Identifying Birth Places of Young Neutron Stars to Determine Their Kinematic Ages

Bestimmung kinematischer Alter junger Neutronensterne durch Identifikation ihrer Geburtsorte

A thesis submitted for the degree of doctor rerum naturalium (Dr. rer. nat.) 2013 January 9th

presented to the council of Physikalisch-Astronomische-Fakultät Friedrich-Schiller-Universität Jena (FSU)

Dipl.-Phys. Nina Ulrike Tetzlaff

born on June 9th 1984 in Gera, Germany

Astrophysikalisches Institut und Universitäts-Sternwarte (AIU)

1st reviewer: Prof. Dr. Ralph Neuhäuser

2nd reviewer:

3rd reviewer:

Day of defense:

Signature from head of PhD committee:

Abstract

Kinematic ages of young neutron stars give good estimates of their true ages. From the age of a neutron star, cooling models can be probed to improve theoretical inputs and provide constraints on the equation of state of matter above nuclear density. Furthermore, the identification of neutron star birth places, i.e. sites of supernovae, serves as input for models of the interstellar medium which is stirred by supernova explosions. In addition, theoretical nucleosynthesis yields and supernova models can be tested if distance and time of a supernova event are known. Moreover, a very nearby supernova also influences the climate on Earth. Therefore, knowing time and place of such events provides input for climate change studies. Another issue is the unknown radial velocity of neutron stars that can be obtained if the birth place was established.

In this thesis, a large sample of young neutron stars is studied in order to identify their birth places and obtain kinematic ages up to five million years. Past flight paths of neutron stars and possible parent associations (as well as runaway stars) are calculated throughout Monte Carlo simulations to account for the errors on the observed parameters of the objects as well as the unknown radial velocity of the neutron stars. The outcome of the Monte Carlo simulations is then interpreted statistically. A subsample of 20 neutron stars within 500 parsec from the Sun is analysed in great detail and for 19 of these stars possible parent associations or clusters are proposed. For 11 neutron stars, also former companion candidates of the neutron star progenitor are identified that are now runaway stars. 12 of the 20 stars were possibly born within 500 parsec from the Sun. For further 85 neutron stars with present distances to the Sun larger than 500 parsec, preliminary results are given.

In preparation of the investigation of neutron star birth sites, a sample of 289 young stellar associations and clusters that are possible neutron star parents, is obtained from an extensive literature study. In addition, a catalogue of young runaway stars is compiled. 2038 young Hipparcos stars are considered runaway stars.

From a population synthesis that is developed in this work, neutron stars and runaway stars are produced in order to obtain spatial densities of young neutron stars and runaway stars in the Solar neighbourhood (up to a few kiloparsec). These are used to evaluate the significance of a possible encounter between a neutron star and a runaway star. Furthermore, the feasibility of this project is evaluated by testing whether the birth association of a random neutron star can be recovered. The expected success rate is approximately 70 per cent.

Kinematische Alter junger Neutronensterne liefern eine gute Abschätzung ihrer wahren Alter. Das Alter eines Neutronensterns wird benötigt um den Kühlprozess zu untersuchen und theoretische Modelle zu verbessern. Dies ermöglicht auch eine Einschränkung der Zustandsgleichung von Materie bei Dichten, die größer sind als die Atomkerndichte. Zudem können die ermittelten Geburtsstätten von Neutronensternen, das heißt Orte von Supernovae, in Modelle des interstellaren Mediums eingehen, da dieses durch Supernovaexplosionen durchmischt wird. Ferner ist es möglich, theoretische Modelle zur Nukleosynthese zu prüfen und die theoretischen Häufigkeiten von in Supernovae ausgestoßenen Isotopen zu verbessern. Hierfür werden die Entfernung und Zeit einer Supernova benötigt. Sehr nahe Supernovae beeinflussen sogar das Klima auf der Erde. Daher kann die Kenntnis von Ort und Zeit solcher Ereignisse helfen, Klimaveränderungen zu verstehen. Ein anderer Aspekt ist die unbekannte Radialgeschwindigkeit von Neutronensternen, welche durch die Idenfikation der Geburtsorte ermittelt werden kann.

In dieser Arbeit wird eine große Auswahl junger Neutronensterne bezüglich ihrer Geburtsorte untersucht, um ihre kinematischen Alter (bis zu fünf Millionen Jahren) zu bestimmen. Die Bahnkurven der Neutronensterne und möglicher Geburtsassoziationen (wie auch Schnellläufersterne) werden in Monte-Carlo-Simulationen berechnet, um die Fehler der beobachteten Parameter der Objekte sowie die unbekannte Radialgeschwindigkeit der Neutronensterne zu berücksichtigen. Die Ergebnisse dieser Monte-Carlo-Simulationen werden statistisch ausgewertet. 20 Neutronensterne, welche sich innerhalb 500 Parsec von der Sonne befinden, werden sehr genau untersucht. Für 19 dieser Sterne werden mögliche Geburtsassoziationen vorgeschlagen. Kandiaten für frühere Begleitsterne der Vorläufersterne (heutige Schnellläufersterne) von 11 Neutronensternen werden identifiziert. 12 der 20 Neutronensterne entstanden möglicherweise innerhalb 500 Parsec von der Sonne. Für weitere 85 Neutronensterne mit heutigen Entfernungen zur Sonne, die größer als 500 Parsec sind, werden vorläufige Ergebnisse präsentiert.

Zur Vorbereitung der Untersuchungen junger Neutronensterne, wird eine Liste von 289 jungen Sternassoziationen und -haufen, welche mögliche Geburtstätten von Neutronensternen sind, zusammengestellt. Außerdem wird ein Katalog junger Schnellläufersterne erstellt. Dieser beinhaltet 2038 junge Hipparcos-Sterne.

In einer Populationssynthese werden Neutronensterne und Schnellläufersterne erzeugt um Raumdichten junger Neutronensterne und Schnellläufersterne in der Sonnenumgebung (einige Kiloparsec) zu erhalten. Mittels dieser wird die Signifikanz eines möglichen Zusammenstoßes zwischen einem Neutronenstern und einem Schnellläuferstern beurteilt. Des Weiteren werden die Erfolgsaussichten dieses Projektes evaluiert, indem überprüft wird, ob die Geburtsassoziation eines beliebigen Neutronensterns gefunden werden kann. Die erwartete Erfolgsrate liegt bei etwa 70 %.

Acknowledgement

This project was and still is supported by many people from various fields. I am deeply indepted to them.

In particular I thank Ralph Neuhäuser for suggesting and mentoring this thesis as well as many inspiring discussions that pointed my attention to the diverse subjects related to this work. I would also like to thank him for his patience and understanding regarding also private concerns, notably during the time of my pregnancy, the far too early birth of my son Darius and the months thereafter.

Sincere thanks are given to my great love and also colleague Markus Hohle for intensive discussions that significantly improved this study and providing basic MATLAB codes for coordinate transformations. I deeply thank him for his patience and support during the past months and years and taking care of our little Darius by taking paternal leave that made it possible for me to return to work after a few months and finish my thesis.

During my work I learned a lot from many scientists. In this regard, sincere thanks are given to Roland Diehl for providing a ²⁶Al 1.8 MeV COMPTEL map and introducing the topic of astrophysical nucleosynthesis. I also want to thank him for the invitation to the workshop "Astronomy with Radioactivities VII" held from 1st to 3rd March 2011 on Phillip Island, Australia. I also thank Gunther Korschinek and Jenny Feige for collaboration regarding ⁶⁰Fe that was found in terrestrial and lunar crusts and providing graphs. I thank Jenny Feige also for introducing the subject of supernova expansion theory. Thanks are given to Thomas Janka and Ewald Müller for collaboration regarding theoretical models for core-collapse supernovae and kick velocities.

I would like to thank José Pons and Sergei Popov as well as David Blaschke, Hovik Gregorian and Alexander D. Kaminker for kindly providing neutron star cooling curves.

For collaboration concerning the Guitar Pulsar, I would like to thank David Hui and Ludwig Trepl. Thanks are given to Baha Dincel for discussions on the Vela Pulsar and runaway stars in supernova remnants. For discussions on supernova remnants in general I would also like to thank Anatoly lyudin. I also thank Amalya Poghosyan for assembling an update of Green's catalogue of supernova remnants. Thanks are given to Valeri Hambaryan for challenging many aspects of this project.

I would like to express my gratitude to Dieter Breitschwerdt for collaboration regarding the Local Bubble and ISM. I thank Christian Dettbarn and Burkhard Fuchs for discussions on past orbit calculations and providing ARIVEL radial velocity data for many stars. I also thank Thomas Berghöfer for providing the membership list of the Pleiades B1 moving group. For their assistance in assembling and updating data on stellar associations and clusters I would like to thank Łukasz Bukowiecki, Alexandr Loktin, Gracjan Maciejewski and Sergei Popov. Thanks are also given to Thomas Preibisch for discussion on the Upper Scorpius association. I thank Jesus Hernández and Francesco Palla for kindly providing stellar evolutionary models.

I would also like to thank János Schmidt for providing maps of supernova rates and discussions related to this topic.

I thank my co-investigators Baha Dincel, Ronny Errmann, Ralph Neuhäuser, János Schmidt, Tobias Schmidt and Martin Seeliger for their assistance in preparing proposals for observing time at the Calar Alto Astronomical Observatory and the ESO VLT.

Thanks are given to the multitude of colleagues who observed many of my runaway stars at the University Observatory Jena in Großschwabhausen and the Calar Alto Astronomical Observatory in Spain to detect Lithium in young stars or investigate elemental abundances. In particular I thank Ronny Errmann for analysing and evaluating Calar Alto data of 84 stars. In this regard I would also like to express my gratitude to Fred Walter for observing the runaway star HIP 43158 at SMARTS/CTIO and Ronny Errmann and Martin Seeliger for currently analysing this data. I also thank Fred Walter and Frank Haberl for many fruitful discussions regarding the search for neutron star origins.

During this thesis I encountered miscellaneous theoretical approaches and gained assistance from Mohammad Moualla and Diego Sevilla, for which I would like to thank them.

l also thank Vadim V. Bobylev, Anthony Brown, Lisa Chmyreva, Jos de Bruijne, Tim de Zeeuw and David Fernández for kindly responding to my queries and enquiries.

I would like to thank Pavel Boldin for his assistance in construction a web-tool in collaboration with Sergei Popov.

I would like to thank my colleagues at the AIU. It was and still is a pleasure to work with them. Thanks are given to Monika Müller for her assistance regard-

ing administrative issues and Jürgen Weiprecht and Frank Giessler for taking care of the computational equipment at the AIU.

I would like to acknowledge Carl-Zeiss-Stiftung for financial support by means of a scholarship and the Deutsche Forschungsgemeinschaft (DFG) for support through the Sonderforschungsbereich "Gravitationswellenastronomie" SFB/TR7.

This work has made extensive use of the Simbad and VizieR databases*, operated at the Centre de Données astronomiques de Strasbourg (CDS), the Australia Telescope National Facility (ATNF)[†] pulsar database as well as the WEBDA database[‡], operated at the Institute for Astronomy of the University of Vienna.

Special thanks go to my parents, my brother and my parents-in-law for their love and relief, especially during the past exertive months. I thank my little baby boy Darius for his strength and everlasting smile. I love you and your daddy.

^{*}http://simbad.u-strasbg.fr/

[†]http://www.atnf.csiro.au/research/pulsar/psrcat/

[‡]http://www.univie.ac.at/webda/

To Darius and Leonie. Für Darius und Leonie.

Contents

1	Intr	oductio	on	1				
	1.1	Motiva	ation	1				
	1.2	Nucleo	osynthesis from Massive Stars and Core-collapse Supernovae	2				
		1.2.1	Pre-Supernova Evolution of Massive Stars	2				
		1.2.2	Core-collapse Supernova	4				
		1.2.3	Aluminium-26 and Iron-60	4				
	1.3	Expan	sion of a Supernova Remnant	7				
		1.3.1	Free Expansion	7				
		1.3.2	Sedov-Taylor Phase	7				
		1.3.3	Snowplough Phase	8				
	1.4	Neutro	on Stars	9				
		1.4.1	Neutron Star Cooling	11				
		1.4.2	Ages and Magnetic Fields	12				
		1.4.3	Velocity Distribution of Neutron Stars	13				
2	San	ample Selection 1						
	2.1	The S	ample of Associations and Clusters	15				
		2.1.1	Preparation of the Sample	15				
		2.1.2	Present Mass Functions of Young Local Associations	16				
	2.2	The Sample of Neutron Stars						
	2.3	A Cat	alogue of Young Runaway Hipparcos Stars Within Three Kiloparsec					
		From	the Sun	22				
		2.3.1	Selection of Young Hipparcos Stars	23				
		2.3.2	Young Runaway Stars	26				
3	Met	thod		37				
	3.1	Proce	dure	37				
	3.2	Signifi	cance of Associations Between Neutron Stars and Runaway Stars	40				
		3.2.1	Population Synthesis	42				
		3.2.2	Significance Evaluation	45				
		3.2.3	Identification of the Birth Association of Simulated NSs \ldots	48				
4	Res	ults an	d Discussion	49				

	4.1	The M	lagnificent Seven	49
		4.1.1	RX J1856.5—3754	49
		4.1.2	RX J0720.4-3125	56
		4.1.3	RX J1605.3+3249	61
	4.2	The T	hree Musketeers	63
		4.2.1	PSR J0633+1746 – The Geminga Pulsar	63
		4.2.2	PSR J0659+1414	65
	4.3	Other	Neutron Stars – Possible Supernovae Within 500 Parsecs	67
		4.3.1	PSR J0034-0721	67
		4.3.2	PSR J0835—4510 — The Vela Pulsar	68
		4.3.3	PSRJ0630-2834 and $PSRJ0953+0755$	70
		4.3.4	PSR B1929+10	75
		4.3.5	PSR J2313+4253	77
		4.3.6	PSR J2330-2005	78
	4.4	Other	Neutron Stars – Possible Supernovae More Distant Than 500 Parsecs	80
		4.4.1	PSR J0454+5543	80
		4.4.2	PSR J0820-1350	80
		4.4.3	PSR J0826+2637	82
		4.4.4	PSR J1136+1551	83
		4.4.5	PSR J1239+2453	85
		4.4.6	PSR J1509+5531	86
		4.4.7	PSR J2048–1616	87
		4.4.8	PSR J2225+6535 – The Guitar Pulsar	87
5	Sum	nmary		91
	_			
6	Con	clusion	is and Outlook	95
Bi	bliog	raphy		99
Aı	openc	lix		115
	А	The Sa	ample of Associations and Clusters	115
	В	The Sa	ample of Neutron Stars	122
	С	The C	atalogue of Young Runaway Hipparcos Stars	128
		C.1	Young Hipparcos Stars	128
		C.2	Young Runaway Stars	175
	D	Proced	Jure	214
		D.1	Estimating the Supernova Progenitor Mass Using ²⁶ Al	214
		D.2	Evolution of the Smallest Separation d_{min} Found Between Two Ob-	
			jects Depending on the Number of Monte Carlo Runs	214
		D.3	The Initial Size of a Stellar Association or Cluster	218

	D.4	Derivation of Present-Day Neutron Star Parameters and Supernova	
		Position	219
Е	Results		220
	E.1	PSR J0034-0721	220
	E.2	PSR J0454+5543	222
	E.3	PSR J0630 – 2834	222
	E.4	Geminga Pulsar (PSR J0633+1746)	223
	E.5	PSR J0659+1414	224
	E.6	PSR J0820-1350	226
	E.7	PSR J0826+2637	227
	E.8	PSR J0953+0755	227
	E.9	PSRJ1136+1551	229
	E.10	PSR J1239+2453	229
	E.11	PSRJ1509+5531	229
	E.12	RX J1605.3+3249	230
	E.13	PSR B1929+10	230
	E.14	PSR J2048-1616	231
	E.15	PSR J2313+4253	232
	E.16	PSR J2330 – 2005	232
F	Prelimi	nary Results For 85 Further Neutron Stars	234

List of Figures

Figure 1.1	Suspected regions with enhanced supernova rate.	3
Figure 1.2	²⁶ Al yields	5
Figure 1.3	COMPTEL 1.809 MeV map	5
Figure 1.4	⁶⁰ Fe yields	6
Figure 1.5	⁶⁰ Fe found in the Earth's crust	6
Figure 1.6	P - \dot{P} diagram.	9
Figure 1.7	Neutron star cooling curves.	11
Figure 1.8	Distribution of spatial velocities for neutron stars	14
Figure 2.1	The sample of associations and clusters in Galactic coordinates	16
Figure 2.2	Present mass functions of YLA.	18
Figure 2.3	Distribution of the peculiar 3D space velocity v_{pec} .	27
Figure 2.4	Identifying runaway stars by comparison with neighbouring stars. \ldots	31
Figure 2.5	Motion of Ori OB1 member stars	32
Figure 2.6	Distributions of v_{pec} and $v_{t,pec}$.	35
Figure 3.1	Absolute differences between two 3D Gaussians	38
Figure 3.2	Sketch of the general procedure applied in this work	41
Figure 3.3	Scheme of the population synthesis.	42
Figure 3.4	Supernova positions from population synthesis.	45
Figure 3.5	Spatial density distributions for young NSs and runaway stars	46
Figure 3.6	Significance evaluation for RX J0720.4—3125 and two runaway stars.	47
Figure 4.1	d_{min} and $ au_{kin}$ distributions for RX J1856.5 $-$ 3754 and US	52
Figure 4.2	Encounters between RX J1856.5—3754 and three runaway stars over-	
	laid onto the COMPTEL 1.8 MeV map	54
Figure 4.3	d_{min} and $ au_{kin}$ distributions for RX J1856.5 $-$ 3754 and HIP 88294	54
Figure 4.4	d_{min} and $ au_{kin}$ distributions for RX J1856.5 $-$ 3754 and HIP 78681	55
Figure 4.5	d_{min} and $ au_{kin}$ distributions for RX J1856.5 $-$ 3754 and HIP 81741	55
Figure 4.6	$\left(B-V ight)_{0}$ versus M_{V} diagram of Tr 10	60
Figure 4.7	d_{min} and $ au_{kin}$ distributions for RX J1605.3+3249 and HIP 89394	61
Figure 4.8	Past trajectories for RX J1605.3 $+3249$ and HIP 89394 in Galactic	
	coordinates	63

List of Figures

Predicted position of the Geminga supernova in the COMPTEL	
1.8 MeV map	64
Nearby young NSs located inside the Monogem SNR	65
Monogem Ring – ²⁶ Al and X-rays	67
d_{min} and $ au_{kin}$ distributions for the Vela Pulsar and HIP 42041	69
The Antlia SNR and past paths of seven NSs	72
d_{min} and $ au_{kin}$ distributions for the Antlia SNR and three NSs	73
d_{min} and $ au_{kin}$ distributions for PSR B1929+10 and US and the Plei-	
ades B1 group.	76
d_{min} and $ au_{kin}$ distributions for PSRB1929+10 and HIP 86768	77
Predicted position of the birth place of PSRJ0454+5543 in the	
COMPTEL 1.8 MeV map.	80
d_{min} and $ au_{kin}$ distributions for PSR J0826+2637 and HIP 13962	83
d_{min} and $ au_{kin}$ distributions for the Guitar Pulsar and HIP 99580 within	
Cyg OB9	89
$(B-V)_0$ versus M_V diagram of Cyg OB9.	90
Projected past flight paths of 19 NSs	91
Neutron star cooling diagrams with observational data	94
Evolution of d_{min} during a Monte Carlo simulation.	216
Distibution of the number of runs in the $ au$ - d_{min} space for parameter	
determination.	219
Derivation of present-day NS parameters and proposed supernova	
position	220
	Predicted position of the Geminga supernova in the COMPTEL 1.8 MeV map

List of Tables

Table 1.1	Burning phases for a $13M_\odot$ star	4
Table 2.1	Initial stellar masses for YLA.	17
Table 2.2	Fitting results and curve intersection points for different velocity com-	
	ponents to select runaway stars	29
Table 2.3	Runaway selection criteria	30
Table 2.4	Runaway stars from the literature	33
Table 3.1	Recovering birth places of artificial NSs.	48
Table 4.1	Predicted current parameters of RX J1856.5 -3754 if it was born in US.	51
Table 4.2	Possible parent associations of RX J0720.4-3125.	57
Table 4.3	Properties of stars that might have experienced a close encounter with	
	RX J0720.4-3125	58
Table 4.4	Discussion on possible former companion candidates to	
	RX J0720.4-3125.	59
Table 4.5	Former companion candidates to RX J0720.4–3125.	60
Table 4.6	Possible parent associations of RX J1605.3+3249.	61
Table 4.7	Predicted current parameters of RX J1605.3+3249 and supernova po-	
	sition and time.	62
Table 4.8	Possible parent associations of the Geminga Pulsar.	64
Table 4.9	Predicted current parameters of PSR J0034-0721 if it was born in the	
	Argus association.	68
Table 4.10	Former companion candidates to PSR J0034–0721	69
Table 4.11	Possible parent associations of PSR J0630–2834	70
Table 4.12	Potential former companion stars of PSR J0630–2834	71
Table 4.13	Possible parent associations of PSR J0953+0755	71
Table 4.14	Former companion candidates to PSR J0953+0755.	72
Table 4.15	NSs possibly associated with the Antlia SNR	74
Table 4.16	Predicted current parameters of PSR J0630-2834 and supernova po-	
	sition and time.	74
Table 4.17	Predicted current parameters of $PSRB1929+10$ if it was born in the	
	vicinity of US	75
Table 4.18	Possible former companion candidates to $PSRB1929{+10.}$	76

Table 4.19	Predicted current parameters of PSR J2313+4253 if it was born in	
	Ser OB1	78
Table 4.20	Former companion candidates to PSR J2313+4253.	78
Table 4.21	Possible parent associations of PSR J2330-2005	79
Table 4.22	Former companion candidates to PSR J2330-2005.	79
Table 4.23	Possible parent associations of PSR J0454+5543	80
Table 4.24	Possible parent associations of PSR J0820-1350	81
Table 4.25	Possible parent associations of PSR J0826+2637	82
Table 4.26	Predicted current parameters of PSR J0826+2637 and supernova po-	
	sition and time.	83
Table 4.27	Possible parent associations of PSRJ1136+1551	84
Table 4.28	Predicted current parameters of PSR J1136+1551 and supernova po-	
	sition and time.	85
Table 4.29	Possible parent associations of PSRJ1239+2453	86
Table 4.30	Possible parent associations of PSR J2048-1616	87
Table 4.31	Possible parent associations of the Guitar Pulsar	88
Table 4.32	Predicted current parameters of the Guitar Pulsar and supernova po-	
	sition and time.	89
Table 5.1	Summary of results.	92
Table 6.1	Runaway stars proposed for further observation.	96
Table 6.1 Table A.1	Runaway stars proposed for further observation.	96
Table 6.1 Table A.1	Runaway stars proposed for further observation	96 115
Table 6.1 Table A.1 Table A.2	Runaway stars proposed for further observation	96 115
Table 6.1 Table A.1 Table A.2	Runaway stars proposed for further observation.	96 115 120
Table 6.1 Table A.1 Table A.2 Table B.1	Runaway stars proposed for further observation.	96 115 120 122
Table 6.1 Table A.1 Table A.2 Table B.1 Table B.2	Runaway stars proposed for further observation.	96 115 120 122 127
Table 6.1 Table A.1 Table A.2 Table B.1 Table B.2 Table C.1	Runaway stars proposed for further observation.	96 115 120 122 127 128
Table 6.1 Table A.1 Table A.2 Table B.1 Table B.2 Table C.1 Table C.2	Runaway stars proposed for further observation	96 115 120 122 127 128 175
Table 6.1 Table A.1 Table A.2 Table B.1 Table B.2 Table C.1 Table C.2 Table C.3	Runaway stars proposed for further observation.	96 115 120 122 127 128 175 212
Table 6.1 Table A.1 Table A.2 Table B.1 Table B.2 Table C.1 Table C.2 Table C.3 Table C.3	Runaway stars proposed for further observation.	96 115 120 122 127 128 175 212
Table 6.1 Table A.1 Table A.2 Table B.1 Table B.2 Table C.1 Table C.2 Table C.3 Table C.4	Runaway stars proposed for further observation.	 96 115 120 122 127 128 175 212 213
Table 6.1 Table A.1 Table A.2 Table B.1 Table B.2 Table C.1 Table C.2 Table C.3 Table C.4	Runaway stars proposed for further observation.	96 115 120 122 127 128 175 212 213 215
Table 6.1 Table A.1 Table A.2 Table B.1 Table B.2 Table C.1 Table C.3 Table C.4 Table D.1 Table D.2	Runaway stars proposed for further observation.	96 115 120 122 127 128 175 212 213 215 215
Table 6.1 Table A.1 Table A.2 Table B.1 Table B.2 Table C.1 Table C.3 Table C.4 Table D.1 Table D.2 Table E.1	Runaway stars proposed for further observation.	96 115 120 122 127 128 175 212 213 215 215
Table 6.1 Table A.1 Table A.2 Table B.1 Table B.2 Table C.1 Table C.2 Table C.3 Table C.4 Table D.1 Table D.1 Table D.2 Table E.1	Runaway stars proposed for further observation.	 96 115 120 122 127 128 175 212 213 215 215 221
Table 6.1 Table A.2 Table A.2 Table B.1 Table B.2 Table C.1 Table C.2 Table C.3 Table C.4 Table D.1 Table D.2 Table E.2	Runaway stars proposed for further observation.	96 115 120 122 127 128 175 212 213 215 215 221
Table 6.1 Table A.1 Table A.2 Table B.1 Table B.2 Table C.1 Table C.2 Table C.3 Table C.4 Table D.1 Table D.2 Table E.1	Runaway stars proposed for further observation. Sample of OB associations and clusters with complete 3D kinematic data. Sample of OB associations and clusters without fully available kinematic properties. The sample of neutron stars. The subsample of neutron stars. The subsample of neutron stars investigated in great detail. Ages and masses for 6300 young Hipparcos stars. Runaway probabilities – velocities Runaway stars found by comparison with OB associations/clusters Young stars situated well outside any OB association/cluster and the Galactic plane. Supernova positions and peculiar velocities for artificial cases. Discussion on possible former companion candidates to PSR J0034–0721. Discussion on possible former companion candidates to PSR J0630–2834.	 96 115 120 122 127 128 175 212 213 215 215 221 221 223

Table E.4	Discussion	on	possible	former	companion	candidates	to	
	PSR J0659+3	1414.						226
Table E.5	Former comp	anion	candidate	s to PSR.	J0659+1414.			227
Table E.6	Discussion	on	possible	former	companion	candidates	to	
	PSR J0953+0	0755.						228
Table E.7	Discussion	on	possible	former	companion	candidates	to	
	RX J1605.3+	3249						231
Table E.8	Discussion or	n poss	ible former	companio	on candidates	to PSR B1929	+10	.231
Table E.9	Discussion	on	possible	former	companion	candidates	to	
	PSR J2313+4	4253.						232
Table E.10	Discussion	on	possible	former	companion	candidates	to	
	PSR J2330-2	2005.						233
Table F.1	Preliminary r	esults	for 85 furt	her NSs.				234

List of Units

In astronomy cgs units are used rather than mks units. Furthermore, astronomical quantities are commonly in use. Here, a list of units that is used throughout this thesis is given.

