculare Telescope (Arizona) in January 2019

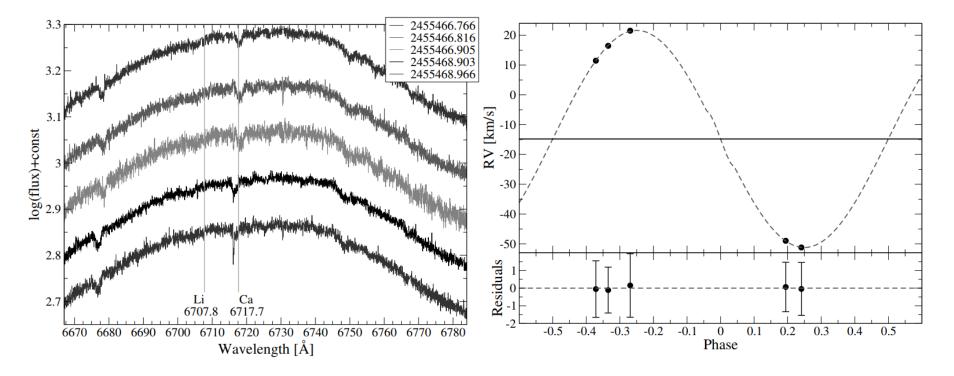
&


Subaru Teleskope from: https://www.nao.ac.jp/en/project/hawaii.html

LBT from : https://upload.wikimedia.org/wikipedia/commons/4/4a/ LargeBinoTelescope_NASA.jpg

IR imaging with AO (example)

IR images with AO in different filters from Errmann et al. 2016:


 according to measured flux in JHK-filters: calculation of R-band brightness for each source possible

<u>Spectroscopy</u>

• yields information about mass through $m \cdot \sin(i)$ from v_{rad} of the components

 detection of all gravitational bound objects during time critical observation

• Li as indication of a young age, chemical composition, temperature, surface gravity,...

 spectra and RV-curve of a false positive: M-star orbiting around a F4...G0 main sequence star (Errmann et al. 2014)

Follow-up observations summary

- updating ephemeris
- multiband photometry
 B, V, R, I
- adaptive optics in the IR to exclude eclipsing binaries in the optical PSF
- time granted

currently

done

 spectroscopy to measure mass of companion (RV technique) next

Thank you for your attention

References

Baraffe et al.	Evolutionary models for low-mass stars and brown dwarfs: uncertainties andlimits at very young ages A&A 2002
Barnes et al.	Measurement of spin-orbit misalignment and nodal precession for the planet around pre-main-sequence star PTFO 8-8695 from gravity darkening, ApJ 2013
David et al.	A Neptune-sized transiting planet closely orbiting a 5–10-million-year-old star, Nat. Phys. 2016
Errmann et al.	Investigation of a transiting planet candidate in Trumpler 37: An astrophysical false positive eclipsing spectroscopic binary star, AN 2014
Fritzewski et al.	Long-term photometry of IC 348 with the Young Exoplanet Transit Initiative network, MNRAS 2016
Garai et al.	Search for transiting exoplanets and variable stars in the open cluster NGC 7243, AN 2016
Neuhäuser et al.	The Young Exoplanet Transit Initiative (YETI), AN 2011
Rätz et al.	YETI observations of the young transiting planet candidate CVSO 30 b, MNRAS 2016
Schmidt et al.	Direct Imaging discovery of a second planet candidate around the possibly transiting planet host CVSO 30, A&A 2016
Van Eyken et al. The PTF Orion Pr	roject: A possible planet transiting a T-Tauri star, ApJ 2012
Zari et al.	Mapping young stellar populations toward Orion with Gaia DR1, A&A 2017