- 1 au (astronomical unit: mean distance between Sun and Earth) 1 au = $149.6 \cdot 10^9$ m
- 1 pc (parsec, parallax second: an object at 1 pc distance has a parallax of one arcsec with respect to 1 au; the parallax of stars is often expressed in milli-arcsec, mas) $1 \text{ pc} = 30.857 \cdot 10^{15} \text{ m}$
- 1 M_{\odot} (Solar rest mass) $1 \text{ M}_{\odot} = 2 \cdot 10^{30} \text{ kg}$
- tropical year (time needed for the mean longitude of the Sun to increase by 360° [356])
 1 tropical year = 365.242 d
- 1 eV (electron volt: amount of kinetic energy that is gained by an electron moving in an electric field of 1 V) $1 \text{ eV} = 1.6022 \cdot 10^{-19} \text{ J}$
- $1 \text{ erg} = 1 \text{ g cm}^2 \text{ s}^{-2} = 10^{-7} \text{ J}$
- 1 G (1 Gauss) $1 \, \text{G} = 1 \, \text{V} \, \text{s} \, \text{cm}^{-2} = 10^{-4} \, \text{T}$

List of Abbreviations

General Abbreviations

3D	three-dimensional
EoS	equation of state
HR diagram	Hertzsprung-Russel diagram
IMF	initial mass function
ISM	Interstellar medium
LSR	Local Standard of Rest
M7	"Magnificent Seven"
NS	neutron star
PMS	pre-main sequence star
PSR	pulsating source of radio emission
SNR	supernova remnant
YLA	Young Local Associations
ZAMS	zero-age main sequence

Stellar constellations

Ara	Ara	Lac	Lacerta
Aur	Auriga	Lyr	Lyra
Boo	Boötes	Mon	Monoceros
Cam	Camelopardalis	Ori	Orion
Car	Carina	Per	Perseus
Cas	Cassiopeia	Pup	Puppis
Cen	Centaurus	Sco	Scorpius
Cha	Chamaeleontinus	Sct	Scutum
Сер	Cepheus	Ser	Serpens
СМа	Canis Majoris	Sgr	Sagittarius
Cru	Crux	Tau	Taurus
Cyg	Cygnus	Vel	Vela
Gem	Geminis	Vir	Virginis
Her	Hercules	Vul	Vulpecula

Stellar clusters

Col/Cr	Collinder Catalogue object [96]
IC	Index Catalogue object [142]
NGC	Object in the New General Catalogue of Nebulae and Clusters of Stars
	[141]
М	Messier Catalogue object [365]
Tr	Trumpler Catalogue object [500]
vdB-Hagen	Object in the van-den-Bergh-Hagen Catalogue of clusters [514]

Sco OB2 Subgroups and Young Local Associations

US	Upper Scorpius
UCL	Upper Centaurus Lupus
LCC	Lower Centaurus Crux
AB Dor	AB Doradus moving group
eta Pic-Cap	eta Pictoris moving group
ϵ/η Cha	ϵ/η Chamaeleontinus associations
Ext. R CrA	extended Corona-Australis association
HD 141569	HD 141569 moving group
Tuc-Hor	Tucana-Horologium association
TWA	TW Hydrae association

1 Introduction

1.1 Motivation

The spin-down age of a neutron star (NS) (see section 1.4.2) can be compared with its kinematic age which is a better estimate of the true age. The true NS age is important to study NS cooling (section 1.4.1) that provides constraints on the equation of state (EoS) for NSs, i.e. matter above nuclear density. Moreover, knowing time and location of a supernova provides input for theoretical nucleosynthesis yields and supernova models.

There are many young associations and clusters of massive stars in the solar vicinity that are potential birth places of NSs, hence supernova hosts. The NSs born in those supernovae were ejected from their parent association or cluster shortly after formation due to a kick in an asymmetric supernova explosion [e.g. 67, 247, 248, 274, 529]. This scenario of NS kicks and ejection from its parent association or cluster is supported by the observation of large NS proper motions that indicate high space velocities [e.g. 9, 101, 210, 221, 308, 318].

If it is found that the past flight path of a NS intersects an association/cluster, it is well possible that the NS was born at that place at the inferred time in a supernova. From the flight time of the NS (its kinematic age), the association age and assuming contemporaneous star formation, it is also possible to estimate the mass of the supernova progenitor from its life time and evolutionary models. Alternatively, the progenitor mass can be estimated by comparing the ejected ²⁶Al mass that can be obtained from the measured γ ray flux (1.8 MeV) with theoretical nucleosynthesis yields. Comparing both mass estimates may help to improve theoretical core-collapse supernova models.

For a small number of NSs parent associations have been suggested [e.g. 51, 52, 230, 484, 485, 487]. Due to large uncertainties in the NS distances and the unknown radial velocities, the results are often not unique ([230], Tetzlaff et al. [484, 487]). Therefore, further indicators are needed to decide on a particular birth place. Such indicators may be the identification of a possible former companion that is now a so-called runaway star [43].¹ Other indicators are sources of radioactive isotopes. Such isotopes are ²⁶Al and ⁶⁰Fe with half-lives of 0.72 Myr [432, 490] and 2.62 Myr [436], respectively, i.e. much longer visible than a supernova remnant (SNR, typically $\approx 10^4$ yr). A nearby (≤ 500 pc) cooling NS is

¹Runaway stars that were ejected in a supernova in a binary system, should show signs of the former binary evolution such as a high helium abundance and a high rotational velocity (due to mass and momentum transfer from the primary as it filled its Roche lobe) as well as enhanced abundances of α elements (Ne, Mg, Si, S, Ar, Ca, Ti) as supernova debris.

1 Introduction

visible for $\approx 1 \text{ Myr}$ [see e.g. cooling curves in 198, 417], i.e. a similar time span. The comparison between maps of γ ray emission (²⁶Al at 1.8 MeV), probable origins of runaway stars and NSs as well as the supernova rate shows that there are regions on the sky where more supernovae/NSs are present than average (Fig. 1.1). Moreover, such regions contain young OB associations, e.g. Cygnus, Vela or Orion. Hence, it is plausible to search for NS and runaway origins within young associations and clusters. Providing small regions on the sky with enhanced supernova/NS number is also an important input for gravitational wave searches [228].

In this work, it is searched for close encounters between NSs and possible parent associations/clusters and/or NSs and runaway stars by tracing back their paths. To account for the errors on the observables as well as the for NSs unknown radial velocity, Monte Carlo simulations are utilised.

1.2 Nucleosynthesis from Massive Stars and Core-collapse Supernovae

Massive stars ($M \gtrsim 8 \,\mathrm{M}_{\odot}$, i.e. supernova progenitors) play an important role for the evolution of the universe. Heavy elements that are crucial for life, are only produced in massive stars and their supernovae. Stellar winds and supernova explosions stir the ISM and trigger star formation, hence the genesis of the next generation of stars. NSs that are (besides black holes) the end products of massive star evolution are important laboratories to study matter under extreme conditions, such as supernuclear densities, high pressures and magnetic fields up to $10^{15} \,\mathrm{G}$.

In this section, the evolution and explosion of massive stars and their nucleosynthesis are shortly introduced. The information given here are based on [135, 296, 547].

1.2.1 Pre-Supernova Evolution of Massive Stars

Stars are born in molecular clouds due to gravitational collapses. High mass protostars are already hot enough to ignite hydrogen fusion, i.e. their pre-main sequence phase does not exist or is extremely short.

During the hydrogen burning phase hydrogen is converted into helium via proton-proton reactions or the CNO (carbon-nitrogen-oxygen) cycle. In massive stars, the CNO cycle dominates. As the temperature reaches 10⁸ K, helium burning sets in converting helium into carbon via triple-alpha reaction. Also low-mass stars undergo hydrogen and helium burning. However, only massive stars experience further burning phases up to silicon burning where iron group elements are produced. With proceeding burning, the central temperature of the star increases. Therefore, the nuclear reaction rate also increases which leads to an acceleration of the stellar evolution. In Table 1.1 the elements that are produced during the

Figure 1.1: Top panel: Past flight paths (1 Myr into the past) of young NSs (red, adopting zero radial velocity, kinematic data from ATNF pulsar database) and massive runaway stars (blue, Tetzlaff et al. 2011 [486]). Symbols indicate their present position in Galactic coordinates. They are overplotted on the ²⁶Al 1.8 MeV COMPTEL map from [136]. Most NSs and runaway stars seem to originate from regions on the sky with enhanced γ ray 1.8 MeV emission (e.g. Cygnus, Vela, Orion). Bottom panel: supernova rate within 600 pc from the Sun (this image has been kindly provided by J. Schmidt, [443]; see also [228]), expected from current O and B type stars. The same regions are pronounced in both maps.

different burning stages are presented along with the duration of each stage for a $13 M_{\odot}$ star [547]. As the centre of the star reaches the temperature to begin the next burning phase, the previous fusion reaction still occurs in a shell further outside. Finally, the star has

an onion-like structure with different burning shells. At this time, the star is a supergiant. During the different burning stages, the stellar compound is enriched with neutrons. Since the neutron density is relatively low, the so-called s-(slow-)process occurs where neutrons are captured on a small rate, i.e. the newly formed isotope undergoes β^- decay before it captures another neutron. By the s-process, elements up to bismuth (atomic mass number 209) are created.

1.2.2 Core-collapse Supernova

Table 1.1: Burning phases for a $13 M_{\odot}$ star [from 547].

Phase	Products	Duration
Н	He	13.5 Myr
He	С, О	2.67 Myr
С	O, Ne, Mg	2.82 kyr
Ne	O, Mg, Si	0.341 yr
0	Si, S	4.77 yr
Si	Fe group	17.8 d

As silicon burning ceases, a degenerate iron core is left in the centre of the star. If it has a mass in excess of the Chandrasekhar mass, it collapses because, at this limit, the electron degeneracy pressure cannot support against gravitational contraction. Shortly after collapse, the neutron flux is extremely high due to photodisintegration at high temperatures, such that the so-called r-(rapid-)process can occur, i.e. neutron capture can occur much faster than does β decay. This creates very neutron-rich isotopes. Proton-rich isotopes cannot be produced by s- or

r-processes. They are formed in the so-called p-(proton-)processes. These processes increase the relative number of protons within a nuclei by either photodisintegration, proton absorption or positron absorption.

1.2.3 Aluminium-26 and Iron-60

Particularly, two long-lived radioactive isotopes that are important for γ ray astronomy, ²⁶Al and ⁶⁰Fe are produced in massive stars and their supernovae. They are already produced during early burning phases. ²⁶Al is produced in the hydrogen burning stage in the NeNaMgAl cycle [311] and can be ejected by stellar winds. Also in the later phases ²⁶Al is produced by proton capture on ²⁵Mg, ²⁵Mg(p, γ)²⁶Al. ⁶⁰Fe is produced by neutron capture on ⁵⁹Fe. Since ⁵⁹Fe is unstable against β decay, the reaction only occurs at high neutron densities. Such high neutron densities are achieved in the He shell as oxygen burning is ongoing in the stellar core.

 26 Al is also produced during the explosive phases of Ne/C burning in core-collapse supernovae. Then, the following reactions occur,

$${}^{24}Mg + n \rightarrow {}^{25}Mg + \gamma,$$

$${}^{23}Na + \alpha \rightarrow {}^{26}Mg + \rho,$$

$${}^{25}Mg + \rho \rightarrow {}^{26}Al + \gamma.$$
(1.1)

²⁶Al Yields from Massive Stars

Figure 1.2: ²⁶Al yields ejected by stellar winds and in supernovae for different theoretical models [the figure was taken from 134].

Figure 1.3: All-sky $^{26}\text{Al}~\gamma$ map (1.809 MeV) observed with the COMPTEL telescope (1991-2000) [136, 416].

In Fig. 1.2 theoretical 26 Al yields ejected by stellar winds and in supernovae are shown. The decay of the radioactive isotope 26 Al with a half-life of 0.72 Myr [432, 490] occurs at 1.809 MeV,

$$\begin{array}{rcl} ^{26}\mathsf{Al} & \rightarrow & ^{25}\mathsf{Mg}^* + p, \\ ^{25}\mathsf{Mg}^* & \rightarrow & ^{25}\mathsf{Mg} + \gamma & (1.809\,\mathsf{MeV}) \,. \end{array}$$

Fig. 1.3 shows the 1.809 MeV map observed with the γ ray telescope COMPTEL (Imaging Compton Telescope) [445]. While the emission from the inner Galaxy is strong, also other regions on the sky are prominent, such as Cygnus, Scorpius-Centaurus (Sco-Cen), Vela or Orion.

⁶⁰Fe is only produced during He-shell burning (see above). The material is ejected during the supernova explosion. In Fig. 1.4 theoretical ⁶⁰Fe yields are shown for different models. ⁶⁰Fe has a half-life of 2.62 Myr [436] and decays through the following chain,

1 Introduction

Figure 1.4: ⁶⁰Fe yields ejected in supernovae for different models [taken from 348].

Figure 1.5: ⁶⁰Fe found in the Earth's crust. *Left panel*: Measurements from a deep-sea ferromanganese crust from the Equatorial Pacific (9° 18' N, 146° 03' W, depth 4830 m). The black points are measurements from [275] and the green points from [163] (note that the data has been shifted according to the new determination of the ¹⁰Be lifetime that is used to date the crust, footnote 2). The horizontal dashed line indicates the background level at $2.4 \cdot 10^{-16}$. *Right panel*: Measurements from a deep-sea ferro-manganese crust from the Midway Atoll (Equatorial Pacific, 4000 km away from the first crust's position, 28° 13' N, 177° 22' W, depth 2938 m; this figure has been kindly provided by G. Korschinek). The measurements give direct evidence for a nearby supernova 2.0 ± 0.5 Myr in the past. The apparent higher signal at 0 - 2 Myr might be real but is not significant (G. Korschinek, priv. comm.).

The γ rays produced at 1.173 MeV and 1.332 MeV are, however, still hardly detectable with current telescopes [135]. Direct evidence of Galactic ⁶⁰Fe ejected in a recent (2.0±0.5 Myr ago²) nearby supernova event was found in the Earth's crust [163, 275] (Fig. 1.5) as well as in lunar samples [100, 162].

² Note, that the original peak found at 2-3 Myr in the past has shifted due to a new measurement of the half-life of ¹⁰Be (earlier: 1.51 Myr [224], now: 1.38 Myr [281]) that is used to date the crust.

1.3 Expansion of a Supernova Remnant

This section will give a short introduction into the theory of supernova remnant (SNR) expansion following [92] (for a more detailed description see also [158]). The expansion of a SNR can be described with three evolutionary phases that will be shortly explained in this section. For simplicity, it is assumed that the SNR expands into a homogeneous gaseous medium with density ρ_0 .

1.3.1 Free Expansion

Since the density of the ejected material is much larger than the density of the surrounding medium shortly after the supernova, the ejected matter expands freely into the surrounding interstellar medium (ISM). This stage of free expansion lasts until the ejected mass equals the ISM mass that is swept up. Typically, depending on the local ISM density, this phase lasts a few hundred years. Then, the SNR has a typical size of a few pc.

Prominent examples of young Galactic SNRs that are probably still in their free expansion phase are the Kepler SNR (380 yr, \approx 3 pc diameter), Cassiopeia A (320 yr, \approx 5 pc diameter, known central compact source), the Crab Nebula (900 yr, \approx 4 pc diameter, well known Crab pulsar in its centre) and the Tycho SNR (410 yr, \approx 6 pc diameter) [192].

1.3.2 Sedov-Taylor Phase

The Sedov-Taylor solution describes the expansion of a blast wave [originally published by e.g. 447, 478]. When the mass that is swept up equals the mass of the ejecta, a reverse shock starts to move inwards. This results in heating the medium and the expansion is then caused by the pressure from inside the SNR. During the adiabatic expansion the temperature T of the gas evolves with time t as

$$T = \frac{3}{100} \frac{\mu m_u}{k} \left(\frac{2E}{\rho_0}\right)^{\frac{2}{5}} t^{-\frac{6}{5}},$$
 (1.4)

with $\mu = 0.61$ being the molecular weight for a fully ionized medium with helium abundance $n_{He}/n_H = 0.1$. $m_u = 1.67 \cdot 10^{-24}$ g is the atomic mass unit, $k = 1.38 \cdot 10^{-16}$ erg/K is the Boltzmann constant and $E = 10^{51}$ erg is the typical explosion energy of a core-collapse supernova³. The radius and expansion velocity change according to

$$R = \left(\frac{2E}{\rho_0}\right)^{\frac{1}{5}} t^{\frac{2}{5}} \tag{1.5}$$

³Approximately one third of the total initial explosion energy is converted into kinetic energy while two third are converted into thermal energy.

1 Introduction

and

$$\dot{R} = \frac{2}{5} \left(\frac{2E}{\rho_0}\right)^{\frac{1}{5}} t^{-\frac{3}{5}},$$
 (1.6)

respectively. When the temperature becomes $T \approx 10^6$ K, most elements start to recombine and cooling evolves faster. In an ISM with $\rho_0 \approx 2 \cdot 10^{-24}$ g/cm³, this happens after $\approx 3 \cdot 10^4$ yr. Then, the inside pressure decreases. The cooling time can be approximated as

$$t_{cool} \approx \frac{3kT}{2n\Lambda(T)},$$
 (1.7)

with n being the particle density in the shell and the cooling function

$$\Lambda(T) = 1.33 \cdot 10^{-19} T^{-1/2} [\text{erg cm}^3 \text{s}^{-1}]$$
(1.8)

published by [257]. When the dynamical time $t_{dyn} = R/R$ is comparable to the cooling time t_{cool} ,

$$\frac{R}{\dot{R}} = \frac{5}{2}t = \frac{3kT}{2n\Lambda(T)},\tag{1.9}$$

the SNR interior (often called "bubble") has cooled down such that the pressure from the inside is negligible. The cooling time can then be expressed as

$$t = \left(\frac{3}{20}\right)^{\frac{5}{14}} \left(\frac{k}{1.33 \cdot 10^{-19} n_0}\right)^{\frac{5}{14}} \left(\frac{3\mu m_u}{100 k}\right)^{\frac{15}{28}} \left(\frac{2E}{\rho_0}\right)^{\frac{3}{14}},$$
 (1.10)

with $n = 4n_0$ (for a strong shock, see [158] for a detailed derivation). The radius and expansion velocity still evolve according to Sedov-Taylor expansion (equations 1.5, 1.6). In an ISM with $\rho_0 \approx 2 \cdot 10^{-24} \text{ g/cm}^3$, the cooling time is typically of the order of $\approx 10^4 \text{ yr}$. The Sedov-Taylor phase thus lasts for a few 10^4 yr .

1.3.3 Snowplough Phase

At the end of the Sedov-Taylor phase, the pressure from the inside is negligible and the shell evolution is only based on momentum conservation,

$$p = \frac{4}{3}\pi r^3 \rho_0 \dot{r}.$$
 (1.11)

Integration with respect to time yields

$$R = R_0 \left(1 + \frac{4v_0 \left(t - t_0 \right)}{R_0} \right)^{\frac{1}{4}}, \qquad (1.12)$$

where R_0 , v_0 and t_0 are the radius of the shell, its expansion velocity and time since the explosion at the end of the Sedov-Taylor phase, respectively. The Snowplough phase lasts until the SNR merges with the ISM.

Figure 1.6: NSs in the *P*- \dot{P} diagram with lines of constant characteristic age (dotted lines, equation 1.20) and constant magnetic field (dashed lines, equation 1.18). The data was taken from the ATNF pulsar database. The abbreviations of NS classes are: AXP – Anomalous X-ray Pulsars, SGR – Soft Gamma Repeaters, RRAT – Rotating Radio Transients, M7 – "Magnificent Seven" (see also text).

1.4 Neutron Stars

The fundamental discovery of the neutron as elementary particle was made by James Chadwick in 1932 [79]. Only two years later, Walter Baade and Fritz Zwicky predicted the existence of NSs when they searched for the origin of supernovae. Their idea was "that a super-nova represents the transition of an ordinary star into a neutron star, consisting mainly of neutrons. Such a star may possess a very small radius and an extremely high density" [14, 15]. Indeed, a NS is the remnant of a supernova that occurs as the degenerate core of a supergiant reaches the Chandrasekhar mass limit $M_{Ch} = 1.44 \,\mathrm{M}_{\odot}$ and collapses. A NS has a mass of about $1.5 \,\mathrm{M}_{\odot}$, a radius of $\approx 10 \,\mathrm{km}$ and a central density of $n_c \approx 5 \dots 10 \,\mathrm{n}_0$ $(\mathrm{n}_0 = 0.16 \,\mathrm{fm}^{-3}$ is the nuclear density) [292]. Furthermore, NSs show small rotational periods of the order of milliseconds to seconds and strong magnetic fields of $\approx 10^8 - 10^{15} \,\mathrm{G}$ due to conservation of angular momentum and magnetic field of the progenitor star.

In a simplified model, a NS can be treated as rotating dipole that continuously radiates energy and slows down. The evolution of a NS can be seen in a $P-\dot{P}$ diagram (see Fig. 1.6, Pis the period and \dot{P} its derivative). New-born NSs rotate fast and spin down quickly (upper left corner of the diagram). They evolve towards larger rotational periods and smaller period derivatives. Since the discovery of the first NS in 1967 by Jocelyn Bell and Antony Hewish [219], almost 2000 NSs were found until now. Most of them are radio pulsars that emit periodic signals in radio wavelengths. They occupy the same region in the $P-\dot{P}$ diagram with typical spin periods between 0.1 and 1 s and magnetic fields strengths of $\approx 10^{12}$ G. In the lower left corner of the diagram the population of millisecond pulsars is visible. These are old pulsars in binary systems that could accrete matter from their companion, hence gained momentum and spun up. Therefore, they are also called "recycled pulsars".

Located in the upper right corner of the diagram are a few sources with rotational periods of a few to ten seconds and strong magnetic fields. These young objects are so-called Soft Gamma Repeaters (SGRs). Similar to them are the Anomalous X-ray Pulsars (AXPs) that occupy roughly the same region in the diagram. It is believed that both groups represent different evolutionary stages of the same class of NSs [418]. Their X-ray emission is mainly powered by the decay of their strong magnetic fields which is why they are also called "magnetars" [144]. Below the magnetars, i.e. with similar spin periods but slightly lower magnetic fields, are the so-called Rotating Radio Transients (RRATS) and the "Magnificent Seven" (M7). RRATS show short radio bursts whereas the M7 [204] are radio quiet. The M7 are isolated young (up to a few Myr) nearby (≤ 0.5 kpc) NSs [204] with rotation periods between 3 and 12s [204]. Their X-ray spectra fit well a blackbody distribution, i.e. pure thermal emission. Accretion from the ISM can be excluded because of their high-velocity motion. Magnetic field strengths can be derived either from their period P and its derivative \dot{P} (equation 1.18, most M7 members have P and \dot{P} measured) or from a broad cyclotron absorption feature found in the spectra of some M7. Both methods yield $B \approx 10^{13}$ G [204]. The thermal emission of the M7 is believed to come directly from the NS's surface. Then, the temperature of the surface of the NS can be measured. In those cases, where the distance to the NS is known, i.e. its luminosity, it is in principle possible to determine the radius by means of the Stefan-Boltzmann law.

Beside the radius, the NS mass is a fundamental parameter of the EoS. Precise mass measurements can only be done in binary systems. In 1974, the first binary pulsar was reported by Russell Hulse and Joseph Hooton Taylor Jr [240]. This configuration remained rare and until today only nine binary pulsars were found [467]. Also other binary systems that contain a NS are suitable to measure their masses. Most NS masses were found close to the canonical value of $1.4 M_{\odot}$ [467].⁴

In principle, knowing NS masses M and radii R, i.e. the compactness R/M, the EoS for matter at extreme densities as it occurs in NSs, can be constrained. However, a large variety of NS EoSs exist for different compositions. Constraints can be found by analysing the NS cooling process. The cooling rate depends upon the NS mass as well as the composition and state of the NS matter [292, 419, 553]. Such theoretical cooling curves show the dependency of the surface temperature of a NS (effective temperature T_{eff}) upon the NS age (Fig. 1.7, section 1.4.1).

 $^{^4}A$ white dwarf collapses to a NS if its baryonic mass reaches the Chandrasekhar limit of $1.4\,M_\odot$. Due to the loss of potential energy, the gravitative mass of the resulting NS should be $\approx 1.2\,M_\odot$. Hence, that for most binary pulsars a value of $1.4\,M_\odot$ is found, is a surprising result and points to an accretion event after collapse.

Figure 1.7: NS cooling curves. *Top left panel*: models with pure hadronic matter for NS masses from $1.1 - 1.9 \text{ M}_{\odot}$ (from top to bottom) and a magnetic field strength of $5 \cdot 10^{12}$ G; *top right panel*: as top left panel, but these models include superfluidity of neutrons and protons [the curves in the top panels have been kindly provided by A. D. Kaminker; see also 198]; *bottom left panel*: models with deconfined quark matter for NS masses from $1.05 - 1.75 \text{ M}_{\odot}$ (from top to bottom) [model from 419]; *bottom right panel*: models for a 1.32 M_{\odot} NS and magnetic field strengths of 10^{13} , $3 \cdot 10^{13}$, 10^{14} , $3 \cdot 10^{14}$ and 10^{15} G (black, red, blue, green, orange). The solid lines represent models with pure toroidal field, whereas the dashed lines show models with toroidal and poloidal field [kindly provided by J. Pons; see also 417, 420].

1.4.1 Neutron Star Cooling

To investigate the cooling process of a NS, the thermal emission coming from its surface needs to be detected. However, only few NSs are suitable to do that. For very young NSs ($\lesssim 1000 \text{ yr}$), the spectrum is dominated by non-thermal emission from Compton scattering. For non-isolated NSs, re-heating by accretion might also occur. The spectrum of radio pulsars is dominated by Bremsstrahlung and synchrotron radiation. Therefore, suitable NSs for investigating their cooling processes are those, for which the thermal emission from the surface takes up a sufficiently high fraction of the total emission. Such objects are middle-aged (a few 10⁴ yr to a few 10⁶ yr) isolated NSs.

When a NS is born, it has a temperature of $T \approx 10^{11}$ K and is impermeable for neutrinos [553]. Already one minute after formation, the star becomes neutrino transparent. For the

next ten to hundred years, cooling is dominated by neutrino (and anti-neutrino) emission due to β decay and inverse β decay (the so-called direct Urca processes):

$$n \rightarrow p^{+} + e^{-} + \bar{\nu}_{e}, \qquad (1.13)$$

$$p^{+} + e^{-} \rightarrow n + \nu_{e}.$$

Direct Urca processes take place only if the proton fraction is high because NS matter is degenerate [293]. This condition is satisfied in the inner core of a NS [553]. Other neutrino emission processes proceed until a maximum NS age of $\approx 10^5$ yr. Then, the NS is isothermal with a temperature of up to few 10^6 K and photon cooling dominates.

There are slow and fast neutrino emission processes. Fast cooling is dominated by direct Urca processes. The majority of NSs cools slowly by the so-called modified Urca processes,

$$\begin{array}{rrrr} n+N & \rightarrow & p^++N+e^-+\bar{\nu}_e, \\ p^++N+e^- & \rightarrow & n+N+\nu_e, \end{array}$$
(1.14)

and Bremsstrahlung,

$$N + N \to N + N + \nu_e + \bar{\nu}_e, \tag{1.15}$$

where N is a nucleon. These processes take place in massive as well as less massive NSs. The modified Urca process differs from the normal Urca in that additional nucleons participate to ensure energy and momentum conservation.

After $\approx 10^5$ yr, the final cooling state that is dominated by photon emission, sets in. It occurs until the NS reaches the temperature of its surroundings.

Cooling might be accelerated by other mechanisms such as neutron superfluidity and proton superconductivity (see also Fig. 1.7).

1.4.2 Ages and Magnetic Fields

To estimate the magnetic field strength and age of a NS, a simplified model can be used where the NS is a magnetic dipole, losing energy due to its rotation with period P [396]. The loss of rotational energy is given by

$$\dot{E} = I\omega\dot{\omega} = 4\pi^2 I\dot{P}/P^3,\tag{1.16}$$

where I is the moment of inertia and ω the angular velocity. Typically, I is of the order of $10^{45} \text{ g} \cdot \text{cm}^{2.5}$ The energy loss of a rotating magnetic dipole with the magnetic field strength B is

$$\dot{E}_{dipole} = \frac{16\pi^4 \cdot B^2 R^6 \sin^2 \theta}{6c^3 P^4}.$$
(1.17)

⁵With $M \approx 1.5 \,\mathrm{M_{\odot}}$, $R \approx 10 \,\mathrm{km}$ and $\rho = \mathrm{const.}$, $I = \frac{2}{5} M R^2 \approx 10^{45} \,\mathrm{g\cdot cm^2}$.

Here, θ is the angle between the rotational axis and magnetic axis, c is the speed of light. For $\theta = 90^{\circ}$ and $\dot{E}_{rot} = \dot{E}_{dipole}$, a typical NS mass of 1.5 M_{\odot} and radius of 10 km,

$$B \approx 3.2 \cdot 10^{19} \left(P \dot{P} \right)^{1/2} \text{G.}$$
 (1.18)

The so-called characteristic age or spin-down age of a NS can be derived from the general expression

$$\dot{\omega} = -k\omega^n,\tag{1.19}$$

where k is a constant and n is the braking index. For pure dipole emission, n = 3. Integrating equation 1.19 and also assuming that the spin frequency at birth is much larger than the present one, the characteristic age is

$$\tau_{char} = \frac{P}{2\dot{P}}.$$
(1.20)

Due to the assumptions made, τ_{char} represents only a rough estimate of the true age [49, 174, 367]. Also, the characteristic age is significantly influenced by pulsar winds [550] and possibly by the emission of gravitational waves [537]. The kinematic age of a NS gives a better estimate of its true age [e.g. Tetzlaff et al. 484, 487].

1.4.3 Velocity Distribution of Neutron Stars

NSs have very large proper motions which, with known distances, indicate high space velocities [9, 101, 210, 221, 308, 318]. Some NSs even show velocities of the order of \approx 1000 km/s (e.g. PSR B1508+55 [85]; PSR B2223+65 [211, 479]; RX J0822-4300 [237, 542]). Those high velocities are usually larger than those of the progenitor stars and may be the result of an asymmetric supernova explosion assigning the new-born NS a kick velocity for that a number of mechanisms have been suggested [67, 247, 248, 274, 529]. Another possibility is that the high-velocity NSs are the remnants of (symmetric⁶) supernova explosions of so-called hyper-velocity runaway stars [199, 200, 202] which were ejected due to dynamical three- or four-body encounters either from the Galactic centre [220] or from massive star clusters in the Galactic disk.

In the following, the velocity distribution for NSs is introduced shortly. For a detailed analysis of the velocities of runaway stars, see section 2.3.

In the literature, two profiles for the velocity distribution of NSs are proposed, a onecomponent Maxwellian distribution and a distribution with two Maxwellian components. A two-component model means that there are two populations of NSs – those for which the

⁶Although numerous three-dimensional (3D) simulations showed that supernovae are most likely asymmetric [50, 137, 209, 246, 441, 546].

1 Introduction

Figure 1.8: Distribution of spatial velocities for NSs. The solid line and dashed lines show the one-component model by [221] and the two-component model by [9], respectively.

high velocity is dominated by the kick velocity and those for which the fraction that stems from the orbital motion in the former binary system cannot be neglected. For example, the distribution derived by [9] consists of two additive Maxwellians

$$f(v) = 4\pi v^2 \left\{ \left[w_1 \frac{1}{\left(2\pi\sigma_{v_1}^2\right)^{3/2}} \exp\left(-\frac{v^2}{2\sigma_{v_1}^2}\right) \right] + \left[(1-w_1) \frac{1}{\left(2\pi\sigma_{v_2}^2\right)^{3/2}} \exp\left(-\frac{v^2}{2\sigma_{v_2}^2}\right) \right] \right\}.$$
 (1.21)

with

$$\sigma_{v_1} = 90 \text{ km/s}, \ \sigma_{v_2} = 500 \text{ km/s}, \ w_1 = 0.4$$
 . (1.22)

However, [221] investigated a huge sample of pulsars and found that a one-component model better fits the observed velocities. They found that the spatial velocities⁷ of NSs are represented by the following Maxwellian distribution:

$$f(v) = av^2 \exp\left(-bv^2\right), \qquad (1.23)$$

with constants *a* und *b* derived from normalisation,

$$a = 4\sqrt{\frac{b^3}{\pi}}, \ b = \frac{1}{v_{max}^2}, \ \text{where}$$

$$v_{max} = \frac{\bar{v}}{2}\sqrt{\pi}, \ \bar{v} = 400 \text{ km/s}.$$
(1.24)

Both models are shown in Fig. 1.8. One-component models are currently preferred whereas a two-component model is statistically not significant [221].

⁷Spatial velocities are usually derived assuming that the velocities are isotropic.

2 Sample Selection

2.1 The Sample of Associations and Clusters

2.1.1 Preparation of the Sample

NSs are the remnants of massive stars (masses $\gtrsim 8 \,M_{\odot}$ [e.g. 214]) that ended their lives in supernovae. As the lifetimes of massive stars are of the order of Myr and shorter than the dispersion time of a massive star cluster, it is reasonable to assume that NSs form in associations and clusters of massive stars. In fact, only $20 - 30 \,\%$ of massive stars are located outside any cluster, i.e. $\gtrsim 70 \,\%$ remain within their parent cluster [e.g. 329, 349]. Potential birth associations and clusters of young NSs (kinematic ages up to $\approx 5 \,\text{Myr}$ that are investigated in this work, see section 2.2) are young (Myr to tens of Myr, to account for different phases of star formation $\approx 100 \,\text{Myr}$) and have either still member stars that are NS progenitors (i.e. possible already exploded members must have been even more massive) or show a present mass function that indicates the presence of massive stars in the past.

The following criteria have been applied to select potential parent associations and clusters:

- OB associations and clusters with kinematic data available in the literature⁸:
 - Contained in the lists of [48, 110, 230]⁹
 - Associated with stars from the Galactic O-star catalogue [329]
 - Young clusters (up to 100 Myr) from [64]
 - Clusters associated with a spectral type earlier than B3 in the WEBDA database¹⁰
 [363]
- Young local associations (YLA) that were suggested to have hosted a few supernovae in the recent past [160]
- Massive star forming regions [431, 545] and young nearby loose associations [498]
- Hercules-Lyrae association [149, 173, 306]

⁸The distances of the associations and clusters collected in this study range up to \approx 6 kpc from the Sun while most of them lie within \approx 4 kpc. This is mainly due to observational limits.

⁹Note that distances given by [48] are overestimated by $\approx 20\%$ [110] and have been reduced accordingly if they were taken from this publication.

¹⁰http://www.univie.ac.at/webda/webda.html

Figure 2.1: The sample of associations and clusters (Table A.1) in Galactic coordinates. To denote their extensions, spherical shapes were assumed.

• Pleiades B1 moving group [12] that was suggested to have hosted supernovae that re-heated the Local Bubble¹¹ [31].

This sample of potential birth sites contains 289 young associations and clusters. They are listed in Table A.1 along with their Galactic coordinates (I, b), distances d, heliocentric space velocities (U, V, W), diameters \emptyset (assuming spherical shape) and ages. Their location on the sky is shown in Fig. 2.1.

There are another 174 young associations/clusters with unknown or incomplete kinematic information available, hence they were not considered when searching for NS parent associations but kept for the future. They are listed separately in Table A.2.

2.1.2 Present Mass Functions of Young Local Associations

The SACY survey ("Search for Associations Containing Young stars") [497] aimed to identify young nearby associations from kinematical properties of young stars. Nine associations were found [498]. [160] investigated the kinematic evolution of eight young associations in the Solar neighbourhood. Five of them were also identified during the SACY survey. They proposed that a few supernovae within these YLA were responsible for re-heating the Local Bubble. However, the present stellar content of all those 12 young nearby associations may nurse doubts on that scenario since no O type stars and only few B type stars are present. To evaluate the possibility that recent supernovae could have occurred inside these associations, i.e. that they are potential NS parent associations, the present mass functions are

 $^{^{11}}$ The Local Bubble is a region with a low ISM density. Its formation is explained by up to 20 supernovae which occurred during the past \approx 20 Myr [31, 328]. The Sun is currently situated inside the Local Bubble.

compared with the initial mass function (IMF) as given by [284],

$$\xi(m) = k \begin{cases} \left(\frac{m}{m_{H}}\right)^{-\alpha_{0}} & , \ m_{min} \leq m < m_{H}, \\ \left(\frac{m}{m_{H}}\right)^{-\alpha_{1}} & , \ m_{H} \leq m < m_{0}, \\ \left(\frac{m_{0}}{m_{H}}\right)^{-\alpha_{1}} \left(\frac{m}{m_{0}}\right)^{-\alpha_{2}} & , \ m_{0} \leq m < m_{1}, \\ \left(\frac{m_{0}}{m_{H}}\right)^{-\alpha_{1}} \left(\frac{m_{1}}{m_{0}}\right)^{-\alpha_{2}} \left(\frac{m}{m_{1}}\right)^{-\alpha_{3}} & , \ m \geq m_{1}, \end{cases}$$
(2.1)

with $m_{min} = 0.01 \,\mathrm{M}_{\odot}$, $m_H = 0.08 \,\mathrm{M}_{\odot}$, $m_0 = 0.50 \,\mathrm{M}_{\odot}$, $m_1 = 1.00 \,\mathrm{M}_{\odot}$ and exponents $\alpha_0 = 0.3 \pm 0.7$, $\alpha_1 = 1.3 \pm 0.5$, $\alpha_2 = 2.3 \pm 0.3$ and $\alpha_3 = 2.7 \pm 0.7$ (Fig. 2.2). Masses were estimated from the stellar positions in the Hertzsprung-Russel diagram (HR diagram) using pre-main sequence evolutionary models¹² [21, 32, 112, 113, 326, 345, 397, 453] for members listed in [102, 159, 160, 187, 194, 197, 295, 306, 313, 332, 335, 336, 375, 413, 430, 463, 464, 469, 482, 497, 498, 532, 560, 562, 567] (for a detailed description on how stellar masses were obtained, see section 2.3.1). The multiplicity of the known multiple stars was taken into account. For stars with unknown distance, the distance of the respective association was adopted to calculate the luminosity. Masses from [444] were adopted for stars without sufficient photometric data.

The HD 141569 group was proposed by [535]. It contains only three stellar systems. The B9.5V star HD 141569 is accompanied by two M type companions. Two early A type stars share the kinematic properties of this triple system. If it is a real group, new members are needed to derive a mass function. Since late B and early A type stars are present, it seems possible that a supernova progenitor that already exploded belonged to this group.

The YLA were included in the sample of potential NS parent associations as there is a possibility that supernova progenitors were formed. For β Pic-Cap this is clearly the case since two early B type stars are still present in this association. Within 1.5σ , up to one supernova progenitor is expected to have formed for all YLA. In Table 2.1 the total initial stellar masses

Table 2.1: Initial stellar mass for the YLA.

Name	$M_{\it init}~[{ m M}_{\odot}]$		
TWA	25		
Tuc-Hor	440		
eta Pic-Cap	80		
ϵ Cha	65		
η Cha	65		
Ext. R CrA	155		
AB Dor	65		
Columba	65		
Carina	30		
Octans	30		
Argus	75		

of the YLA are given as derived from comparing their present mass functions with the IMF taking into account that the high mass population (masses $\geq 2 M_{\odot}$) consists only 25% of the total stellar mass [425]. The initial masses M_{init} of the YLA are much lower than for normal (OB) associations (M_{init} of a few 1000 to 10,000 M $_{\odot}$, see [44]).

 $^{^{12}}$ For a few B type stars in β Pic-Cap, post-main sequence models from [33, 34, 88, 345, 410, 440] were used.

Figure 2.2: Present mass functions of YLA (black circles) in comparison with the IMF ξ (solid line) as given by [284], their equation 2 (equation 2.1 in this work). Dashed and dotted lines represent the 1σ and 1.5σ IMF boundaries, respectively. Within 1.5σ up to one star with $8-10 M_{\odot}$ is expected for all associations. Except Tuc-Hor, the probability for higher mass stars is low. The error bars of the star counts per bin represent the Poissonian errors and mass bin sizes, respectively.

Figure 2.2: - Continued -

2.2 The Sample of Neutron Stars

Among the 2008 radio pulsars incorporated in the ATNF pulsar database (status September 30^{th} 2012), there are 203 pulsars for which proper motion and distance measurements are available. For 195 of them, also the spin-down age is given. In this work, the origin of young NSs is investigated and their past flight paths are traced back for at most 5 Myr limited by the large uncertainties of the trajectories. For NSs the radial velocity is unknown, thus must be treated with a probability distribution [487], see section 1.4.3. For that reason the error cone of the spatial motion is large and the position of a NS can be determined reliably only for a few million years, optimistically \approx 5 Myr. As the spin-down age only gives a rough estimate of the order of magnitude of the true age, NSs with spin-down ages up to 50 Myr are selected for investigation allowing for an uncertainty on the age of one order of magnitude.

The distance d_{NS} of a NS to the Sun was either taken as the parallactic distance if available or as the distance given in the ATNF pulsar database (from dispersion measures or the distance to an associated object, e.g. a SNR). If no parallax is available, the distance was adopted as the mean of all given distance values for the particular NS with the standard deviation being its error.¹³ The distance of the selected NSs was restricted to 3 kpc (within its uncertainties, $d_{NS} - \Delta d_{NS} \leq 3$ kpc) due to the completeness limit of the sample of parent associations and clusters (section 2.1, footnote 8) that includes young associations and clusters up to ≈ 5 kpc.¹⁴

Applying all selection criteria, 103 pulsars were selected for investigation from the ATNF pulsar database.¹⁵ Two further, RX J1605.3+3249 and RX J1308.8+2127 (= RBS 1223) that are members of the "Magnificent Seven", and therefore important thermal isolated NSs (section 1.4), were added. The complete sample of 105 NSs that was analysed in this work, is listed in Table B.1.

For most of the 105 NSs, distances are rather uncertain. This results in a large number of possible parent associations and clusters among which it is hard to find the true host of the supernova at the current status. The situation is even worse when searching for a possible former companion as the number of candidates will be high (tens to hundreds of candidates). For those reasons, a subsample of 20 NSs with best distances (see below, Table B.2) are analysed in great detail, i.e. all possible parent associations and clusters are discussed and the most probable candidate(s) is (are) concluded (chapter 4). Furthermore, it is searched for former companion candidates among the sample of runaway stars.

For the remaining NSs, i.e. those with insufficient accuracy, a list of possible parent as-

¹³If only one value differed significantly from the other values, it was neglected.

¹⁴Assuming a maximum NS distance of 3 kpc, a maximum kinematic age of 5 Myr and a typical space velocity of 100 - 500 km/s [9, 221], the parent association or cluster should be at a distance no farther than $\approx 5 \text{ kpc}$.

¹⁵Although the Crab Pulsar (PSR J0534+2200) also satisfies the selection criteria, it was not included here since it is only 900 yr old [192]. Hence, it has not moved far from its birth place which is the Crab Nebula. If it had a former companion, also this star did not travel far from the place of the supernova.

sociations and clusters is accomplished in appendix F. For them, further observations will improve the degeneracy and enable the search for possible former companions.

The subsample of 20 NSs with best parameters incorporates 12 NSs with parallaxes and proper motions that have an accuracy better than 10%. Among them is RX J1856.5–3754, a member of the "Magnificent Seven". Another seven NSs with maximum distances of 500 pc from the Sun, i.e. $d_{NS} - \Delta d_{NS} \leq 500$ pc, are included into the subsample. Four of the latter have parallaxes or distances with an accuracy of $\approx 20\%$ or better, two further, RX J0720.4–3125 and RX J1605.3+3249, belong to the "Magnificent Seven" and one, Geminga, belongs to the "Three Musketeers" (see section 4.2). The sample also includes another member of the "Three Musketeers", PSR J0659+1414. The Guitar Pulsar is added to the sample because its radial velocity is restricted due to its well seen bow shock. The names of the 20 NSs belonging to the subsample and hence investigated in great detail, are given in Table B.2. Although the "Magnificent Seven", Geminga and the Guitar Pulsar have been investigated in the precedent diploma thesis [483], all of them except RX J1308.8+2127 (see below) were analysed in detail in this work again due to new distance measurements and/or the additional search for former companion candidates.

[526] recently reported a parallactic distance of RX J1856.5–3754 of 123^{+15}_{-11} pc confirming earlier measurements by [527]. This distance is significantly smaller than 160 – 180 pc claimed by [260, 264, 515] and used in the diploma thesis [483] (see also Tetzlaff et al. 2010 [487]) to evaluate the birth place of RX J1856.5–3754. Hence, it is worthwhile to re-investigate the origin of RX J1856.5–3754. For RX J0720.4–3125, a new parallax measurement was done by [150], yielding a distance of 280^{+210}_{-85} pc. Compared to the old value of 360^{+170}_{-90} pc [264], this new distance is in much better agreement with estimations derived from the spectrum and hydrogen column density n_H yielding 250 ± 25 pc [421] although it is consistent within the error bars with the older value. [421] used different models for n_H and derived distances for RX J1605.3+3249 of 390 pc and 325 pc. [377] give an upper limit of 410 pc. According to [421], the different models give consistent, hence very reliable results up to ≈ 300 pc (7their values are also in good agreement with the parallactic distances for RX J1856.5–3754 and RX J0720.4–3125). Hence, in this work a distance for RX J1605.3+3249 of 350 \pm 50 pc was adopted (differing from the value of 200^{+300}_{-75} pc adopted in the diploma thesis taking into account the upper limit by [377]).

The first search for possible parent associations for RX J1308.8+2127 (the fourth member of the "Magnificent Seven" with proper motion and distance measurement/estimate) was already published in Tetzlaff et al. 2010 [487]. An improvement of the previous results is not expected at this stage. Its uncertain distance ($\approx 100 - 700 \text{ pc}$ [261, 263, 446], hence $\approx 400 \pm 300 \text{ pc}$) does not allow a proper search for former companion candidates. Preliminary results can be found in appendix F. The data (especially the distance) of the third member of the "Three Musketeers", PSR J1057-5226, are also too uncertain to allow a proper analysis. Preliminary results for this star can also be found in appendix F.

2.3 A Catalogue of Young Runaway Hipparcos Stars Within Three Kiloparsec From the Sun

The first version of the catalogue of young runaway Hipparcos stars has been published in *Monthly Notices of the Royal Astronomical Society*, Volume 410 (Tetzlaff et al. 2011 [486]). Here, the sample of young stars among that is searched for runaway stars is updated using improved stellar ages.

Fifty years ago, [43] recognized that many O and B type stars show large peculiar space velocities exceeding $\approx 40 \text{ km/s}$. For that reason, they were named "runaway" stars. Since then, many studies concerning O and B type runaway stars have been published and different selection methods were applied [e.g. 105, 185, 371, 472, 524].

There are two accepted theories on the formation of runaway stars:

 The binary supernova scenario (BSS) [43] is related to the formation of the high velocity NSs¹⁶: The runaway and the NS are the products of a supernova within a binary system. The velocity of the former secondary (the runaway star) may be as large as its original orbital velocity [477].

Runaway stars produced in this scenario should share typical properties such as a high rotational velocity $v \sin i$ and an enhanced helium abundance owing to momentum and mass transfer during binary evolution [47] as well as enhanced abundances of α elements (e.g. Ne, Mg, Si, S, Ar, Ca, Ti) as supernova debris. They might have been rejuvenated and might be blue stragglers compared to their parent association. The kinematic age of a BSS runaway star is smaller than the age of its parent association.

 In the dynamical ejection scenario (DES) [424] stars are ejected from young, dense clusters via gravitational interactions between the cluster members. The (kinematic) age of a DES runaway star should be comparable to the age of its parent association since gravitational interactions are most efficient soon after formation.

Which scenario is dominating is still under debate; however, both are certainly taking place (one example for each identified by [230]: BSS – PSR B1929+10 and the runaway star ζ Oph; DES – the three stars AE Aur, μ Col and ι Ori, two of them are known runaway stars).

The selection criteria for runaway stars of previous studies were either based on spatial velocities [e.g. 43], tangential velocities [e.g. 371] or radial velocities [e.g. 105] alone. The velocity distribution of early type stars can be explained with the existence of two different velocity groups of stars: a low velocity group containing normal Population I stars and

¹⁶Note that high-velocity NSs may also be the result of a supernova of a massive runaway star [199, 200, 202].

a high velocity group containing runaway stars [471]. Since the spatial velocities of both groups obey a Maxwellian distribution, also runaway stars, e.g. members of the high velocity group, with relatively low velocities exist.

In this work, previous methods are combined. Exceptionally high velocities in all dimensions are investigated in order not to miss an important star because its radial velocity may be unknown (hence no spatial velocity) or its tangential or radial velocity component may be significantly larger than the other component (hence it would be missed in one direction). Moreover, also lower velocity runaway stars are identified by searching for stars with deviant orientation of their velocity vector compared to stars in their neighbourhood. Furthermore, the term "runaway" star will be used not only for O and B type runaway stars but extended to all young (up to \approx 50 Myr) runaway stars of all spectral types to account for the possibility of less massive companions of massive stars and low-mass stars in young dense clusters which also may be ejected due to gravitational interactions.

2.3.1 Selection of Young Hipparcos Stars

As a starting point, a list of all 118218 stars from the Hipparcos catalogue [408] was compiled. Spectral types, V magnitudes and B - V colours were obtained from the Hipparcos catalogue. According to the errata file provided with the Hipparcos catalogue [151]¹⁷, errorneous spectral types were corrected. Parallaxes (π) and proper motions ($\mu_{\alpha}^* = \mu_{\alpha} \cos \delta$, μ_{δ}) were taken from the new Hipparcos reduction [518]. The star sample was restricted to distances from the Sun not farther than 3 kpc ($\pi - \sigma_{\pi} \ge 1/3$ mas with σ_{π} being the 1 σ error on π) to include only stars with plausible parallaxes (median parallax error ≈ 15 %). Furthermore, stars in the regions of the Large and Small Magellanic Clouds were removed since they could accidently have $\pi - \sigma_{\pi} \ge 1/3$ mas [cf. 228]. This yields an initial set of 103217 stars.

In the cases where the Hipparcos catalogue does not provide sufficient spectral types, spectral types were taken either from the Simbad database or catalogues available via the VizieR database [1, 53, 69, 180, 196, 271, 272, 456, 549]. Missing B - V colours were amended from different sources [Simbad, 53, 148, 270, 272, 549, 557].

With parallaxes, spectral types as well as V magnitudes and B - V colours, stellar luminosities (L) and their uncertainties (ΔL) were calculated and effective temperatures (T_{eff}) were derived from spectral types according to [444] and [267]. The extinction A_V was determined from the apparent B - V colour and the spectral type. For some stars with unknown luminosity class, luminosity class V was assumed. For the effective temperature T_{eff} , differences between different luminosity classes are modest and the error of the luminosity L is mainly caused by the error on the parallax. The initial sample contains 1721 stars also included in the list of [228] who used additional colours to determine L. Thus, for those stars, the luminosities listed in [228] were used.

¹⁷http://cdsarc.u-strasbg.fr/viz-bin/getCatFile_Redirect/?-plus=-%2b&l/239/errata.htx

To complete the kinematic data, radial velocities were collected from Simbad or VizieR catalogues [23, 53, 153, 188, 196, 265, 270, 272, 333, 429, 568].

Since the focus of this work lies on young stars, stellar ages need to be obtained. For that reason, pre-main sequence stars were searched for among the sample stars. A total of 236 pre-main sequence stars could be identified either in catalogues [35, 86, 143, 218, 267, 278, 388, 389, 481, 489, 512, 513, 540] or showing strong lithium absorption (see [385] for the lithium criterion; for individual stars see also [106, 123, 157, 175, 176, 249, 280, 294, 366, 374, 386, 387, 459, 462, 473, 476, 481, 496, 532, 538, 566, 567]).¹⁸

Afterwards, evolutionary models (assuming Solar metallicity) were utilised to estimate stellar ages τ_{\star}^{19} and masses m_{\star} ([33, 34, 88, 345, 410, 440]²⁰; and for pre-main sequence stars: [21, 32, 112, 113, 326, 345, 397, 453]) for 101628 stars of the sample with known spectral type and magnitudes, i.e. known *L* and T_{eff} , taking into account the error on the luminosity.²¹

A star was defined to be "young" if its age is ≤ 50 Myr. This limit is set for the following reason considering BSS runaways. It is desirable to identify the (now isolated) NS which was formed in the supernova that released the runaway star. In this work, NSs are traced back for at most 5 Myr (section 2.2). This is the maximum runaway time (the kinematic age) of the runaway star (as well as the NS) such that the NS could be identified. The latest spectral type on the main-sequence for stars to explode in a supernova and eventually become a NS is B3. These stars live about 35 Myr before they end their lives in supernovae. A lifetime uncertainty of 10 Myr is realistic, hence the maximum stellar age (not the kinematic age) of a BSS runaway for which the associated NS should still be identifiable is ≈ 50 Myr. Despite that, a larger age would mean a longer timespan to trace back the star to identify its origin (if it is a DES runaway). This would cause large error bars on the past position of the runaway star that would make it less reliable to find the origin.

¹⁸For late-type stars low-resolution spectroscopy was proposed for CAFOS/Calar Alto (Tetzlaff, Neuhäuser, Errmann et al.) and NTT EFOSC2/ESO (Tetzlaff, Neuhäuser, Errmann et al.; Tetzlaff, Dincel, Neuhäuser, Errmann) in order to detect Lithium. One half night was approved at Calar Alto for March 30th 2012. 84 stars were observed. In 29 spectra, Lithium absorption was found; in six of these stars, it is significant (R. Errmann, priv. comm.).

¹⁹The pre-main sequence duration for main sequence and post-main sequence stars was neglegted, i.e. their ages are zero on the zero-age main sequence (ZAMS). For the majority of young main sequence and post-main sequence stars the pre-main sequence phase is anyway negligible.

²⁰See also http://albione.oa-teramo.inaf.it/ for [410] and http://www.astro.up.pt/corot/models/cesam for [345].

²¹From the positions of the stars in the HR diagram ages and masses for the range $(T_{eff}, L \pm \Delta L)$ are determined for each model. The median masses and ages for any model are obtained. The finally assigned masses m_{\star} and ages τ_{\star} are taken as the medians from all models. For each model, the errors on the masses and ages are given as the median absolute deviations (MADs) multiplied by $1.858/\sqrt{n-1}$ [381], where n = 100 is the number of variations within $(T_{eff}, L \pm \Delta L)$. The total errors $\sigma_{m,\star}$ and $\sigma_{\tau,\star}$ are then taken as $1.858/\sqrt{n-1} \cdot MAD$ (with \hat{n} being the number of models) of the models plus the median of the model errors. If a star falls below the ZAMS of a model (due to its parallax error), it was shifted towards the ZAMS according to its ΔL . Stars for which at least two models yield ages exceeding 1 Gyr are considered old stars.

However, stellar ages often suffer from large uncertainties due to large errors in distances and strong uncertainties in evolutionary models. That is why the following criteria on the stellar age τ_{\star} for a star to be young were chosen:

$$\tau_{\star} + \sigma_{\tau,\star} \leq 100 \,\mathrm{Myr}$$
 and $\tau_{\star} - \sigma_{\tau,\star} \leq 50 \,\mathrm{Myr}.$ (2.2)

With this criterion an error of τ_* that is of the order of τ_* itself is allowed but also stars with accurately known ages above the limit of 50 Myr are excluded. Unfortunately, ages of supergiants are rather uncertain and many of them would be missed when applying the criterion although they can be supernova progenitors, i.e. massive, hence young stars. For that reason, all stars of luminosity classes I and II as well as stars of luminosity class III earlier than A0 were added because they could certainly be supernova progenitors, hence younger than 50 Myr. Moreover, the classical definition of runaway stars by [43] includes stars up to B5 of luminosity classes IV and V. These were added as well. Finally, the sample contains 6300 potentially young stars. Their Hipparcos numbers and common names as well as ages, masses and spectral types are listed in Table C.1. Since 2466 stars in the table entered the list owing to their spectral type and luminosity class, their spectral types and luminosity classes as given in the literature are listed only.

The so-called Local Standard of Rest (LSR) is defined as the Solar motion with respect to a specific star sample. It depends upon the age of the stars in the sample [e.g. 370]. The peculiar velocity of a star is its measured (heliocentric) velocity corrected for Solar motion and Galactic rotation. To be able to obtain the peculiar motion of the stars in the young star sample, the kinematic centre of the sample stars was derived by calculating the spatial velocity components of the 3824 stars with complete kinematic data (in a right-handed coordinate system with the x axis pointing towards the Galactic centre and y is positive in the direction of Galactic rotation) corrected for Galactic differential rotation using Keplerian orbits:

$$\begin{aligned}
\hat{U} &= U - U_{rot}, \\
\hat{V} &= V - V_{rot} + V_{\odot, rot}, \\
\hat{W} &= W,
\end{aligned}$$
(2.3)

where U, V and W are the heliocentric velocity components (in the x, y and z direction, respectively) and U_{rot} and V_{rot} the components of the rotational velocity of the star moving around the Galactic centre. $V_{\odot,rot} = 225 \text{ km/s}$ is the rotational velocity of the Sun around the Galactic centre. To avoid significant contamination of high velocity stars, stars with $\hat{v} > 50 \text{ km/s}$ (that is approximately two times the median of $\hat{v} = \sqrt{\hat{U}^2 + \hat{V}^2 + \hat{W}^2}$) were excluded. Then, a Gaussian was fitted to the histogram of each velocity component to

obtain the kinematic centre that was found to be

$$(U_{\odot}, V_{\odot}, W_{\odot}) = (10.5 \pm 0.5, 11.8 \pm 0.4, 6.2 \pm 0.2) \text{ km/s.}$$
 (2.4)

The agreement of the derived LSR with the classical value of (9,11,6) km/s [128] is remarkable. In comparison with the widely used value published by [127] (recently updated by [13], $(9.96 \pm 0.33, 5.25 \pm 0.54, 7.07 \pm 0.34) \text{ km/s}$), the V component differs significantly; however, [127] and [13] obtained their results by examining the correlation between the LSR and colour B - V, hence the stellar age. They corrected the V velocity for asymmetric drift [e.g. 41], i.e. extrapolated the V curve to zero velocity dispersion ignoring stars with $B - V \leq 0$ because they are probably not yet mixed. Such stars are overabundant in the sample of young stars investigated in this thesis. From Figure 3 in [127] one may easily see that the result of this thesis agrees also well with their findings. A detailed discussion and comparison between different methods may be found in [167]. The result of $(7.5 \pm 1.0, 13.5 \pm 0.3, 6.8 \pm 0.1) \text{ km/s}$ given by [167] is in reasonable agreement with the values derived here.

In the following, equation 2.4 will be used to correct velocities for Solar motion.

2.3.2 Young Runaway Stars

2.3.2.1 Runaway Stars Identified from Their Peculiar Space Velocity

Runaway stars were first described by [43] as stars that are responsible for the longer tail in the stellar velocity distribution such that it is not sufficiently describable with one Maxwellian distribution. Consequently, [471] defined runaway stars as the members of the so-called high velocity group. These are stars with large peculiar velocities that can be represented by an additional Maxwellian. The other Maxwellian distribution incorporates stars with lower velocities, hence the low velocity group (normal Population I stars). It was pointed out by [471] that by applying a velocity cutoff to identify runaway stars, a certain fraction of members of the high velocities exist. However, this issue can only be handled when determining stellar space frequencies [see 472] and a velocity cutoff is still inevitable for the identification of runaway star candidates. To obtain a reasonable cutoff, the distribution of peculiar space velocities v_{pec} of the sample stars (3824 with full 3D kinematics) was fitted with two Maxwellians (Fig. 2.3),

$$f(\mathbf{v}) = 4\pi N \mathbf{v}^{2} \left[(1 - f_{H}) \frac{1}{(2\pi\sigma_{L}^{2})^{\frac{3}{2}}} e^{-\frac{\mathbf{v}^{2}}{2\sigma_{L}^{2}}} + f_{H} \frac{1}{(2\pi\sigma_{H}^{2})^{\frac{3}{2}}} e^{-\frac{\mathbf{v}^{2}}{2\sigma_{H}^{2}}} \right], \qquad (2.5)$$

where v is the 3D spatial velocity, N is a normalisation factor, σ_L and σ_H are the average velocity dispersions of the low and high velocity groups, respectively, and f_H is the relative frequency of the high velocity group. The velocity errors were evaluated with a Monte Carlo

Figure 2.3: Distribution of the peculiar 3D space velocity v_{pec} . The dashed curve shows the distribution for the low velocity group whereas the dashed-dotted curve is for the high velocity group. The two curves intersect at $v_{pec} = 25 \text{ km/s}$. The total distribution as the sum of the two is represented by the full line.

simulation varying π , μ_{lpha}^* , μ_{δ} and v_r within their confidence intervals. It was found that

$$\sigma_L = 8.8 \pm 0.3 \,\text{km/s},$$

 $\sigma_H = 21.2 \pm 1.3 \,\text{km/s},$ (2.6)
 $f_H = 31.7 \pm 4.3 \,\%,$

The derived dispersions are in agreement with those found by [471] (with σ_H being slightly smaller) whereas f_H is smaller; however published values for f_H vary from 34 ± 14 % ([43], corrected – see [472]) to 55 ± 12 % [471]. Furthermore, the stellar sample of [471] contains a much smaller number of stars than the one used in this work.²² In addition, to make sure that the low mass stars among the sample stars do not distort the results, it was checked whether the outcome differs from a subsample comprising only O and B type stars as well as Wolf-Rayet stars (2370 stars with full 3D kinematics). It was found that

$$\sigma_L = 8.3 \pm 0.5 \text{ km/s},$$

$$\sigma_H = 18.1 \pm 2.0 \text{ km/s},$$

$$f_H = 27.2 \pm 7.2 \%.$$
(2.7)

Both results, including young high and low mass stars (equation 2.7) and including only high mass stars (equation 2.8), are consistent. A trend towards lower velocity dispersion may be seen for O and B stars, hence lower ejection velocities (maximum velocity of high velocity group $v_{max,H} = 26 \pm 3 \text{ km/s}$) than for the sample including all, low and high mass, stars ($v_{max,H} = 30 \pm 2 \text{ km/s}$). It might be expected that low mass stars are ejected with larger velocities from their parent association or cluster than high mass stars. However, it

²²Compared to the published first version of the catalogue (Tetzlaff et al. 2011 [486]), the errors are larger and more realistic here due to an updated fitting method which includes not only the fitting error itself but also the binning uncertainty of the velocity histogram.

is not significant. The intersection points of the Maxwellians of both groups, the low and high velocity group, lie at ≈ 25 km/s in both cases. As this value will serve as definition limit of runaway stars, no differences between low and high mass stars will be made. Following [471], a star is a probable member of the high velocity group if

$$v_{pec} > 25 \,\mathrm{km/s} = v_{crit, v_{pec}}. \tag{2.8}$$

Thereafter, this defines the velocity cutoff for runaway stars. In theory, with this definition, 70% of the high velocity group members can be identified while the contamination of low velocity group members is 10%.

A Monte Carlo simulation with varying observables π , μ_{α}^* , μ_{δ} and v_r within their uncertainty intervals was performed to evaluate the probability of a star being a runaway star. 983 stars for which the probability is higher than 50% were assigned to the high velocity group (the probabilities are given in Table C.2).

2.3.2.2 Runaway Stars Identified from *U*, *V*, *W*, Their Radial and Tangential Velocities or Proper Motions

In addition to the peculiar 3D space velocities v_{pec} , their 1D components U, V and W were investigated separately to identify potentially slower high velocity group members which may show an exceptionally high velocity in only one or two directions. For the same reason, the peculiar radial velocities $v_{r,pec}$ were considered as well.

40% of the stars in the sample do not have radial velocity measurements available. Among these cases, the only way to identify runaway candidates is to use their (absolute) peculiar 2D tangential velocities $v_{t,pec}$ or its 1D components which are the peculiar proper motion in Galactic longitude $\mu_{I,pec}$ and Galactic latitude $\mu_{b,pec}$. To make the velocities comparable, proper motions were transfered into 1D velocities $v_{I,pec} = 4.74 \frac{\mu_{I,pec}}{\pi}$ and $v_{b,pec} = 4.74 \frac{\mu_{b,pec}}{\pi}$, where the factor 4.74 corresponds to 1 au per one tropical year.

All velocity distributions contain the two velocity groups of stars and can be fitted with bimodal functions. These are Gaussians for the 1D cases U, V, W, $v_{r,pec}$, $v_{l,pec}$ and $v_{b,pec}$,

$$f(v) = \frac{N}{\sqrt{2\pi}} \left[(1 - f_H) \frac{1}{\sigma_L} e^{-\frac{(v - v_{cL})^2}{2\sigma_L^2}} + f_H \frac{1}{\sigma_H} e^{-\frac{(v - v_{cH})^2}{2\sigma_H^2}} \right], \qquad (2.9)$$

where v_{cL} and v_{cH} are the centre velocities of the low and high velocity group, respectively, and 2D Maxwellians for the 2D case $v_{t,pec}$,

$$f(\mathbf{v}) = N\mathbf{v} \left| (1 - f_H) \frac{1}{\sigma_L^2} e^{-\frac{v^2}{2\sigma_L^2}} + f_H \frac{1}{\sigma_H^2} e^{-\frac{v^2}{2\sigma_H^2}} \right|.$$
(2.10)

Table 2.2 lists the fitting results adopting $f_H = 31.7 \pm 4.3$ % from equation 2.7.

The velocity dispersions of the high velocity group are consistent with an isotropic velocity

	<i>v_{cL}</i> [km/s]	σ_L [km/s]	v _{cH} [km/s]	σ_H [km/s]	IP [km/s]
U	$-0.4\pm\!0.3$	$11.9\pm\!0.2$	$1.0\pm\!1.1$	$25.6\pm\!0.3$	±24
V	$-0.0\pm\!0.6$	$10.2\pm\!0.5$	$-2.9\pm\!0.9$	$21.1\pm\!1.2$	± 21
W	$0.4\pm\!0.2$	$5.1\!\pm\!0.1$	$-2.8\pm\!0.7$	$15.6\pm\!1.0$	± 11
V _{r,pec}	$0.1\!\pm\!0.6$	$11.4\pm\!0.5$	$-4.6\pm\!1.1$	27.1 ± 1.4	± 23
V _{t,pec}	_	$7.0\pm\!0.1$	_	$18.7\pm\!0.8$	18
V _{I,pec}	$-2.6\pm\!0.3$	$8.6\pm\!0.2$	$-2.8\pm\!0.7$	$23.9\pm\!1.3$	± 18
V _{b,pec}	$0.7\pm\!0.1$	$5.2\pm\!0.1$	$-3.0\pm\!0.4$	$18.2\pm\!0.8$	± 11

Table 2.2: Fitting results and curve intersection points for different velocity components to select runaway stars.

Columns 2 and 4: centre velocities v_{cL} and v_{cH} (for the 1D cases, i.e. Gaussian fit), Columns 3 and 5: velocity dispersions σ_L and σ_H of the low and high velocity groups, respectively. All errors are formal 1σ errors. Column 6: intersection points (IP) of the curves representing the low and high velocity groups [for the 1D cases two intersection points exist (negative and positive sides of the distribution), they are approximate since the distribution is not exactly symmetric]. Compared to the published first analysis of runaway stars, there is only minor change, see Tetzlaff et al. 2011 [486].

distribution arising from the runaway producing mechanisms as will be shown in the following. For normal Population I stars, i.e. members of the low velocity group, the velocity dispersion in the z direction, σ_W , is smaller than in the x and y directions (in the Galactic plane) due to the Galactic potential that attracts the stars onto the Galactic plane. Since all stars initially belong to the low velocity group there must be a difference between $\sigma_{U/V}$ and σ_W also for high velocity group members. Since the velocity distribution in each direction is Gaussian,

$$\sigma_{H,U}^2 = \sigma_{L,U}^2 + \sigma_{x,U}^2, \tag{2.11}$$

$$\sigma_{H,V}^2 = \sigma_{L,V}^2 + \sigma_{x,V}^2, \qquad (2.12)$$

$$\sigma_{H,W}^2 = \sigma_{L,W}^2 + \sigma_{x,W}^2, \qquad (2.13)$$

where $\sigma_{x,U/V/W}$ is the velocity dispersion due to runaway formation for each direction. For the low velocity group it was found that

$$\sigma_{L,W} \approx \sigma_{L,U} - (5 \,\mathrm{km/s}) \quad \text{and} \quad \sigma_{L,V} \approx \sigma_{L,U},$$
(2.14)

see Table 2.2. Supposed that the additional velocity is isotropic, i.e. $\sigma_{x,U} = \sigma_{x,V} = \sigma_{x,W}$ and subtracting equation 2.13 from equation 2.11, it follows that

$$\sigma_{H,W}^2 = \sigma_{H,U/V}^2 - 10 \,\mathrm{km/s} \cdot \sigma_{L,W} - 25 \,\mathrm{km}^2/\mathrm{s}^2. \tag{2.15}$$

With $\sigma_{H,U/V} \approx 23 \text{ km/s}$ and $\sigma_{L,W} \approx 5 \text{ km/s}$ (see Table 2.2), $\sigma_{H,W} \approx 21 \text{ km/s}$, theoretically, using equation 2.15. This value is somewhat higher than the one found in Table 2.2. However, since runaway formation occurred some time in the past (for BSS runaways in the sample this timespan might be comparable with the age of the star before the

	v _{crit} [km/s]	f _{id,th} [%]	f _{c,th} [%]	Ν	N _{new}
U	22	35	10	581	4
V	21	41	17	431	31
W	11	51	9	538	179
$ V_{r,pec} $	23	37	12	538	6
V _{t,pec}	18	64	10	1383	670ª
V _{I,pec}	18	47	9	980	4 ^b
V _{b,pec}	11	52	8	910	126 ^c

Table 2.3: Runaway selection criteria $|v| > v_{crit}$ for different velocity components (as equation 2.8 for v_{pec} , section 2.3.2.1). The limits correspond to the intersection points of the curves representing the low and high velocity groups.

Column 2: velocity threshold for defining runaway stars, see section 2.3.2.1 for v_{pec} as an example. Columns 3 and 4: theoretical expectations concerning possible identifications of high velocity group members (the fraction of high velocity group stars $f_{id,th}$ satisfying the selection criteria $|v| > v_{crit}$) and the contamination of low velocity group members (the fraction of low velocity group stars $f_{c,th}$ that also satisfy the selection criteria $|v| > v_{crit}$). Columns 5 and 6: number of runaway star candidates N and new identifications N_{new} (compared to section 2.3.2.1 and previous lines in this table). Note that for U, V, W and $v_{r,pec}$ only 3824 stars could be analysed whereas for $v_{t,pec}$, $v_{l,pec}$ and $v_{b,pec}$ the whole sample of 6300 stars was used.

^a 669 of them without v_r measurements

^b 1 of them without v_r measurement

^c 70 of them without v_r measurements

supernova), the Galactic potential makes an impact on the higher velocities. For that reason, it is expected to measure a somewhat lower value $\sigma_{W,H}$ for the high velocity group than the calculated value of 21 km/s, thus the obtained value of $\sigma_{W,H} \approx 16 \text{ km/s}$ is in good agreement with the predictions and it can be concluded that runaway formation leads to an additional velocity that is isotropic. Moreover, the low velocity group dispersions are in good agreement with those of young disk stars [e.g. 128, 370].

Since the velocity distribution of the low velocity group is not isotropic, hence the same applies for the high velocity group, the criterion given by equation 2.8 cannot simply be translated into the 1D case ($|X| \ge 25/\sqrt{3}$ km/s, where $X = U, V, W, v_{r,pec}, v_{l,pec}$ or $v_{b,pec}$). In addition, such a 1D criterion would lead to a contamination of low velocity group stars among the identifications of $\approx 50\%$ e.g. in the U and V components.

For those reasons, as for the peculiar spatial velocity v_{pec} , the intersection points of the curves were chosen also for the 1D cases as well as $v_{t,pec}$ to define the runaway criteria. In Table 2.3, the selection criteria, theoretical expectations concerning the possible identifications as well as the number of runaway star candidates identified (stars with a runaway probability higher than 50%) are specified. With 983 runaway star candidates found in section 2.3.2.1 and 1020 identifications in Table 2.3 (N_{new}), a total of 2003 runaway star candidates with a runaway probability higher than 50% regarding at least one velocity component investigated were found. All 2003 stars are listed in Table C.2 along with the runaway probabilities for each velocity component.

Figure 2.4: Definition for identifying runaway star candidates by comparing their motion with that of neighbouring stars. The neighbourhood is defined as a sphere around an individual star with a diameter of 20 pc or as the OB association/cluster (assumed to be spherical) inside which the star currently lies. The neighbourhood velocity \vec{v}_{neigh} is given by the median velocity of the stars within the sphere or the mean motion of the association/cluster member stars as given in Table A.1, respectively. If the velocity vector \vec{v}_{\star} points into the grey shaded region, the star clearly moves away from its neighbouring stars and is hence a runaway star. The grey shaded area lies outside the 3σ error cone of \vec{v}_{neigh} (dotted lines mark 1σ). Note that the absolute value of \vec{v}_{\star} and \vec{v}_{neigh} (v_{pec} or $v_{t,pec}$) is not important here.

2.3.2.3 Stars with Higher Peculiar Velocities Compared to Their Neighbourhood or Surrounding OB Association or Cluster

Still, some high velocity group members may not have been identified yet. Since stars in clusters and associations share a common motion, runaway stars, i.e. stars that experienced some interaction, can be identified through deviations from this common motion, especially if the velocity vector points towards a different direction than the cluster mean motion even if the 3D velocity itself is low. For that reason additional stars are searched for which show a different motion compared to stars in their neighbourhood. With the previous investigations all Hipparcos runaway star candidates with high peculiar velocities were identified. The most important criterion now is the direction of a star's velocity vector compared to its neighbouring stars.

The neighbourhood of each individual star is defined as a sphere with a diameter of 20 pc that is approximately twice the median extension of the associations and clusters listed in Tables A.1 and A.2. All sample stars within this sphere are chosen as comparison stars. The vectors of the peculiar velocities $\vec{v}_{\star,pec} = (U, V, W)$ and the peculiar tangential velocities $\vec{v}_{\star,r,pec} = (v_{I,pec}, v_{b,pec})$ of the star were calculated varying the observables within their confidence intervals. The neighbourhood velocity \vec{v}_{neigh} of the star's surrounding is given as the median velocity of the comparison stars. The runaway criterion is defined such that \vec{v}_{\star} must not lie within the 3σ error cone of \vec{v}_{neigh} (Fig. 2.4). Varying the observables within their their confidence intervals, the runaway probability for each star was obtained.

Examining \vec{v}_{pec} and $\vec{v}_{t,pec}$, no stars were found with a probability of at least 50 % for being a runaway star under the above definition, i.e. by comparing its direction of motion with the median velocity of neighbouring stars.

In addition, the velocity vectors of all young Hipparcos stars were compared with those of the surrounding OB association or cluster (as listed in Table A.1²³; assuming the associ-

²³The present mass functions of the nearby large associations and moving groups Tuc-Hor, β Pic-Cap, AB Dor, Cas-Tau, Columba, Carina, Octans, Argus and Pleiades B1 predict at most one to few supernovae (see also section 2.1.2). Due to their large sizes, for them a limiting radius of 10 pc was assumed to minimize high contamination with false positives (cf. [126], their table 2, they excluded Cas-Tau

Figure 2.5: Motion of Ori OB1 member stars. The red cross marks the centre of the association, the dotted ellipse its boundaries (assuming spherical shape). The red thick arrow shows the mean peculiar tangential motion of the whole association [48, 61, 110] (see also Table A.1), green squares are runaway star candidates satisfying the criterion defined in Fig. 2.4 whereas blue stars mark runaway star candidates already defined by their large peculiar velocity (section 2.3.2). The length of the arrows is scaled with distance to indicate tangential velocities.

ations/clusters are spherical, see Fig. 2.5 for the Orion OB1 association as an example). From \vec{v}_{pec} , 22 additional runaway star candidates are identified. Another two runaway star candidates are identified from their $\vec{v}_{t,pec}$. All runaway star candidates (25 for \vec{v}_{pec} , 10 for $\vec{v}_{t,pec}$; four included in both) are listed in Table C.3.

2.3.2.4 Stars Outside OB Associations and Clusters and the Galactic Plane

As runaway stars were ejected from their birth site, i.e. their host OB associations and clusters or the Galactic plane, they are supposed to be isolated (outside any OB association/cluster and the Galactic plane) if their travel time is sufficiently long. Thus, it was also searched for young stars that are clearly outside any OB association/cluster listed in Table A.1 (outside three times the association radius which corresponds to approximately 3σ) and outside the Galactic plane ($z > 500 \, \text{pc}^{24}$).

60 stars from the whole sample of potentially young stars are situated well outside any OB association/cluster and the Galactic plane; four of them were not identified as runaway star candidates in the previous sections. Those four are listed in Table C.4. If they did not form in isolation they are runaway stars.

2.3.2.5 Comparison with Other Authors

The sample of runaway star candidates that was compiled in the previous sections was compared with lists from other authors [most important sources: 28, 43, 97, 105, 125, 185, 230, 298, 347, 355, 372, 409, 471]. 22 proposed runaway candidates which satisfy the initial

from their analysis). Note that this restriction was not done when the runaway star catalogue was first published (Tetzlaff et al. 2011 [486]). The contamination of non-runaway stars in [486] from young nearby large groups is ≈ 7 %.

²⁴This number is derived from twice the low velocity dispersion in the z direction ($\approx 10 \text{ km/s}$) and an age of 50 Myr (age limit for young stars as defined in section 2.3.1).

sample criteria (Hipparcos star, $\pi - \sigma_{\pi} \leq 1/3$ mas, equation 2.2), i.e. are contained in the young star sample, were not identified as runaway stars here. They are listed in Table 2.4 along with the respective publication source.

The classical runaway HIP 102195 was not identified here since its peculiar spatial velocity is rather small ($v_{pec} = 16.6^{+2.9}_{-7.1} \text{ km/s}$). Note that [43] also quote a small velocity ($\approx 23 \text{ km/s}$). As proposed by [43], HIP 102195 apparently originated from the Lacerta OB1 association. However, using 3D data, this was not confirmed but instead found that in 10% of 10,000 Monte Carlo runs the star's position is located within the boundaries of the Cygnus OB7 association $\approx 11 \text{ Myr}$ in the past. This is also in excellent agreement with the association age of 13 Myr [511] and comparable to the derived stellar age of 18 \pm 3 Myr (Table C.1). Hence, this star will be included into the runaway star sample.

The twelve stars identified by [105, 355, 471] are not reidentified here because these authors used photometric distances which are systematically too large, thus generating large peculiar velocities (this can be directly seen from comparison between columns 5 and 6 of table 1 in [355]), whereas here parallactic distances were used to determine peculiar velocities. They are not considered runaway stars further.

HIP 67279 was regarded as runaway star by [298] owing to its large distance from the Galactic plane of z = 1 kpc (according to the author's definition of a runaway star z must be larger than 20 km/s times the main-sequence lifetime of the star, cf. footnote 24). The photometric distance of 1.17 kpc that the authors adopted from [273] is however too large and the actual distance from the Galactic plane derived from the parallax (parallactic distance $472^{+182}_{-103} \text{ pc}$) is $z = 397^{+80}_{-130} \text{ pc}$. With this z and an age $\tau_{\star} = 0.9 \pm 0.6 \text{ Myr}$ (Table C.1), HIP 67279 would need a vertical velocity component of $W \approx 300 \text{ km/s}$ to have originated from the Galactic plane. This value is high, however possible though. Hence, this star is included into the

Table 2.4: Runaway star can-
didates from Hipparcos pro-
posed in the literature that were
not yet identified as runaway
stars in the previous sections.

HIP	Ref.
102195	[28, 43]
35412	[105]
40328	[105]
81736	[105]
18246	[471]
100214	[471]
114104	[471]
117221	[471]
67279	[298]
20330	[230]
38455	[230]
42038	[230]
46950	[230]
48943	[230]
69491	[230]
86768	[230]
92609	[230]
103206	[230]
69640	[355]
73720	[355]
80338	[355]
90074	[355]
104361	[355]
37074	[125]
97757	[125]

runaway star sample. [125] identified the two stars listed in Table 2.4 (HIP 37074, HIP 97757) only from their distance to the Galactic plane again using photometric distances. With the parallactic distances they do not satisfy the criterion applied by [125] (z > 250 pc). Four of the nine runaway candidates listed by [230] (HIP 20330, HIP 86768, HIP 92609, HIP 103206) were not recognised as runaway stars here due to different input data (especially π) as [230] used the old Hipparcos reduction [408] (smaller π in all four cases) whereas here,

the latest published data by [518] was used. Since the old parallaxes are consistent within 1σ with the new ones for HIP 20330, HIP 86768 and HIP 92609, these stars are included into the catalogue. For HIP 42038, HIP 46950, HIP 48943 and HIP 69491, the radial velocities adopted by [230] differ from the values that were used here [from 251], resulting in different peculiar space velocities. HIP 42038, HIP 46950 and HIP 69491 are spectroscopic binaries [251]. Re-measuring their radial velocities by [251] revealed significantly different values than adopted by [230], questioning their runaway status. Since HIP 48943 is a suspected astrometric binary [330] (although no v_r signal was found by [251]), the radial velocity might be uncertain. Therefore, HIP 48943 was included into the sample of runaway star candidates. For another star, HIP 38455, [230] adopted $v_r = -31.0 \pm 5.0$ km/s. According to [206] HIP 38455 is a spectroscopic binary with a systemic radial velocity of +29.5 km/s. This significantly different radial velocity changes the peculiar spatial velocity dramatically $(v_r = -31 \, \text{km/s}; v_{pec} = 47 \, \text{km/s}, v_r = 29.5 \, \text{km/s}; v_{pec} = 14 \, \text{km/s})$, hence the star is not a runaway star. Moreover, [230] corrected the velocities for Solar motion using the LSR published by [127] which results in somewhat larger space velocities than the ones calculated here (which is also why some of their runaway stars were not identified here) but does not accurately reflect the motion of young stars relative to the Sun (see section 2.3.1). Another star, HIP 26241 (= ι Ori, highly eccentric spectroscopic binary), is included since it was very probably part of a former triple system [together with the classical runaways HIP 24575 (= AE Aur) and HIP 27204 (= μ Col)], thus ejected via DSS from the Trapezium cluster [e.g. 230] and a member of the high velocity group.

As indicated by the previous discussion, several problems may lead to mis- or nonidentification of runaway stars. The major issue here is certainly the distance of a star that highly affects the calculated velocities. Hipparcos parallaxes were used in this work (while previous studies often used ground-based distances). These are precise up to $\approx 500 \, \text{pc}$. More distant stars have less accurate parallaxes. However, runaway probabilities were derived that account for the errors on all observables, i.e. also the distance error in particular, instead of evaluating only a single velocity.

Another problem arises from the multiplicity of stars, e.g. 245 stars in the young star sample are spectroscopic binaries [404, 422]. Radial velocities were compiled from catalogues which typically list the systemic radial velocity, hence the calculated motions should reflect the motions of the stellar systems. In any case, for each association that is found between a runaway star and a NS, the runaway star will be studied in more detail to evaluate its runaway status.

2.3.2.6 Catalogue Summary

A total of 2038 runaway star candidates were identified (with a contamination of low velocity group members, i.e. normal Population I stars, of 20% at most). Thus the runaway

Figure 2.6: Distributions of v_{pec} (top panel) and $v_{t,pec}$ (bottom panel), as Fig. 2.3. Light grey histogramms represent the whole star sample whereas dark grey histogramms show the distributions of runaway star candidates. The velocity distributions of the high velocity group is drawn with dashed-dotted lines.

frequency among young stars is approximately 30%, in agreement with the theoretical expectations. Fig. 2.6 shows the distribution of the peculiar space velocity v_{pec} and the peculiar tangential velocity $v_{t,pec}$ with the subsample of runaway star candidates in dark grey. The number of runaway star candidates is somewhat higher than the number of stars belonging to the high velocity group, especially in the range of medium velocities where the two curves intersect, as to be expected. However, with this somehow conservative selection, it was assured that no actual runaway Hipparcos star was missed. Using the

combined selection, also runaway star candidates were identified with relatively low velocities which certainly exist but would have not been identified by investigating only one velocity component or the absolute velocity.

It should be noted that there are stars in the young star sample, hence in the runaway star sample, that are no true young stars. Either they lie close to the ZAMS in the HR diagram, where age estimation is difficult²⁵, or entered the list because of their luminosity class. In any case, each runaway star that comes into consideration as former companion candidate will be checked for whether it is sufficiently young.

The catalogue of young runaway Hipparcos stars includes also binary and triple runaway systems. It seems possible that a binary runaway can get ejected via BSS because in a hierarchical triple system the binary companion of an exploding primary star experiences the supernova as a system and should not get disrupted. On the contrary, runaway triple systems might not originate from BSS since in a hierarchical quadrupole system a single and a binary runaway should be ejected as one component star explodes in a supernova.

²⁵Using improved ages compared to the first version of the catalogue (Tetzlaff et al. 2011 [486]), most of these stars with uncertain age were a priori removed from the young star sample.

3 Method

3.1 Procedure

There are different approaches for calculating trajectories of Galactic objects starting with the simple method of straight lines through space. Although this is sufficient for calculations up to ≈ 1 Myr, the effect of the Galactic potential needs to be taken into account for larger time spans. In this work, the Galactic potential is included applying an Euler-Cauchy algorithm with a fixed time step of 10^4 yr treating the vertical component of the Galactic potential which was adopted from [406],

$$\vec{F}_z = -4\pi Gm\rho_\star z_\star \left(1 - e^{-\frac{|z|}{z_\star}}\right) \frac{\vec{z}}{|z|},\tag{3.1}$$

where G is the gravitational constant, m is the stellar mass, $\rho_{\star} = 7.6 \cdot 10^{-2} \,\mathrm{M_{\odot} \cdot pc^{-3}}$ is the local stellar mass density [104] that is assumed to be constant along the disk and $z_{\star} = 260 \,\mathrm{pc}$ is the scale height of the disk [394]. This technique is fully sufficient for a treatment of some Myr and distances up to a few kpc and consistent with results applying more complex methods such as a Runge-Kutta numerical integration method (N. Tetzlaff, diploma thesis [483]).²⁶

To investigate the origins of the NSs from the sample described in section 2.2, a similar approach was used as proposed by [230] but with a different treatment of the unknown radial velocity. Applying Monte Carlo simulations varying the parameters (parallax, proper motion and radial velocity) within their error intervals, the trajectories of the NSs and any association or cluster centre of the sample of young associations and clusters introduced in section 2.1 are calculated into the past (similarly for any runaway star from the catalogue of runaway star candidates accomplished in section 2.3). Since the radial velocity of NSs is not directly measurable so far, a reasonable probability distribution for the radial velocity is assumed in the simulations that is derived from the pulsar space velocity distribution by $[221]^{.27}$ At every time step (10^4 up to $5 \cdot 10^6$ yr in steps of 10^4 yr), the separation

²⁶A different approach utilises the epicycle approximation [e.g. 172, 302]. Then, the trajectories are calculated in a reference frame that is co-moving with the LSR. Since for the later investigations (chapter 4), it is more convenient to work in a resting coordinate system, the epicycle approximation was not used in this work.

²⁷Using a different distribution, e.g. a velocity distribution with two Maxwellian components [9] instead of the one-component model used in this work [221] does generally not affect the overall results (N. Tetzlaff, diploma thesis [483]). This is not unexpected since the bimodal distribution is statistically not significant.

3 Method

Figure 3.1: Distribution of absolute differences *d* between two 3D Gaussians for different standard deviations σ , see also [230] (in the limit $\sigma \rightarrow 0$, equation 3.3). For better view the maxima of the curves are normalised to the same height.

d between the association/cluster centre and the NS is calculated. Then, the minimum separation $d_{min}(\tau)$ and the associated time τ in the past are extracted.

All calculations of trajectories are performed in a right-handed rectangular coordinate system centred at the Sun at present. Solar motion is accounted for using an LSR of $(U, V, W)_{\odot} = (10.5 \pm 0.5, 11.8 \pm 0.4, 6.2 \pm 0.2)$ km/s (section 2.3.1), where U, V and W are the velocity components in x, y and z direction, respectively.

The distribution of separations d_{min} is supposed to obey a distribution of absolute differences of two 3D Gaussians with (μ_1, σ_1) and (μ_2, σ_2) being their expectation values and standard deviations (if the positional errors were Gaussian distributed), see [230],

$$W_{3D}(d) = \frac{d}{\sqrt{2\pi}\sigma\mu} \left\{ \exp\left[-\frac{1}{2} \frac{(d-\mu)^2}{\sigma^2}\right] - \exp\left[-\frac{1}{2} \frac{(d+\mu)^2}{\sigma^2}\right] \right\},$$
(3.2)

where *d* denotes the 3D separation between two objects (here, NS and association centre or NS and runaway star; $d = d_{min}$), $\mu = |\mu_1 - \mu_2|$ and $\sigma^2 = \sigma_1^2 + \sigma_2^2$; $\pi = 3.1459...$

When close encounters with runaway stars are investigated, it is searched for cases where the two stars once were at the same place, i.e. $\mu \rightarrow 0$. Then, equation 3.2 becomes

$$W_{3D,\mu\to 0}(d) = \frac{2d^2}{\sqrt{2\pi}\sigma^3} \exp\left[-\frac{d^2}{2\sigma^2}\right].$$
(3.3)

Note that even in this case, there is a zero probability of finding a value of $d_{min} = 0$ in the Monte Carlo simulation.²⁸ However, near-zero values should be found after a sufficient number of runs (see appendix D.2). The peak of the distribution is shifted towards larger d_{min} depending upon σ (Fig. 3.1). As the actual (observed) case is different from this simple model (no 3D Gaussian distributed positions, due to e.g. the Gaussian distributed parallax that goes reciprocally into the position, complicated radial velocity distribution, etc.), the theoretical formulae will be adapted only to the first part of the d_{min} distribution

²⁸The reason is that the objects are treated as infinite small points in the simulations. In three dimensions, there is a zero probability that two infinite "thin" trajectories cross each other.

(up to the peak plus a few more bins) such that the slope and peak can be explained.²⁹ The parameter μ then gives the positional difference between the two objects. The uncertainties on the separation are dominated by the kinematic uncertainties of the NS that are typically of the order of a few hundred km/s (because of the assumed radial velocity distribution). As a consequence, the distribution of separations d_{min} typically shows a large tail for larger separations. However, the first part of the d_{min} distributions (slope and peak) can still be explained well with equation 3.2 in most cases since the kinematic dispersion for only those runs is much smaller, typically a few tens of km/s for the NS, i.e. a few tens of pc after 1 Myr.

In general, 10^4 Monte Carlo runs (see appendix D.2 for justification of this number) for each NS/association pair and NS/runaway star pair are performed in a first step to find those associations and runaway stars that potentially crossed the past path of the NS, i.e. those for which the smallest d_{min} value found in the calculations is less than three times the association radius R_{assoc} or a critical association radius R_{crit}^{30} if this is larger than $3R_{assoc}$ (for NS/association pairs). For NS/runaway star pairs, a threshold of 10 - 40 pc (depending upon the flight time of the NS) is set (see appendix D.2 for justification of these thresholds). Those associations and runaway stars that fulfilled these conditions are then selected for a more detailed investigation (one to three million Monte Carlo runs, see appendix D.2 for justification of these numbers).

After this first selection, those associations and clusters are searched for, for which the NS could have been within the association/cluster boundaries R_{crit} in the past. For runaway stars, the smallest d_{min} value found after a few million runs should not exceed $1 - 3 \, \text{pc}$ as those cases are searched for where both objects once were at the same place (appendix D.2). This criterion is applied to further reduce the number of candidate stars. Each selected case of an identified parent association as well as NS/runaway star pair is then investigated and discussed individually.

Those associations/clusters are treated as possible parents if the theoretically expected distribution of absolute differences between two objects (equation 3.3) predicts a position of the supernova which lies inside the respective association/cluster boundaries (R_{crit}). Instead, for runaway stars, those cases are looked for, for which the NS and the runaway star

²⁹It is stressed that in the Monte Carlo simulations Gaussian distributed errors are used for the proper motion and parallax/distance as well as a reasonable distribution for the radial velocity of the NS. It was preferred not to assume a prior distribution for the separation (as it would be done with Bayesian statistics) but instead the problem was treated in a general way. The prior distribution is unknown and choosing a particular function would bias the outcome. It is remarkable, though, that the distributions for the separation obtained in the Monte Carlo simulations are in good agreement with the theoretical expectation (equation 3.2) although the formula is based on simple assumptions. The comparison of the obtained d_{min} distributions with equation 3.2 gives a good indication in favour for a particular association.

³⁰The critical association radius R_{crit} is defined as the radius of the association/cluster plus the positional uncertainty due to the velocity errors of the association (typically a few km/s, hence a few pc/Myr). For small clusters, this criterion becomes important already for short flight times below 1 Myr, for large associations $R_{crit} \approx R_{assoc}$.

could have been at the same place in the past, hence the (slope of the) d_{min} distribution obeys a distribution of absolute differences of two 3D Gaussians at the same place (i.e. $\mu = 0$, equation 3.3). Then, the runaway star is selected to be a former companion candidate. Stars for which the d_{min} distribution does not allow a conclusion are still considered and should be further observed to improve their parameters (mainly for stars without radial velocity measurement, hence a broad d_{min} distribution).

Furthermore, for encounters with runaway stars, the significance of the findings is evaluated by comparing the "observed" distribution P(d) (here, $d = d_{min}$ for clarity) with a reference distribution $P_0(d)$, see section 3.2.³¹ Significant encounters between a runaway star and a NS are treated as likely associations. However, it is expected to have non-significant cases with encounters between the NS and the former companion candidate inside associations/clusters since the density of young NSs and runaway stars is higher in these regions of space (see section 3.2). Hence, also those non-significant identifications for which close encounters occurred inside one of the possible birth associations of the respective NS are considered former companion candidates.

The general procedure follows Fig. 3.2. Due to the limited number of pages of this work, only final results are presented in chapter 4 for most stars. More details can be found in appendix E. If special adjustments were made for a particular NS, they are introduced in each section.

Utilising this method allows the identification of \approx 70% of birth associations/clusters of young (< 5 Myr) nearby (within \approx 500 pc) NSs (section 3.2.3). Of those NSs for which the birth place can be recovered, the kinematic ages of \approx 70% of them should deviate by no more than \approx 0.5 Myr from the true age. For \approx 45% of the NSs with recovered birth place, also the former companion can be identified. Then, the true age lies within 87% confidence (corresponding to 1.5 σ) for \approx 90% of the NSs.

3.2 Significance of Associations Between Neutron Stars and Runaway Stars

For about 60% of the NSs in the sample, no parallax measurements (neither optical nor radio) are available and distances listed for them in the ATNF pulsar catalogue are mainly derived from dispersion measure. Usually, such distance estimates are very uncertain and the error on the distance is large. In addition, the radial velocity of NSs cannot be measured directly, hence is assumed in a probability distribution (section 1.4.3, see section 3.1 for the method). Moreover, these two quantities, distance and radial velocity, are strongly correlated since a larger distance can be compensated for by a larger radial velocity and vice versa.

³¹This method follows the idea of [87].

Figure 3.2: Sketch of the general procedure for identifying the parent association or cluster of a NS (left) and its former companion if it exists (right), see appendix D.2 for justification of the number of Monte Carlo runs and the d_{min} thresholds. The significance criterion $P(5 \text{ pc}) > 10P_0(5 \text{ pc})$ was chosen in order to achieve a significance of one order of magnitude.

Mainly these uncertainties lead to the identification of more than one possible birth association for one NS and also multiple former companion candidates. An identification of a possible parent association/cluster and/or former companion candidate can be a coincidence. For that reason, it is necessary to check whether the parent association of a NS as well as possible former companion stars that are now runaway stars can be identified. Therefore, a population synthesis was performed producing NSs and runaway stars (the former companions) that are ejected from their birth association or cluster (section 3.2.1). This population synthesis was used on the one hand to obtain spatial density distributions for young NSs and runaway stars to compare the probability of a possible encounter with a random one (see section 3.2.2). On the other hand, artificial NSs and runaway stars produced in the population synthesis were treated in the same way as the real stars to test whether the NS birth places can be recovered (section 3.2.3).

3 Method

Figure 3.3: Scheme of the population synthesis.

3.2.1 Population Synthesis

To simulate supernova events in the Galaxy, 439 associations and clusters with ages below 100 Myr within ≈ 5 kpc from the Sun were chosen as the parent associations and clusters of supernova progenitors (see section 2.1). For those associations for which the existing kinematic data is incomplete, the kinematic properties of neighbouring associations or clusters were adopted. The Pleiades B1 moving group is left out here because its members belong to the Sco-Cen complex.

The number and masses of associations member stars are simulated as follows (see also Fig. 3.3): First, the total mass of an association or cluster is obtained from its initial size (appendix D.3) and the stellar mass density. For stellar clusters (diameters smaller than 15 pc)³², a stellar mass density between 400 and $1000 \text{ M}_{\odot}/\text{pc}^3$ ³³ and an initial diameter of 0.6 pc was assumed for these clusters [91, 286]. Stellar groups with initial diameters ranging from 15 to 50 pc were treated as sub-groups of stellar associations with typical stellar mass densities of $0.25 \text{ M}_{\odot}/\text{pc}^3$. This stellar mass density corresponds to the initial stellar mass density of Upper Scorpius [427] that is a sub-group of the large Scorpius OB2 association. There are several reasons for adopting the observed properties of Upper Scorpius. Upper Scorpius is well investigated in both, the high and low mass star regime, due to its proximity to Earth. The star formation process is already finished and it is still young enough ($\approx 5 \text{ Myr}$) that almost all members are still present. Only one to two most

 $^{^{32}}$ The typical cluster radius in the sample of young clusters collected in section 2.1 is 10 \pm 5 pc (see also [245] for typical cluster properties).

³³The median cluster density from the cluster catalogue of [286] is $\approx 400 \text{ M}_{\odot}/\text{pc}^3$ and the median density of modelled clusters from [91] is $\approx 1000 \text{ M}_{\odot}/\text{pc}^3$.

massive members have already exploded in a supernova [425], hence only they and their possible former companions are missing. For those reasons, Upper Scorpius is optimal for studying the IMF (and association properties inferred from it) since its present mass function is (almost) identical to that. According to [427], the total initial mass was 2060 M_{\odot} and the initial diameter of Upper Scorpius was 25 pc, hence the initial stellar mass density was 0.25 M_{\odot}/pc³.

For extended associations (diameters larger than 50 pc up to a few hundred pc) a mass density of $0.04 \, M_\odot/pc^3$ was adopted. This value corresponds to the stellar mass density in the Scorpius OB2 association. It was obtained by estimating the total mass in the three sub-groups Upper Scorpius, Upper Centaurus Lupus and Lower Centaurus Crux assuming that each of them has a stellar mass density of $0.25 \, M_\odot/pc^3$ (see above). Averaging the total mass of the three sub-groups over the volume of the whole Scorpius OB2 association (its extension is taken from [126]), a stellar mass density for associations of $0.04 \, M_\odot/pc^3$ is obtained. For YLA (section 2.1.2) the stellar mass density is lower than for normal (OB) associations (some YLA are called "moving group" rather than association). Therefore, the total initial mass of each of them was obtained from comparing their present mass functions with the IMF (section 2.1.2, Table 2.1) and the stellar mass density is calculated for each of them individually ranging from $10^{-5} \, M_\odot/pc^3$ (for the Octans association) to $0.05 \, M_\odot/pc^3$ (for η Cha) (median density $4 \cdot 10^{-4} \, M_\odot/pc^3$).

From the initial size of an association or cluster and its initial stellar mass density, the total number of stars in this association/cluster as well as their individual masses are calculated using the IMF proposed by [284] (consistent with that of [425] for the Upper Scorpius association) over a mass range of 0.1 to $100 M_{\odot}$ (equation 2.1).

As most stars form in multiple systems, binary systems (for simplicity, only binarity is included in the simulation) are drawn following the "special pairing" mechanism suggested by [534]. First, the stellar population is split randomly into primary (group P) and secondary stars (group S) and grouped into pairs. Among pairs for which the masses M_1 and M_2 of both components do not exceed $2 M_{\odot}$ each, those pairs with $M_1 \ge M_2$ are retained as stellar binary systems. The stars of the low mass pairs ($M_1 \le 2 M_{\odot}$ and $M_2 \le 2 M_{\odot}$) that are left over, i.e. with $M_2 \le M_1$, are treated as single stars.

For the remaining stars of group P ($M_1 \ge 2 M_{\odot}$), the following approach is applied to create binary systems. This ensures that the mass ratio increases with increasing primary mass since observations reveal that massive stars more likely have massive companions [e.g. 178, 181, 276, 438]. For each star, a companion star is randomly selected from the remaining stars of group S. Then, it is evaluated whether the relation

$$M_2 \ge 3.1 \cdot 10^{-3} \,\mathsf{M}_{\odot}^{-1} \cdot M_1^2 + 0.034 M_1 \tag{3.4}$$

[534] is fulfilled (M in M_{\odot}). If it is not, a new secondary is drawn until no secondary is left with the required mass. If $M_2 > M_1$, the secondary becomes the new primary and

vice versa. The new secondary also has to fulfil equation 3.4. When no more pairs can be found, the condition equation 3.4 is relaxed by 20%. If there are still stars, that cannot be assigned to a system, they remain single stars.

With these conditions, the simulated binary frequency among all stars was ≈ 45 %. This is in good agreement with observations [4, 145]. Among massive stars ($M_1 \ge 8 M_{\odot}$) the binary frequency increases to ≈ 62 % consistent with observations [2, 349]. The member stars of an association or cluster are assumed to form contemporaneously³⁴ and move at a speed that is consistent with the association's/cluster's velocity dispersion. For the distribution of stellar masses within the association or cluster with radius R_{assoc} as well as the mass distribution, a Gaussian model with $\sigma = R_{assoc}/3$ is adopted.³⁵

In the simulation, supernova progenitors, i.e. stars with masses > 8 M_{\odot}, explode according to their life time. Stellar life times are derived using evolutionary models from [277, 327, 494] (binary evolution is not considered). The time of a supernova event t_{SN} is then given as the difference between the age of the parent association or cluster, t_{assoc} , and the stellar life time t_* , $t_{SN} = t_{assoc} - t_*$. The spatial distribution of supernova positions is shown in Fig. 3.4 where stellar associations and clusters are clearly visible.

A supernova occurs if the progenitor mass M_{prog} exceeds $8 M_{\odot}$. Then, a NS is born if $M_{prog} < 30 M_{\odot}$, otherwise a black hole is released [214]. A new-born NS is provided with a velocity vector with random orientation and an absolute value according to the spatial velocity distribution for pulsars by [221]. Then, its trajectory is calculated until present³⁶ and the present parameters are logged, i.e. spatial position and kinematics.

If the progenitor star belonged to a binary system, the secondary is released as a runaway star with kinematic properties according to those derived for runaway stars from observations (section 2.3). The trajectory of the runaway star is then also calculated until present. If the runaway star is massive enough to also experience a supernova, the position of the supernova event lies on the path of the runaway star, i.e. probably outside any association or cluster. NSs that form from runaway stars retain their runaway velocity and obtain an additional NS kick velocity according to [221].

The supernova rate during the past 10 Myr derived in this simulation is 32 ± 5 Myr⁻¹ within 600 pc from the Sun and 330 ± 9 Myr⁻¹ within 3 kpc. The first value lies on the upper side of published supernova rates (for 10 Myr in the future) within 600 pc but is still consistent with them [195, 225, 228, 443]. For a maximum distance of 3 kpc, only a rough estimate of 365 ± 22 Myr⁻¹ was made by [225], almost in agreement with the value found here.

³⁴This is justified and observed in many OB associations, because the first massive stars blow strong winds (and will soon experience a supernova). This removes most gas left in the cloud, so that star formation ceases.

³⁵A Gaussian model with $\sigma = R_{assoc}/3$ is in good agreement with the widely adopted Plummer model, for which $m(r) \propto \left(1 + \frac{r^2}{R_{assoc}^2}\right)^{-\frac{5}{2}}$, with *m* being the enclosed mass at distance *r* of a star from the association/cluster centre [415].

³⁶In this population synthesis, a fourth-order Runge Kutta integration is used to calculate past orbits since the time span exceeds a few Myr.

Figure 3.4: Supernova positions from population synthesis (for the past 50 Myr). The Sun (\odot) is in the centre of the coordinate system. The contour colour code is $0.0019/10^i \text{ SNe/pc}^3$ (i = 1, 2, 3, 4, corresponding to red, green, blue, purple). Note the positions of supernovae in Cas-Tau most of which occurred 5 - 30 Myr after formation of the association, hence in a different area than occupied by Cas-Tau today.

The production of runaway stars due to gravitational interactions in the early phases of a cluster (DES runaways, see section 2.3) is neglected here as the focus is given to NSs. The efficiency of runaway production due to supernovae in multiple systems or dynamical interaction is still a matter of debate. The derived distribution of runaway stars is used in this work to evaluate the significance of encounters between NSs and runaway stars. The fact that no DES runaways are incorporated may lead to an overestimation of the significance (hence, a higher number of findings) and does not lead to missing possible pairs. Since also normal Population I stars can have runaway kinematics although they are no true runaway stars (section 2.3), additional stars with runaway properties are randomly added to the sample (20% of the whole sample, section 2.3).

3.2.2 Significance Evaluation

Since multiple identifications of birth associations and possible former companion candidates are usually found for one NS, it is desirable to have a quantity that gives an estimation of their significance. The idea of a reference probability was developed by [87] and was adopted in this work and adapted to be adequate for the cases in this work.

The probability distribution $P(\rho)$ that is obtained from the Monte Carlo simulation (the

Figure 3.5: Spatial density distributions for young (< 5 Myr) NSs [left, contour colour code (i = 1, 2, 3, 4, corresponding to red, green, blue, purple): $6 \cdot 10^{-7}/10^i$ NSs/pc³] and runaway stars [right, contour colour code (i = 1, 2, 3, 4, corresponding to red, green, blue, purple): $2 \cdot 10^{-6}/10^i$ runaways/pc³] derived from a population synthesis (for the past 50 Myr, section 3.2.1).

probability that a separation between two objects is not larger than ρ , i.e. the number of runs satisfying that criterion divided by the the total number of runs) is compared with a reference probability $P_0(\rho)$ of two randomly chosen objects (one of each population) with a separation no larger than ρ .

To estimate the significance of a NS/runaway star association, the distribution of young pulsars and runaway stars in the Solar neighbourhood is needed.³⁷ Those distributions were derived from the population synthesis simulation described in section 3.2.1. It should be noted, however, that the number of NSs and runaway stars is underestimated outside a few kpc from the Sun as the association and cluster sample used as supernova hosts becomes less complete at larger distances (section 2.1). However, the focus of this work is on young nearby NSs within 500 pc that typically do not travel that far. The application of the simulated samples is hence satisfactory.

The simulated distribution of young ($\leq 5 \text{ Myr}$) NSs and runaway stars was binned into $20 \text{ pc} \times 20 \text{ pc} \times 20 \text{ pc} (x \times y \times z) \text{ bins}^{38}$ and smoothed using the *smooth3* function available with MATLAB (with a box convolution kernel). The resulting density distributions for young NSs and runaway stars are displayed in Fig. 3.5. In comparison with Fig. 3.4, it can be clearly seen that the association boundaries get smeared out, i.e. the present positions of many NSs and runaway stars lie outside stellar associations. Owing to the larger NS velocities, this effect is stronger for NSs than for runaway stars.

From the Monte Carlo simulations, positions are taken where the two objects reach separations no larger than ρ . A volume with edge lengths ρ is drawn around each encounter position. Then, the expected number η of stars in each cell is calculated using the spatial density distributions for runaway stars and young NSs as derived earlier and an average

³⁷[87] used a distribution for pulsars that reflects the mean pulsar density in the Galaxy, however does not account for an increased supernova rate in the Solar neighbourhood and includes also very old NSs (> Gyr). For that reason, this distribution was not used here.

³⁸The bin size was chosen according to the positional uncertainties of the objects due to the dispersion of the parent association velocities of a few km/s to a few tens of km/s.

Figure 3.6: Significance evaluation for RX J0720.4–3125 and two runaway stars as exemplary cases. The solid line is the probability P obtained from the Monte Carlo simulation while the dashed line represents the reference probability distribution P_0 . The dotted line shows the Poissonian error on P_0 , i.e. $P_{0,upp}$. The encounter between RX J0720.4–3125 and HIP 40326 (left panel) is significant ($P > 10P_{0,upp}$) while the one with HIP 43158 is just not. However, the encounter with HIP 43158 is situated within an association (Tr 10, see section 4.1.2).

expected number $\bar{\eta}$ in a cell of size ρ is obtained. If the number of cells is sufficiently large, the probability of detecting N objects of population i (NSs or runaway stars) in a volume ρ^3 is given by a Poissonian distribution,

$$\hat{P}_{0}(\rho) = \sum_{n_{i}=0}^{N} \frac{\bar{\eta}_{i}^{n_{i}}}{n_{i}!} e^{-\bar{\eta}_{i}}.$$
(3.5)

The probability of detecting at least one NS and one runaway star by coincidence in a volume with size ρ^3 is then given by

$$P_{0}(\rho) = \left(1 - e^{-\bar{\eta}_{NS}}\right) \left(1 - e^{-\bar{\eta}_{run}}\right).$$
(3.6)

An upper limit $P_{0,upp}$ of P_0 can be derived from the Poissonian error on the calculated number of stars in each cell. The probability of occurrence of separations $d_{min} \leq \rho$ in the Monte Carlo simulations is $P(\rho)$. An association between a NS and a runaway star is regarded as significant if $P > 10P_{0,upp}$ (in order to achieve a significance of one order of magnitude) for small ρ (smaller than a few pc, a nominal value of 5 pc was adopted). Then, the encounter might be real. This criterion is used as an additional indicator in favour for a particular association. However, given the large number of NSs and/or runaway stars in certain regions in space (within a stellar association or cluster), a non-significant association should not be disregarded if it is situated within a possible parent association/cluster of the NS. It is expected that such findings are less significant because the density distribution for young NSs and runaway stars expectedly predict a higher number of stars inside or close to associations and clusters.³⁹ An example of a significant association as well as a non-significant association are given in Fig. 3.6.

³⁹For the same reason, the significance for an identification of a possible parent association cannot be evaluated.

No	parent	age [Myr]	# of possible parent assoc./cl.	τ _{kin} [Myr]	# of former comp. cand.	former comp. among cand	$ au_{kin}$ with former comp. [Myr]
1	UCL	0.34	14	0.2 — 3; nearby: 0.2 — 0.5	13	yes	$0.39^{+0.09}_{-0.09}$
2	UCL	0.44	2 (both nearby)	0.6 - 1.5	2	yes	$0.38^{+0.06}_{-0.05}$
3	Cyg OB7	0.17	1	0.4 - 0.6	1	yes	$0.15^{+0.03}_{-0.02}$
4	Lac OB1	1.80	5 (incl. Lac OB1)	0.6-2.7; Lac OB1: $pprox 2.2$	2	no	- 0.02
5	Lac OB1	1.47	21 (incl. Lac OB1)	0.5-5; Lac OB1: $pprox 0.5$	14	no	-
6	Cam OB1	2.89	6 (incl. Cam OB1)	1-4; Cam OB1: $pprox$ 2.5	31	no	-
7	Cam OB1	1.59	7 (incl. Cam OB1)	0.6 – 4.5; Cam OB1: $pprox$ 1.3	9	no	-
8	Cam OB1	1.86	9 (incl. Cam OB1)	0.6 $-$ 5.0; Cam OB1: $pprox$ 1.4	20	no	-
9	Cam OB1	1.00	2 (incl. Cam OB1)	Cam OB1: $pprox$ 1; Cas-Tau: $pprox$ 0.5	3	no	
10	Ori OB1	1.87	6 (incl. Ori OB1)	$0.6-4.5;~ ext{Ori}~ ext{OB1}$ $pprox 1.8$	4	yes	$1.54^{+0.25}_{-0.17}$
11	Ori OB1	0.19	7 (incl. Ori OB1)	YLA: $pprox$ 0; Ori OB1: 0 $-$ 3	4	does not exist	_
12	Ori OB1	0.91	5	0.5 - 1.8	3	no	-
13	Ori OB1	3.48	9 (incl. Ori OB1)	0.6 – 3; Ori: 2 – 3	17	no	-
14	Ori OB1	0.36	5 (incl. Ori OB1)	$0.3-2; { m Ori} { m OB1}: pprox 0.3$	3	yes	$0.25^{+0.13}_{-0.07}$
15	Ori OB1	1.16	34 (incl. Ori OB1)	$0.5-5; { m Ori} { m OB1}: pprox 0.5$	11	no	_
16	Ori OB1	1.49	33 (incl. Ori OB1)	$0.5-4; { m Ori} { m OB1}: pprox 1$	2	no	-
17	Ori OB1	0.96	20 (incl. Ori OB1)	$0.7-4; { m Ori} { m OB1} pprox 0.3$	64	yes	$0.17^{+0.32}_{-0.07}$
18	Ori OB1	3.69	5 (incl. Ori OB1)	0.3-4, Ori OB1 $pprox 1$	3	no	_
19	Ori OB1	2.11	11 (incl. Ori OB1)	$0.5-2; { m Ori} { m OB1} pprox 1.8$	8	yes	$1.25^{+0.86}_{-0.34}$
20	Ori OB1	2.04	21 (incl. Ori OB1)	0.5-3.5; Ori OB1: $pprox 3.2$	17	no	_
21	Ori OB1	0.31	9 (incl. Ori OB1)	0.5-1.5; Ori OB1 $pprox 0.5$	6	no	-
22	Ori OB1	0.31	12	0.4 - 4.5	5	does not exist	-
23	Ori OB1	1.49	5 (incl. Ori OB1)	0.3-3; Ori OB1 $pprox 1.1$	4	no	-
24	Tr 10	1.24	14	0.2 - 3	2	no	-
25	Tr 10	1.24	10	0.7 - 4.5	12	yes	$0.94^{+0.22}_{-0.16}$

Table 3.1: Recovering birth places of artificial NSs.

Column 2: birth association of the progenitor star in the population synthesis. Column 3: flight time of the ejected NS. Columns 4-5: number of possible parent associations found and associated range of kinematic ages. If the true birth place was recovered, it is noted in parentheses of Column 4. Columns 6: number of former companion candidates identified. Columns 7-8: note on whether the true former companion is among the candidates and associated kinematic age.

3.2.3 Identification of the Birth Association of Simulated NSs

To test whether the birth association or cluster of a random NS can be found, young nearby NSs created within a population synthesis (section 3.2.1) were analysed in this regard. The population synthesis produced 25 NSs with ages up to 5 Myr and current distances to the Sun smaller than 500 pc.⁴⁰ Applying the method introduced in section 3.1 to search for their parent association/cluster for 18 of them the birth place was recovered (Table 3.1). Hence, the method applied in this thesis is reliable. For 13 of these 18 cases, the kinematic ages differ from the true age by less than 0.5 Myr, for only two the difference is larger than 1 Myr. As for real NSs, the number of possible parent associations/clusters is large in many cases (cf. chapter 4). For eight NSs, also the former companion is among the former companion candidates. If the former companion can be identified, the true NS age lies within 68 % confidence (corresponding to 1σ) of the kinematic age for $\approx 60\%$ of the cases, for $\approx 90\%$ within 87% confidence (corresponding to 1.5σ).

⁴⁰Note that this number is comparable to the size of the NS subsample with similar selection criteria (section 2.2). However, they come only from a limited number of associations, possibly because sequential star formation was neglected in the population synthesis. Therefore, the real number of young nearby NSs should be larger. In the ATNF database the number of NSs within 1 kpc (allowing for a 500 pc distance uncertainty) and spin-down ages up to 50 Myr (cf. section 2.2) is approximately 40 (\approx 30 % with unknown proper motion).

4 Results and Discussion

This section incorporates the results and discussion for the sample of NSs introduced in section 2.2. 20 NSs with best distances (see section 2.2) were analysed in great detail (sections 4.1 to 4.4). For further 85 young NSs with proper motion measurements and distance estimates available in the ATNF pulsar database, preliminary results are given in appendix F. Further investigation of those objects is needed to restrict the number of possible parent associations and clusters and enable the search for possible former companions. As the procedure and analysis of the outcome is basically the same for all cases, as examples, the results are explicitly described for four (very different) NSs. RX J1856.5–3754 is outstanding among the M7 in the way that its radial velocity is restricted due to the detection of a bow shock (section 4.1.1). Another member of the M7, RX J0720.4–3125, is an example for a NS with relatively uncertain distance (section 4.1.2). One of the "Three Musketeers", PSR J0659+1414, was associated with a supernova remnant, namely the Monogem Ring (section 4.2.2). The Guitar Pulsar (PSR J2225+6535) has an extraordinary high transverse velocity (section 4.4.8).

For the other cases investigated in this thesis, the results are presented in a compact form. More details can be found in appendix E.

4.1 The Magnificent Seven

The M7 are young isolated radio quiet NSs (see section 1.4). For three of them, RX J1856.5-3754, RX J0720.4-3125 and RX J1605.3+3249, detailed investigations of their birth places and possible former companion stars are feasible and presented in this section.

The results were published in their first versions in *Monthly Notices of the Royal Astronomical Society*, Volume 417 (Tetzlaff et al. 2011 [484]; sections 4.1.1, 4.1.2) and *Publications of the Astronomical Society of Australia*, Volume 29 (Tetzlaff et al. 2012 [488]; section 4.1.3).

4.1.1 RX J1856.5-3754

4.1.1.1 Identifying the Parent Association of RX J1856.5-3754

Given its proper motion and distance $(123^{+15}_{-11} \text{ pc } [526])$, the transverse velocity of RX J1856.5-3754 is $v_t = 192^{+17}_{-21} \text{ km/s}$. [517] found the inclination *i* of the bow shock

which RX J1856.5–3754 creates in the ISM to be $i = 60^{\circ} \pm 15^{\circ}$ (with respect to the line of sight) or even closer to 90°, depending on the model.⁴¹ A lower limit on *i* of 45° implies a maximum radial velocity modulus of $\approx 250 \text{ km/s}$ (limit adopting $3\sigma v_t$).

For 13 associations and clusters close encounters consistent with the critical association/cluster boundaries (R_{crit} , section 3.1) were found after one million Monte Carlo runs. Most of them (Tuc-Hor, β Pic-Cap, AB Dor, Her-Lyr, Sgr OB5, Sco OB4, Tr 27, NGC 6383, Bochum 13, Pismis 24, NGC 6396) are excluded because in these cases the radial velocity of RX J1856.5-3754 needs to be $|v_r| \gtrsim 300 \text{ km/s}$ (larger than the maximum v_r inferred from the bow shock, see above). The theoretically expected distribution for absolute differences between two objects (with Gaussian 3D positions, equation 3.2) was adapted to the first part of the d_{min} distributions (d_{min} is the smallest separation between the two stars of each Monte Carlo run, see section 3.1) such that the slope and peak can be adjusted (see also Fig. 4.1 for an example). The obtained expectation values μ and standard deviations σ suggest that RX J1856.5-3754 could have been inside the two remaining association: Ext. R CrA ($\mu = 0$, $\sigma = 4.5 \text{ pc}$) or Upper Scorpius (US, $\mu = 7.8 \text{ pc}$, $\sigma = 2.4 \text{ pc}$).

For Ext. R CrA, small separations between RX J1856.5–3754 and the association centre are found for 0.04 ± 0.02 Myr in the past. This is not surprising because the present position of RX J1856.5–3754 lies within the association and it would need up to $\approx 2 \cdot 10^5$ yr to cross it (assuming a maximum space velocity of 350 km/s, i.e. $3\sigma v_t$ and $v_{r,max} = 250$ km/s, and a diameter of Ext. R CrA of ≈ 62 pc [160]). Hence, Ext. R CrA is not the parent association of RX J1856.5–3754 unless the NS is only a few 10 kyr old, however, then, a SNR would probably still be visible (there is no SNR known in this area, [192]; A. Poghosyan, priv. comm.).

The only association that fits to being the parent association of RX J1856.5–3754 is US (as suggested before by [527] using a much simpler calculation and Tetzlaff et al. 2010 [487] using a larger distance). Table 4.1 (column a) summarises the derived NS parameters and the position and time of the supernova (for the deduction of the properties see appendix D.4). The displacement between RX J1856.5–3754 and the US centre would be \approx 8 pc as inferred from equation 3.2. The d_{min} distribution and the distribution of the corresponding flight times τ are shown in Fig. 4.1, left panel. The supernova would have occurred well within US that has a (critical) radius of \approx 17 pc (section 3.1). The radial velocity of RX J1856.5–3754 is found to be probably very small (indicated by both, the identified parent association and the bow shock) although utilizing the velocity distribution

⁴¹High resolution imaging of the bow shock of RX J1856.5–3754 was proposed for VLT/FORS (Vogt, Walter, Eisenbeiß) and Gemini/GMOS (Vogt, Walter, Tetzlaff) in 2009. The VLT/FORS observation was scheduled in visitor mode; unfortunately the observation could not be carried out due to bad weather. In 2010 the re-submitted VLT/FORS proposal (Vogt, Walter, Eisenbeiß) was rejected. Therefore, in 2011, it was proposed again to VLT/FORS (Vogt, Walter, Eisenbeiß, Neuhäuser) and Gemini/GMOS (Vogt, Hohle, Tetzlaff). Both proposals were not approved. Proposals were also submitted for the Hubble Space Telescope in 2011 and 2012 (Walter, Lattimer, Neuhäuser, Eisenbeiß, Tetzlaff), however were also not approved.

Table 4.1: Predicted current parameters of RX J1856.5–3754 if it was born in US using as input for the radial velocity (a) a probability distribution obtained from the distribution for pulsar space velocities [221] and (b) a uniform distribution in the range of $v_r = -250 \dots + 250 \text{ km/s}$.

Predicted present-day parameters of RX J1856.5-3754									
$v_r [m km/s]$ $\pi [m mas]$ $\mu^*_{lpha} [m mas/yr]$ $\mu_{\delta} [m mas/yr]$ v = [m km/s]	(a) 29^{+28}_{-20} $7.0^{+0.6}_{-0.2}$ 325.9 ± 2.3 -59.4 ± 2.1 219^{+16}	(b) 6^{+19}_{-20} $8.1^{+0.4}_{-0.6}$ 325.9 ± 2.3 -59.3 ± 2.1 195^{+10}							
Predic	ted supernova po	sition and time							
$\begin{array}{c} d_{\odot,SN} \; [pc] \\ d_{\odot,today} \; [pc] \\ l \; [^{\circ}] \\ b \; [^{\circ}] \\ d_{US} \; [pc] \; (\mu,\sigma) \\ \tau \; [Myr] \end{array}$	$146^{+5}_{-5}\\151^{+5}_{-5}\\349.2^{+0.2}_{-0.5}\\19.7^{+0.8}_{-1.1}\\(7.8, 2.4)\\0.42^{+0.07}_{-0.06}$	$148^{+6}_{-6}\\156^{+3}_{-8}\\348.8^{+0.6}_{-0.4}\\18.8^{+1.7}_{-1.1}\\(8.5, 2.5)\\0.48^{+0.04}_{-0.06}$							

Predicted NS parameters: heliocentric radial velocity v_r , parallax π , proper motion μ_{α}^* , μ_{δ} , peculiar space velocity v_{sp} ; Predicted supernova position: distance of the supernova to Earth at the time of the supernova $(d_{\odot,SN})$ and as seen today $(d_{\odot,today})$, Galactic coordinates (Galactic longitude *I*, Galactic latitude *b*, J2000.0) as seen from the Earth today, distance of the supernova to the centre of US (d_{US}) ; Predicted time of the supernova in the past τ . For the deduction of the parameters see appendix D.4. The distance of the supernova to the US centre was obtained by adapting equation 3.2 to the slope of the d_{min} distribution, see also Fig. 4.1.

for pulsar velocities gives priority to larger values since $v_t~(pprox$ 200 km/s) is smaller than the peak of the probability distribution for NS space velocities ($\approx 400 \text{ km/s}$, section 1.4.3). Since both, the radial velocity and the parallax are strongly correlated as a larger distance can be compensated for by a larger radial velocity, parallaxes may be slightly biased towards smaller values (since larger radial velocities are preferred in the calculations). Therefore, the Monte Carlo calculation was repeated assuming a uniform distribution of the radial velocity of RX J1856.5-3754 in the range of $v_r = -250 \dots + 250 \,\text{km/s}$ (see above discussion on the bow shock; note that no priority is given to $v_r = 0 \text{ km/s}$). The results are summarised in Table 4.1 (column b). Indeed, the current parallax turns out to be somewhat larger (smaller distance) and the current radial velocity tends to be close to zero. The derived values (Table 4.1, column b) for the proper motion and radial velocity imply an inclination of the motion of RXJ1856.5-3754 of $i = 88 \pm 6^{\circ}$ (with respect to the line of sight), consistent with the observation of the bow shock, see above. The displacement between RX J1856.5–3754 and the US centre would be \approx 9 pc as inferred from equation 3.2. The d_{min} distribution and the distribution of the corresponding flight times au are shown in Fig. 4.1, right panel.

The mass of the progenitor star can be derived from its lifetime using evolutionary models. Assuming contemporary star formation, the lifetime of the progenitor star of

Figure 4.1: Distributions of minimum separations d_{min} and corresponding flight times τ for encounters between RX J1856.5–3754 and US, derived for different v_r distributions: a probability distribution obtained from the distribution for pulsar space velocities [221] (left panel) and a uniform distribution in the range of $v_r = -250 \dots + 250 \text{ km/s}$ (right panel). Solid curves in the d_{min} histogram represent the theoretically expected distribution (equation 3.2), adapted to the first part of each histogram, (μ, σ) = (7.8 pc, 2.4 pc) (left panel) and (μ, σ) = (8.5 pc, 2.5 pc) (right panel), respectively.

This indicates that the closest approach between RX J1856.5-3754 and the US centre was $8-9\,pc$ about half a million years ago.

RX J1856.5–3754 is given as the age of US (5±2 Myr, e.g. [45, 119, 136, 425, 426, 428]) minus the time since the potential supernova (≈ 0.5 Myr). Using evolutionary models from [277, 327, 494], this corresponds to a progenitor mass of 45 ± 3 M_☉, 43⁺²¹₋₉ M_☉ and 37⁺²⁷₋₉ M_☉, respectively, corresponding to a main-sequence spectral type of O5 to O7 [444]. The progenitor star of RX J1856.5–3754 should have an earlier spectral type than the earliest present member of US which has spectral type B0 (HIP 81266 [324]). Although NSs are believed to form from progenitors with masses of ≤ 30 M_☉ [e.g. 214] it is known that in binary systems also more massive stars, $\approx 50 - 80$ M_☉, may produce NSs [e.g. 29, 171]. Then, the supernova should also have ejected a runaway star. Alternatively, most recently, [403] suggest that the age of US is 11 ± 2 Myr. This would decrease the estimated progenitor mass to 26 ± 6 M_☉, 16^{+5}_{-1} M_☉ and 16 ± 2 M_☉ for each evolutionary model (corresponding spectral types O7 to B0) which is in better agreement with standard NS formation.

As the predicted supernova would have been very recent (≈ 0.5 Myr ago) and nearby (≈ 150 pc), it is expected to find γ ray emission from ²⁶Al decay [136] (see section 1.2). In the COMPTEL 1.8 MeV map [136, 416] there is a feature centred at (I, b) $\approx (352^{\circ}, 19^{\circ})$. According to SNR expansion theory (section 1.3), a SNR expanding into the ISM with a volume density of n = 1 cm⁻³ would have a radius of ≈ 47 pc after 0.5 Myr. At a distance of 150 pc, this translates into an angular radius of the SNR of $\approx 17^{\circ}$. Integrating the flux over a circle with 17° radius around the feature⁴² and subtracting emission from the Galactic centre, a total flux of $\approx 2 \cdot 10^{-5}$ photons \cdot cm⁻² \cdot s⁻¹ is obtained (see appendix D.1). With a half-life of ²⁶Al of 0.72 Myr [432, 490], this yields a mass of ²⁶Al of $1.2 \cdot 10^{-4}$ M_{\odot} that

⁴²Due to the large size of the circle there is no significant difference when centering the area at the derived supernova position $(I, b) = (349^\circ, 19^\circ)$, compared to the centre of the emission. Moreover, the spatial resolution of COMPTEL is $\approx 1 \text{ deg}^2$ which is similar to the difference between the centre of the feature and the derived supernova position.

got ejected during the supernova. Compared to theoretical ²⁶Al yields (from core-collapse supernovae) by [301, 548] (Fig. 1.2), this corresponds to a mass of the progenitor star of $\gtrsim 30 \text{ M}_{\odot}$ which is higher than the estimates from the progenitor lifetime if US is $\approx 11 \text{ Myr}$ old but comparable to the estimates assuming an US age of $\approx 5 \text{ Myr}$.

Most recently, [369] confirmed the birth place of RX J1856.5-3754 using similar calculations as performed here. They conclude that the NS was born in US 0.42 \pm 0.08 Myr ago. This is in excellent agreement with the results obtained in this thesis.

4.1.1.2 Searching for a Former Companion of RX J1856.5-3754

From the previous analysis (section 4.1.1.1), it can be assumed that US is the parent association of RX J1856.5-3754. Then, the current radial velocity of the NS is small $(v_r = 6^{+19}_{-20} \text{ km/s})$. For the following analysis $v_r = 0 \pm 50 \text{ km/s}$ was adopted.⁴³

15 runaway stars with full 3D kinematics were found for which close encounters with RX J1856.5–3754 are possible in the past 5 Myr. After three million runs, seven of them showed a smallest separation to the NS of less than 1 pc (see appendix D.2 for justification of this limit). For two of them, HIP 81741 and HIP 88294, $P(5 pc) > 10P_{0,upp}$ (5 pc), i.e. the encounters are significant (section 3.2.2, note footnote 43). For another star, HIP 78681, the encounter could have happened inside US, the potential birth associaton of RX J1856.5–3754.⁴⁴

The positions of the potential supernovae are overplotted onto the COMPTEL 1.8 MeV map [136, 416] (Fig. 4.2). The predicted encounter positions are situated in regions with enhanced γ emission, Sco-Cen or close to the Galactic plane, hence no further conclusion can be drawn at this point.

To evaluate the encounter separation of the NS and the runaway star, the d_{min} distributions are compared with the theoretically expected distribution (equations 3.2, 3.3). For two cases, HIP 78681 and HIP 81741, the NS and the runaway star could have been at the same place at the same time in the past.

For the other candidate, HIP 88294, no close encounters were found inside the US boundaries but occur at distances of $75\pm5\,\mathrm{pc}$ to the US centre. Choosing runs from the simulation where both stars were within that distance to US, the d_{min} distribution shows a clear peak. However, equation 3.2 suggests that both stars experienced a close fly-by ($\mu = 1.4\,\mathrm{pc}$, $\sigma = 0.3\,\mathrm{pc}$) $0.13^{+0.01}_{-0.01}$ Myr ago (equation 3.3, i.e. $\mu = 0$, cannot be adapted to the distribution), see Fig. 4.3.

In the case of HIP 78681, in 1835 Monte Carlo runs the distance of both, the runaway star and RX J1856.5-3754, to the US centre was less than 17 pc, the critical radius of the

⁴³However, for evaluating the significance of encounters with runaway stars, the Monte Carlo simulations were repeated adopting the v_r distribution derived from the 3D velocity distribution by [221] for RX J1856.5–3754 to make the data comparable to the population synthesis data (section 3.2.1). Otherwise, the significance would be overestimated.

⁴⁴In the published analysis (Tetzlaff et al. 2011 [484]), another star was considered former companion candidate to RX J1856.5—3754, HIP 74717. There, it was already discussed that this star is probably

Figure 4.2: Encounters between RX J1856.5–3754 and three runaway stars overlaid onto the COMPTEL 1.8 MeV map [136, 416]. The lowest value contour line (darkest blue) represents an emission level of $8 \cdot 10^{-5} \text{ cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$ (levels in steps of $8 \cdot 10^{-5} \text{ cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$, increasing from blue to red).

Figure 4.3: Panels as in Fig. 4.1 for encounters between RX J1856.5–3754 and HIP 88294. Only those 1394 Monte Carlo runs are shown used for which both stars were within $75 \pm 5 \text{ pc}$ from the US centre and not farther than 5 pc from each other (to select the d_{min} peak and avoid contamination of runs yielding large d_{min}). The solid curve drawn in the d_{min} histogram (bottom panel) represents the theoretically expected distribution (equation 3.3) with $\mu = 1.4 \text{ pc}$ and $\sigma = 0.3 \text{ pc}$, adapted to the first part of the histogram.

association, and no farther than 10 pc from each other. For the first bins of the d_{min} histogram, equation 3.2 suggests that both objects could have been at the same place ($\mu = 0$) $0.52^{+0.05}_{-0.04}$ Myr in the past (Fig. 4.4).

In the Simbad database, HIP 78681 is listed with spectral type G7II which is why it was included in the sample of potentially massive, hence young stars, whereas [423] list it as barium star⁴⁵ (G8IIIBa1). Moreover, HIP 78681 is a single-lined spectroscopic binary. Hence, the system is probably old with the companion of HIP 78681 being a white dwarf as widely accepted for SB1 barium stars [55].

For HIP 81741, no encounters were found inside the US boundaries but $60 \pm 5 \text{ pc}$ outside US. Considering runs were both stars were at a distance to the US centre of $60 \pm 5 \text{ pc}$,

too old. Due to the updated age estimation, it was a priori excluded from the runaway star catalogue (section 2.3).

⁴⁵Barium stars are late type giants with an overabundance of s-process elements [39]. It is generally believed that they are the result of mass transfer in a binary system. The primary that is now a white dwarf transferred mass onto its companion that is now observed in its giant phase [352]. Most barium stars are binary systems. In many systems the white dwarf companion is detected [254]. Thus, these systems are old.

Figure 4.4: Panels as in Fig. 4.1 for encounters between RX J1856.5–3754 and HIP 78681, only those 1835 Monte Carlo runs are shown for which both stars were within 17 pc from the US centre and not farther than 10 pc from each other (to select the d_{min} peak and avoid contamination of runs yielding large d_{min}). The solid curves drawn in the d_{min} histograms (bottom panel) represent the theoretically expected distribution (equation 3.3) with $\mu = 0$ and $\sigma = 1.2$ pc, adapted to the first part of the histogram.

Figure 4.5: Panels as in Fig. 4.1 for encounters between RX J1856.5–3754 and HIP 81741, only those 3027 Monte Carlo runs are shown for which both stars were within $60 \pm 5 \text{ pc}$ from the US centre and not farther than 2 pc from each other (to select the d_{min} peak and avoid contamination of runs yielding large d_{min}). The solid curves drawn in the d_{min} histograms (bottom panel) represent the theoretically expected distribution (equation 3.3) with $\mu = 0$ and $\sigma = 0.8 \text{ pc}$, adapted to the first part of the histogram.

equation 3.3 suggests that both stars could have been at the same place ($\mu = 0$, Fig. 4.5) $0.25^{+0.01}_{-0.02}$ Myr in the past. In the Hipparcos catalogue the single star HIP 81741 [147] is listed as a G1II star [231], hence possibly massive (young). A more recent source gives a spectral type of G3III [223]. Hence, the star is probably an evolved old low-mass star.

Thus, no convincing runaway star was found in the sample of runaway star candidates with full kinematics (section 2.3) to be a suitable former companion candidate for RX J1856.5-3754.

Note, that the classical runaway star HIP 81377 (= ζ Ophiuchi) was again not found to be the former companion to RX J1856.5–3754 as it was suggested by [525] but excluded by [230] and Tetzlaff et al. 2010 [487] (the smallest separation found here was 18.8 pc after three million Monte Carlo runs).

Since there are also 597 runaways in the catalogue of runaway star candidates (section 2.3) without radial velocities, it was also examined whether one of those could have been close to RX J1856.5–3754 in the past. The radial velocity for those stars was varied randomly within \pm 500 km/s (the largest radial velocity moduli among all catalogue stars are $\approx \pm$ 400 km/s).

Seven stars showed d_{min} values smaller than 1 pc after three million runs (for justification of the chosen limits see appendix D.2). The distribution of the peculiar spatial velocities of the population of young runaway stars is well represented by a Maxwellian distribution with a velocity dispersion of $\sigma = 21 \text{ km/s}$ (section 2.3) and a maximum at 30 km/s. Extraordinary high velocities are unlikely although possible for individual cases. The derived spatial velocities of all seven stars that are necessary for an encounter with RX J1856.5–3754 deviate from the distribution maximum by more than 6σ .⁴⁶

Concluding, no convincing former companion candidate was found for RX J1856.5-3754. Either RX J1856.5-3754 was a single star or the former companion is a yet unknown run-away star.

4.1.2 RX J0720.4-3125

4.1.2.1 Identifying the parent association of RX J0720.4-3125

For 19 associations and clusters, close encounters consistent with the association/cluster boundaries (R_{crit}) were found after 10⁶ Monte Carlo runs. The critical radius of each of them was compared with the putative separation between RX J0720.4–3125 and the association/cluster centre inferred from equation 3.2 (Table 4.2, column 2). For nine associations and clusters $\mu - \sigma$ was consistent with the association boundaries, hence they are possible birth sites of RX J0720.4–3125: TWA, Tuc-Hor, β Pic-Cap, the HD 141569 group, AB Dor, Col 140, Tr 10 and the Carina (CarA) and Argus associations. In Table 4.2 the position of the supernova and the current properties of RX J0720.4–3125, if it was born in the respective association, are given.

[160] suggest that a few supernovae occurred recently in one of the YLA and give Tuc-Hor and Ext. R CrA as the best candidates. Although, within 1.5σ the present mass functions of all YLA suggest that there might have formed at least one supernova progenitor (section 2.1.2), only Tuc-Hor shows direct evidence as there are currently two early B type stars present (α Pav: B2IV, α Eri: B3Vpe [160]). Considering their present mass functions (section 2.1.2), it is unlikely that RX J0720.4–3125 was born in TWA, β Pic-Cap, AB Dor, CarA or Argus.

Tr 10 is listed as sparse open cluster with a diameter of $\approx 3 \text{ pc}$ (29' at 366 pc) in the Open Cluster Catalogue [132]. However, [61, 126] suggest that it is actually an association with a diameter of $\approx 50 \text{ pc}$ (8° at 366 pc) rather than a cluster. The 23 members found by [126] are all B3 to A0 type stars. Since early B type stars are still present in Tr 10, it is plausible that the association already experienced a supernova.

Close encounters between RX J0720.4–3125 and Col 140 were found for $\tau = 40 \pm 20$ kyr in the past. In this case, the SNR might still be visible; however there is no known SNR in

⁴⁶In Tetzlaff et al. 2011 [484] three stars were proposed after the first selection, i.e. at this point. They are excluded from the updated version of the runaway star catalogue (section 2.3) due to their uncertain age.

Assoc.	(μ, σ)	au	Pre	dicted presen	t-day NS pa	rameters		Pre	edicted s	upernova p	osition	M _{prog}
			Vr	μ^*_{lpha}	μ_{δ}	V _{sp}	π	$d_{\odot,SN}$	$d_{\odot,today}$	Ι	Ь	
	[pc]	[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[mas]	[pc]	[pc]	[°]	[°]	$[M_{\odot}]$
TWA	(0.0, 2.4)	$0.41\substack{+0.09 \\ -0.06}$	376^{+156}_{-28}	-92.8±1.4	55.3±1.7	416^{+110}_{-74}	$4.4_{-0.5}^{+0.5}$	58^{+2}_{-5}	59^{+3}_{-4}	291.6 ^{+2.2} -2.5	$19.9^{+1.6}_{-0.9}$	10 - 35
Tuc-Hor	(45.6, 2.7)	$0.28\substack{+0.04 \\ -0.04}$	529^{+91}_{-59}	$-92.8{\pm}1.4$	55.3±1.7	540^{+70}_{-85}	$5.4^{+0.6}_{-0.4}$	$33\substack{+3\\-4}$	33^{+5}_{-3}	$284.0^{+4.0}_{-4.9}$	$16.7^{+1.8}_{-2.8}$	7 – 29
β Pic-Cap	34^{+8}_{-8}	$0.44\substack{+0.01 \\ -0.11}$	485^{+113}_{-144}	$-92.8{\pm}1.4$	55.3±1.7	521^{+112}_{-125}	$5.2^{+0.9}_{-0.9}$	$32\substack{+12\\-5}$	33^{+8}_{-8}	$313.8^{+5.3}_{-3.0}$	$28.6^{+1.2}_{-1.4} \\$	7 – 35
HD 141569	(16.5, 1.7)	$0.61\substack{+0.19 \\ -0.07}$	396^{+107}_{-41}	$-92.9{\pm}1.4$	55.1±1.7	424_{-65}^{+81}	$4.1\substack{+0.5\\-0.5}$	102^{+8}_{-3}	92^{+8}_{-2}	$9.4^{+2.7}_{-5.9}$	$30.5^{+1.3}_{-0.8}$	39 - 46
AB Dor	55^{+13}_{-16}	$0.37\substack{+0.07 \\ -0.06}$	478^{+110}_{-60}	$-92.8{\pm}1.4$	55.3±1.7	491^{+87}_{-81}	$4.8^{+0.8}_{-0.3}$	$36\substack{+10\\-9}$	39^{+7}_{-14}	$316.4^{+5.5}_{-3.9}$	$29.0^{+1.6}_{-1.1}$	4 – 9
Col 140	(1.8, 0.8)	$0.04\substack{+0.02 \\ -0.02}$	-650 - +600	$-92.8{\pm}1.4$	55.3±1.7	448^{+128}_{-187}	$3.2\substack{+0.3\\-0.2}$	301^{+1}_{-3}	301^{+1}_{-3}	$244.8^{+0.2}_{-0.1}$	$-7.7^{+0.1}_{-0.1}$	7 – 8
Tr 10	(22.9, 2.7)	$0.50\substack{+0.05 \\ -0.05}$	274^{+151}_{-43}	$-92.7{\pm}1.4$	$55.6{\pm}1.6$	390^{+112}_{-60}	$1.9\substack{+0.2\\-0.1}$	373^{+10}_{-9}	379^{+11}_{-8}	$261.1_{-0.6}^{+0.9}$	$3.4\substack{+0.5\\-0.6}$	7 - 13
CarA	(33.9, 1.1)	$0.34\substack{+0.06 \\ -0.06}$	404^{+146}_{-74}	$-92.7{\pm}1.4$	55.5±1.6	427^{+118}_{-104}	$4.1\substack{+0.9\\-0.4}$	79^{+7}_{-3}	83^{6}_{-3}	$266.0^{+2.5}_{-3.0}$	$5.5^{+2.2}_{-1.4}$	8 - 9
Argus	(35.1, 1.1)	$0.35\substack{+0.08 \\ -0.08}$	388^{+158}_{-65}	$-92.7{\pm}1.4$	$55.6{\pm}1.6$	390^{+135}_{-90}	$4.0\substack{+0.5\\-0.6}$	103^{+6}_{-3}	106^{+8}_{-1}	$262.4^{+3.3}_{-1.4}$	$4.2\substack{+1.8\\-1.4}$	7 – 8

Table 4.2: Present-day parameters of RX J0720.4–3125 and supernova position and time for possible parent associations.

Column 2: predicted distance of the encounter to the association centre (expectation value μ and standard deviation σ inferred from equation 3.2 or peak value $\pm 68\%$ if equation 3.2 was not adaptable). Column 3: encounter time $\tau (= \tau_{kin})$. Columns 4-8: Predicted present NS parameters (heliocentric radial velocity v_r , proper motion μ_{α}^* and μ_{δ} , peculiar space velocity v_{sp} , parallax π). Note that it is possible that the derived value for v_r is larger than that of v_{sp} because v_r is heliocentric whereas v_{sp} is the peculiar velocity of the NS that reflects its kick velocity. Columns 9-12: Predicted supernova position (supernova distance $d_{\odot,SN}$, at the time of the supernova; supernova distance $d_{\odot,today}$ and Galactic coordinates, I and b, J2000.0, as seen from Earth at present). Error bars denote 68% confidence (appendix D.4). Column 13: estimated progenitor mass M_{prog} derived from the progenitor lifetime (age of the parent association, see Table A.1, minus the time τ since the potential supernova) using evolutionary models from [277, 327, 494].

this area ([192]; A. Poghosyan, priv. comm.).

Hence, Tuc-Hor, HD 141569 and Tr 10 are the best parent association candidates although all of the nine candidates listed in Table 4.2 are still possible birth associations of RX J0720.4-3125 (note also the discussion on a nearby origin in section 4.3.3).

Note that for RX J0720.4–3125 several possible birth associations were found. This is mainly due to the large distance error (cf. RX J1856.5–3754, section 4.1.1, where only one possible birth association was identified).

4.1.2.2 Searching for a former companion of RX J0720.4-3125

For 23 runaway stars with complete 3D kinematic data and 17 further without radial velocity measurement, the smallest separation to RX J0720.4–3125 found was less than 1 pc (assuming reasonable space velocities for those stars without v_r measurement; see appendix D.2 for justification of the d_{min} threshold). Four encounters are significant (section 3.2.2).⁴⁷ Possible close encounters between RX J0720.4–3125 and 12 stars are found to have occurred inside one or more of the nine possible parent associations/clusters (Table 4.2, although unlikely, the YLA are kept here). Altogether, there are 14 candidates that are given in Table 4.3 along with the respective association(s)/cluster(s) in which the encounter may have occurred (if available), their spectral type, $v \sin i$ value and notes regarding peculiarities and binarity for each star.

⁴⁷ In those cases where v_r for the runaway stars is unknown, a velocity distribution according to the velocity distribution of runaway stars (section 2.3) was adopted to not underestimate the significance (as it would when adopting $v_r = -500 - +500 \text{ km/s}$).

HIP	Assoc./cl.	SpT	v sin <i>i</i> [km/s]	notes	Refs.
37017 ^s	-	sd:O		hot subdwarf	1, [183]
39121	CarA	A3II/III		astrometric binary	1, [331]
40326 ^s	CarA	K1II/III		spectroscopic, astrometric binary	1, [244]
40430	CarA, Argus	O9nne		nova-like star, cataclysmic variable, binary	1, [184], [531], [384]
43158	Tr 10	B0II/III	96 ± 15	single star	1, [405], [507]
47267	CarA, Argus	G8II		barium star (wd+G8IIBa ?)	1, [30]
50417	TWA, CarA	A2III			1
59803	TWA, β Pic-Cap	B8III	40	expanding circumstellar shell, single star	1, [509], [147], [433]
60134 ^s	TWA, CarA	A4II		λ Bootis star	1, [191]
63972	CarA, Argus	K0II-III		variable, single, old disk star	1, [147], [146]
76304	β Pic-Cap	G2V	5	pre-main sequence star, suspected spectroscopic binary	1, [229], [278], [168]
78078	TWA, β Pic-Cap	A2Ib/II	110 ± 5	λ Bootis star	1, [435], [399]
84345 ^s	-	M5lab		binary	1, [495]
84794	Tuc-Hor, β Pic-Cap, AB Dor	M 4	1.00 ± 1.00	flare star, binary, Hyades moving group member (?)	1, [307], [299], [383]

Table	4.3:	Properties	of	stars	that	might	have	experienced	а	close	encounter	with
RX J07	20.4-	3125										

A superscript ^{\$} in Column 1 denotes stars for which the possible encounter is significant compared to a reference probability, section 3.2.2. Column 2: possible host association of the encounter (if existing; only possible parent associations of RX J0720.4–3125 are considered, Table 4.2). Column 3: spectral type of the runaway star. Column 4: projected rotational velocity $v \sin i$ of the runaway star if available in the literature. Column 5: information on e.g. peculiarities of the runaway star or binarity as given in the literature. Column 6: references; reference no. 1 is Simbad.

Apparently, one can exclude the O type subdwarf⁴⁸ HIP 37017, the cataclysmic variable⁴⁹ HIP 40430 and the barium star (see footnote 45) HIP 47267. The latter has been included in the young star sample (section 2.3) owing to its luminosity class. HIP 63972 is also excluded because it has been classified as old disk star [146] and entered the young star sample due to its (uncertain) luminosity class.

At this stage, binary systems are not excluded since it is not clear whether a former binary companion could have survived the supernova explosion.

To further reduce the number of former companion candidates, the distributions d_{min} were compared with the theoretically expected distribution (equations 3.2, 3.3).⁵⁰

Four stars may have possibly been at the same place as RX J0720.4–3125 (i.e. $\mu = 0$): HIP 43158, HIP 60134, HIP 76304 and HIP 84345.⁵¹ In Table 4.4 the four candidates are discussed individually. For two of those stars, HIP 43158 and HIP 76304, rotational velocities ($v \sin i$) are published (Table 4.3). They are rather small compared to those of known BSS runaway stars such as ζ Ophiuchi ($v \sin i = 348 \text{ km/s}$ [405]) and ξ Persei ($v \sin i = 204 \text{ km/s}$ [405]). If one of them originated from a supernova in a multiple system, this may indicate a small inclination angle *i*.

⁴⁸O type subdwarfs probably form from white dwarf mergers or accretion from a white dwarf companion [256]. Another model is the "late hot flasher scenario" (delayed He core flashes, after the star has left the red giant branch) [213]. Hence, stars of this class are relatively old.

⁴⁹ Cataclysmic variables experience strong irregular brightness changes. They are binary systems containing a white dwarf that accretes matter from its companion [38], hence old systems.

⁵⁰For those stars, where the encounter falls within a possible parent association of RX J0720.4-3125, those Monte Carlo runs were selected for which the distance to the association centre of both, RX J0720.4-3125 and the runaway star, was smaller than the association radius.

⁵¹Note that it is not found that HIP 40326 once could have been at the same place as RX J0720.4-3125 although the encounter is significant. The two stars possibly experienced a close fly-by in the past. In contrast, the two stars HIP 43158 and HIP 76304 are still considered former companion candidates although the encounters are not significant, however they could have occurred inside an association. It is expected that such encounters are less or not significant, see section 3.2.2.

HIP	Properties and conclusion
43158	This B0 giant is a single star [147] with an age of $pprox$ 15 Myr (section 2.3).
	This is consistent with an origin in Tr 10 (age 15-35 Myr [126, 269, 304]).
60134	This A411 star is a λ Bootes star ⁵² with unknown v_r .
76304	This G2V star is an X-ray source that is listed as T Tauri star in the
	catalogue of T Tauri stars in Sco-Cen by [278]. [229] give an age of
	3.5 to 5.9 Gyr derived from isochrone fitting (not assuming a pre-main
	sequence star) which would be far too old to be associated with Sco-
	Cen. Since it is an X-ray source, a pre-main sequence star with an age
	of $pprox$ 9 Myr (section 2.3) seems more plausible. Then its age would
	be consistent with that of β Pic-Cap (8 $-$ 34 Myr [26, 330, 564]), the
	potential host association of the supernova.
84345	This M5 supergiant has at least one companion [495].

Table 4.4: Discussion on possible former companion candidates to RX J0720.4-3125.

In Table 4.5 the time and position of the supernova and the present properties of RX J0720.4–3125 are given assuming that one of the four remaining runaway stars is the former companion of the NS progenitor. Where possible, in the last two columns of that table estimations of the mass of the progenitor star are given derived from the progenitor lifetime (age of the runaway star minus the time τ since the potential supernova) using evolutionary models from [277, 327, 494]. In the case of HIP 43158 the predicted current radial velocity of RX J0720.4–3125 is found to be rather small. For that reason, the calculations were repeated adopting a uniform radial velocity distribution in the range of $-300 \dots + 300 \text{ km/s}$. For HIP 43158, the results for both radial velocity distributions are given in Table 4.5.

Considering the proposed parallax RX J0720.4–3125 would currently have in each case, HIP 76304 is a less good candidate since the predicted NS parallax is inconsistent (5.6–6.8 mas) with the measured value (3.6 ± 1.6 mas [150]). Although, in the cases of HIP 60134 and HIP 84345, the predicted parallaxes are consistent within the error bars with the measured value, the analysis favours a scenario in that RX J0720.4–3125 was born in a supernova 0.9 ± 0.2 Myr ago as a former member of Tr 10 with HIP 43158 being the possible former companion. It has been suggested that BSS runaway stars should be blue stragglers due to mass transfer during binary evolution, i.e. they appear younger, hence bluer, than their parent association (see also [230] for other examples). In Fig. 4.6, the positions of HIP 43158 and Tr 10 member stars from [126] are shown in a $(B - V)_0$ versus M_V diagram along with isochrones for 15 Myr and 35 Myr taken from [344]. If Tr 10 is only as young as 15 Myr, HIP 43158 is not a blue straggler; however, Tr 10 might be as old as 35 Myr [126, 304]. In this case HIP 43158 would be a blue straggler.

 $^{^{52}\}lambda$ Bootes stars are late-B to early-F type stars with an extreme underabundance of iron-peak elements. Different theories are discussed to explain their characteristics: loss of the outer He zone (diffusion/massloss model), accretion of ISM material (accretion/diffusion model) and merging of binaries, see [398] for a review.

HIP	Assoc./cl.	au	Ρ	redicted pres	ent-day NS	paramete	rs	Prec	M _{prog}			
			Vr	μ^*_{lpha}	μ_{δ}	Vsp	π	$d_{\odot,SN}$	$d_{\odot,today}$	1	Ь	
		[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[mas]	[pc]	[pc]	[°]	[°]	$[M_{\odot}]$
43158*	Tr 10	$1.0^{+0.2}_{-0.2}$	$-100\substack{+25 \\ -5}$	-92.6±1.3	55.9±1.7	160^{+10}_{-10}	$3.6^{+0.8}_{-0.2}$	370^{+4}_{-18}	380^{+14}_{-6}	$259.0^{+0.7}_{-0.4}$	$1.9\substack{+0.8 \\ -0.5}$	7 - 15
$43158^{\#}$	Tr 10	$0.9^{+0.2}_{-0.2}$	-76^{+34}_{-17}	$-92.8{\pm}1.4$	$55.5{\pm}1.6$	163^{+3}_{-8}	$3.5^{+0.3}_{-0.3}$	375^{+4}_{-16}	383^{+10}_{-10}	$259.5^{+0.3}_{-0.8}$	$2.4^{+0.4}_{-0.8}$	7 - 15
60134 ^s	TWA, CarA	$0.4^{+0.1}_{-0.1}$	363^{+176}_{-95}	$-92.8{\pm}1.4$	55.3±1.6	395^{+149}_{-112}	$4.6^{+0.8}_{-1.2}$	49^{+24}_{-8}	51^{+17}_{-13}	$279.9^{+3.9}_{-1.4}$	$13.8^{+3.0}_{-0.1} \\$	9 - 35
76304	β Pic-Cap	$0.6\substack{+0.1\\-0.2}$	309^{+27}_{-69}	$-92.8{\pm}1.4$	$55.2{\pm}1.6$	338^{+29}_{-81}	$5.8^{+1.0}_{-0.2}$	52^{+4}_{-2}	46^{+4}_{-1}	$340.5^{+2.6}_{-2.7}$	$32.0^{+2.3}_{-2.0}$	19 - 33
84345 ^s	-	$0.6\substack{+0.2\\-0.1}$	454^{+108}_{-77}	$-92.8{\pm}1.4$	55.3±1.7	463^{+107}_{-80}	$4.5\substack{+0.6 \\ -0.6}$	126^{+17}_{-13}	117^{+14}_{-14}	$29.6^{+1.2}_{-3.6}$	$25.5^{+2.9}_{-2.6}$	-

Table 4.5: Present-day parameters of RX J0720.4–3125 and supernova position and time for former companion candidates and the respective parent association/cluster.

A superscript ^s in Column 1 denotes stars for which the possible encounter is significant compared to a reference probability, section 3.2. Column 2: potential birth association. Column 3: predicted supernova time in the past τ . Columns 4-8: predicted present NS parameters (heliocentric radial velocity v_r , proper motion μ_{α}^* and μ_{δ} , peculiar space velocity v_{sp} , parallax π). Note that it is possible that the derived value for v_r is larger than that of v_{sp} because v_r is heliocentric whereas v_{sp} is the peculiar velocity of the NS that reflects its kick velocity. Columns 9-12: predicted supernova position (supernova distance $d_{\odot,SN}$, at the time of the supernova; supernova distance $d_{\odot,cM}$ and Galactic coordinates, *l* and *b*, J2000.0, as seen from Earth at present). Column 13: estimation of the mass of the progenitor star derived from the progenitor lifetime (age of the runaway star minus the time τ since the potential supernova) using evolutionary models from [277, 327, 494]. For HIP 84345, no age estimation was possible (hence, no M_{prog}). It was considered young because of its luminosity class (section 2.3.1).

For HIP 43158 results are shown for a v_r distribution derived from the one of pulsar spatial velocities [221] (superscript *) as well as a uniform distribution in the range $v_r = -300 \dots + 300 \text{ km/s}$ (superscript #), see text.

The predicted heliocentric radial velocity v_r of HIP 60134, which has no v_r measured yet, would be $v_{r,run} = 77^{+50}_{-53}$ km/s

Figure 4.6: $(B - V)_0$ versus M_V diagram of Tr 10 (filled circles show member stars according to [126], the star marks HIP 43158). The solid and dashed lines represent the 15 Myr and 35 Myr isochrones from [344] (for solar metallicity; http://stev.oapd.inaf.it/cgi-bin/cmd). $(B - V)_0$ of the Tr 10 member stars and HIP 43158 are derived from their spectal types according to [444]. M_V are calculated from B and Vmagnitudes and parallactic distances (taking also into account the extinction A_V which was determined from (B-V) and $(B-V)_0$.

The mass of the progenitor star would have been $13-14 \,\mathrm{M}_{\odot}$ (for an age of Tr 10 of 15 Myr) or $7-9 \,\mathrm{M}_{\odot}$ (for an age of Tr 10 of 35 Myr; at the lower limit for supernova progenitors) corresponding to a spectral type of B1 to B2/3 on the main-sequence. This is consistent with the progenitor star of RX J0720.4–3125 having an earlier spectral type than the earliest current member of Tr 10 (four B3 stars [126]). Tr 10 has been previously suggested to host the birth place of RX J0720.4–3125 by [380] who considered the general direction of the NS's motion and [264] who investigated the probability of close approaches of the NS to nearby OB associations given in [126]. They varied the parallax within 2.8 ± 0.9 mas and the radial velocity in the range $v_r = \pm 0.935 v_t$ (0.935 corresponds to 1σ in v_r for random orientation, v_t is the transverse velocity) and found a separation between the NS and the centre of Tr 10 of 17 pc 0.7 Myr ago for $v_r \approx -20 \dots + 50 \,\mathrm{km/s}$, not inconsistent with the more complete calculations presented in this thesis.

Table 4.6 : Present-day para	meters of RX J1605.3+3249	and supernova	position	and	time fo	Эr
possible parent associations.	Column designations are as i	n Table 4.2.				

Assoc.	(μ, σ)	au	Pi	redicted pres	ent-day NS	parameter	s	Pro	edicted s	upernova p	osition	M _{prog}
			Vr	μ^*_{lpha}	μ_{δ}	V _{sp}	d_{NS}^{a}	$d_{\odot,SN}$	$d_{\odot,today}$	1	Ь	
	[pc]	[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[pc]	[pc]	[pc]	[°]	[°]	$[M_{\odot}]$
Ext. R CrA	(33.4, 2.3)	$0.42\substack{+0.07 \\ -0.04}$	577^{+123}_{-76}	$-43.9{\pm}1.7$	148.4±2.6	$612\substack{+128 \\ -72}$	303 ⁺³⁰ -33	104^{+7}_{-12}	103^{+4}_{-17}	$344.7^{+2.3}_{-1.4}$	$-5.1^{+1.8}_{-1.4}$	12 – 18
$Sco \ OB4^b$	(42.7, 18.4)	$3.4^{+0.3}_{-0.6}$	-21^{+19}_{-10}	$-42.3{\pm}1.3$	$149.8{\pm}2.5$	266^{+38}_{-33}	$385^{+50}_{-62} \\$	983^{+30}_{-12}	944_{-11}^{+29}	$351.6^{+0.6}_{-0.7}$	$2.5^{+1.0}_{-0.3}$	42 - 89
Octans	(103.5, 25.7)	$0.53\substack{+0.09 \\ -0.08}$	548^{+159}_{-34}	$-43.6{\pm}1.7$	$148.6{\pm}2.6$	664^{+87}_{-107}	370^{+44}_{-35}	140^{+6}_{-19}	139^{+7}_{-19}	$326.3^{+1.9}_{-7.5}$	$-26.7^{+2.7}_{-5.4}$	10 - 11

^aInstead of the current parallax π (as in Table 4.2) the current distance of RX J1605.3+3249 is given here since no parallax was measured.

^bUsing the [221] distribution for NS space velocities in the case of Sco OB4 it was found that the absolute radial velocity v_r of RX J1605.3+3249 is small. To achieve better statistics and a clear peak in the d_{min} distribution to be able to adapt the theoretical curves, the calculations were repeated assuming a uniform v_r distribution. The results for the latter are given here. They did not change significantly.

Figure 4.7: Panels as in Fig. 4.1 for encounters between RX J1605.3+3249 and HIP 89394 that occurred inside the Octans association. The solid curves drawn in the d_{min} histograms (bottom panel) represent the theoretically expected distribution (equation 3.3) with $\mu = 0$ and $\sigma = 2.5$, adapted to the first part of the histogram.

Since the radial velocity of RX J0720.4–3125 would be rather small if it originated from Tr 10, it might be possible to detect a bow shock (see section 4.1.1 for another example), hence, further constrain v_r .⁵³

4.1.3 RX J1605.3+3249

Three associations/clusters were found that could have hosted the supernova in which RX J1605.3+3249 was born: Ext. R CrA, Sco OB4 and the Octans association. In Table 4.6, the position of the supernova and the properties RX J1605.3+3249 would currently have if it was born in the respective association are given. In the last column an estimate of the mass of the progenitor star derived from the lifetime of the progenitor star is given. Note that although the proposed progenitor mass of $42-89 \text{ M}_{\odot}$ in the case of Sco OB4 is rather high and black holes are expected to form above $\approx 30 \text{ M}_{\odot}$ [214] rather than NSs, in binary systems, NS are expected to form for masses higher than $\approx 40-80 \text{ M}_{\odot}$ [29]. Hence, all three associations are still possible parent associations although the present mass

⁵³High resolution imaging at VLT/FORS (proposal by Vogt, Hohle, Eisenbeiß) were carried out in 2011/2012 and are currently being analysed by M. Hohle and T. Schmidt.

function of the Octans association shows only least evidence that a supernova progenitor was formed in this association.

One former companion candidate was identified, namely HIP 89394 (see appendix E.12). The proposed encounter supports a nearby origin of RX J1605.3+3249 (possibly in Octans) ≈ 0.4 Myr in the past (Fig. 4.7).

HIP 89394 was classified as FOII star by [232], and revised by [395] to be Am, i.e. it is metal-rich. It is treated as a possible former companion candidate here. The predicted current parameters of RX J1605.3+3249 and the predicted supernova position and time are summarised in Table 4.7.

Table 4.7: Predicted current parameters of RX J1605.3+3249 and supernova position and time if HIP 89394 was the former companion.

Predicted preser	Predicted present-day parameters of							
RX J16	RX J1605.3+3249							
v _r [km/s]	626^{+209}_{-56}							
<i>d_{NS}</i> [pc]	303^{+54}_{-40}							
$\mu^*_{lpha}~[{\sf mas}/{\sf yr}]$	-43.7 ± 1.7							
$\mu_{\delta}~[{\sf mas/yr}]$	148.6 ± 2.6							
<i>v_{sp}</i> [km/s]	657^{+183}_{-84}							
Predicted super	rnova pos. and time							
<i>d</i> _{⊙,SN} [pc]	93^{+17}_{-16}							
$d_{\odot,today}$ [pc]	93^{+15}_{-16}							
/ [°]	$335.6^{+2.7}_{-1.0}$							
b [°]	$-16.7^{+2.7}_{-1.6}$							
au [Myr]	$0.42\substack{+0.07 \\ -0.06}$							

Designations are as in Table 4.1. Note that the NS distance d_{NS} is given instead of π . The predicted radial velocity v_r of HIP 89394, which has no v_r measured yet, is $v_{r,run} = 117^{+99}_{-34}$ km/s.

The predicted supernova would have been very recent (\approx 0.4 Myr ago) and nearby (\approx 100 pc). Its position is not far from the Galactic plane; however, in the COMPTEL 1.8 MeV map [136] there is a feature centred at $(I, b) = (334^{\circ}5, -16^{\circ}6)$ (Fig. 4.8). According to SNR expansion theory (section 1.3), a SNR expanding into the ISM with a volume density of $n = 1 \, \mathrm{cm}^{-3}$ would have a size of $\approx 46 \, \mathrm{pc}$ after 0.43 Myr. At a distance of 100 pc, this corresponds to an angular size of the SNR of $\approx 25^{\circ}$.⁵⁴ Integrating the flux over a circle with 25° diameter around the feature⁵⁵ and subtracting emission from the Galactic centre, a total flux of $\approx 9 \cdot 10^{-6}$ photons \cdot cm⁻² \cdot s⁻¹ is obtained (see appendix D.1). This yields an ejected mass of ^{26}Al in the supernova of $\approx 2.4\cdot 10^{-5}\,\text{M}_\odot$ corresponding to a mass of the progenitor star of $pprox 12 - 14 \, \mathsf{M}_{\odot}$ [301, 548] (Fig. 1.2).

The progenitor mass derived from the lifetime of the progenitor star is $10-11 \text{ M}_{\odot}$. This is in rough agreement with the estimates from ²⁶Al. This mass corresponds to spectral type B1 on the main sequence.

All high probability Octans members in the list by [498] are F to K type stars, hence very low mass stars. From the Octans present mass function it might be possible within 1.5σ that there was one $10 M_{\odot}$ star in Octans (section 2.1.2).

To confirm or reject its BSS status, a proposal for high resolution spectroscopy of HIP 89394 was submitted to VLT/UVES to detect an overabundance of α elements as supernova debris material (Neuhäuser, Dincel, Przybilla, Tetzlaff, Hohle).

⁵⁴Note that a distance of 100 pc might be close to the edge of the Local Bubble. If the supernova position was inside the Local Bubble, the SNR would be larger than 100 pc in radius.

⁵⁵Due to the large size of the circle there is not significant difference when centering the area at the derived supernova position (I, b) = (336°.6, -16°.7).

Figure 4.8: Past trajectories for RX J1605.3+3249 and the former companion candidate HIP 89394 projected on a Galactic coordinate system. Symbols mark present positions, dashed lines 1σ error bars. The dashed-dotted line indicates the boundaries of the Octans association. Contour lines show the COMPTEL 1.8 MeV map [136]. A marginal feature close to the encounter position is situated at $(I, b) = (334^\circ; 5, -16^\circ; 6)$.

4.2 The Three Musketeers

The "Three Musketeers" [27] are three young ($\tau_{char} \approx 10^5 \text{ yr}$) pulsars. Their X-ray spectra are best modeled with two blackbodies with different normalisations and a power law [121], where the power law is dominant above energies of 1 - 2 keV [122, 226].

4.2.1 PSR J0633+1746 – The Geminga Pulsar

The transverse velocity of the Geminga Pulsar (PSR J0633+1746) is $v_t = 214^{+73}_{-58}$ km/s. A bow shock was first detected in XMM observations and the inclination angle to the line of sight was constrained to $i > 60^{\circ}$ [73].⁵⁶ This lower limit on i implies a maximum radial velocity modulus of $|v_r| \leq 250$ km/s (for $3\sigma v_t$).

The Orion OB1 association was found to be the only plausible parent association for the Geminga Pulsar (possible birth place inside the association, R_{crit} , and NS v_r consistent with the bow shock). Ori OB1 was first suggested by [458] as the birth place of Geminga using a set of different distances and radial velocities for Geminga and a proper motion of $(\mu_{\alpha}^*, \mu_{\delta}) = (140, 100) \text{ mas/yr}$ [40] available at that time (differing in μ_{δ} by 6σ from the most recent value by [156]). For a distance of Geminga of 400 pc (i.e. too large, the parallactic distance is 250^{+120}_{-61} pc [156]) and reasonable radial velocity ($\approx -100 \text{ km/s}$), they found that Geminga could be the remnant of a runaway star that was ejected from Ori OB1a or was born in the λ Ori (also known as Collinder 69) association ≈ 0.35 Myr ago. Using the most recent distance of Geminga (250^{+120}_{-61} pc [156]), a current radial velocity of $\approx -300 \text{ km/s}$ is required for an origin in the λ Ori association, being inconsistent with the v_r values estimated from the bow shock (see above).

Ori OB1 was divided into four groups of different ages [44] with Ori OB1a being the oldest ($\approx 11 \text{ Myr}$) [61]. The group Ori OB1d which is also known as the Trapezium cluster is only

 $^{^{56}}$ Note that the published limit on the inclination angle of $< 30^\circ$ is given with respect to the plane of the sky.

Table 4.8: Present-day parameters of the Geminga Pulsar and supernova position and time for possible parent associations. Column designations are as in Table 4.2. For case * a radial velocity distribution derived from the one for pulsar space velocities by [221] was used, for cases # a uniform v_r distribution in the range of -300 to +300 km/s was adopted.

Assoc.	(μ, σ)	au	Pr	edicted pres	ent-day NS	parameter	s	Pr	edicted s	upernova	position	M _{prog}
			Vr	μ^*_{lpha}	μ_{δ}	Vsp	π	$d_{\odot,SN}$	$d_{\odot,today}$	1	Ь	
	[pc]	[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[mas]	[pc]	[pc]	[°]	[°]	$[M_{\odot}]$
Ori OB1*	(51.9, 3.1)	pprox 0.4	187^{+171}_{-58}	142.1±1.2	107.5±1.2	417^{+143}_{-32}	$2.1^{+0.2}_{-0.1}$	376^{+23}_{-8}	400^{+13}_{-14}	$199.7_{-0.1}^{+0.2}$	$-19.0\substack{+0.5\\-0.5}$	$\gtrsim 15$
	(51.8, 5.7)	pprox 0.7	-170^{+56}_{-28}	$142.2{\pm}1.2$	107.5±1.2	262^{+13}_{-16}	$4.1^{+0.5}_{-0.5}$	385^{+8}_{-10}	$410\substack{+4\\-6}$	$199.6\substack{+0.6 \\ -0.3}$	$-17.5\substack{+2.2 \\ -1.9}$	$\gtrsim 16$
Ori OB1 [#]	(50.7, 4.7)	$0.58\substack{+0.22 \\ -0.15}$	-127^{+70}_{-94}	142.2±1.2	107.5±1.2	263^{+29}_{-24}	$4.0\substack{+0.6\\-1.2}$	386^{+12}_{-16}	399^{+11}_{-15}	$199.8\substack{+0.4 \\ -0.5}$	$-19.1\substack{+2.9 \\ -1.5}$	$\gtrsim 16$
Ori OB1a [#]	(8.7, 1.4)	$0.58^{+0.14}_{-0.17}$	$-113\substack{+117\\-29}$	142.1±1.2	107.6±1.2	219^{+35}_{-12}	$3.9^{+0.8}_{-0.8}$	323^{+4}_{-4}	336^{+6}_{-2}	$199.9\substack{+0.3\\-0.2}$	$-18.7^{+0.5}_{-0.4}$	16 — 26

Figure 4.9: Proposed region of the supernova of the Geminga progenitor in the COMPTEL 1.8 MeV map [136, 416] (the unit of the contours is cm⁻²s⁻¹sr⁻¹). The derived supernova centre at $(I, b) \approx (200^{\circ}, -19^{\circ})$ (Table 4.8) is close to the brightest feature in the Orion region centred at $(I, b) \approx (201^{\circ}, -17^{\circ})$.

1 Myr old [61], hence too young to have already experienced a supernova. It contains too few stars to determine its distance [62]. For those reasons, it was not further regarded as potential birth place of Geminga. The Geminga Pulsar approaches closest to group a, for groups b and c no encounters were found. The present NS parameters in case it was born in Ori OB1a are given in Table 4.8. The current radial velocity needed is $\approx -100 \text{ km/s}$ and well within the v_r range estimated from the bow shock.

It can be concluded that Ori OB1a is the parent association of the Geminga Pulsar. From the lifetime of the progenitor star, i.e. the difference between the association age (11 Myr) and flight time of the NS ($\tau_{char} \approx 0.6$ Myr), the progenitor mass is estimated to be $\approx 16-26$ M_{\odot} using evolutionary models from [277, 327, 494].

In the COMPTEL 1.8 MeV map [136, 416] there is a well pronounced feature at $(l, b) \approx (201^{\circ}, -17^{\circ})$ (brightest feature in Orion, Fig. 4.9). The SNR (if expanding into an ISM with a volume density of $n = 1 \text{ cm}^{-3}$) would have a radius of $\approx 50 \text{ pc}$ after 0.6 Myr (section 1.3). At a distance of $\approx 320 \text{ pc}$, this translates into an angular radius of the SNR of $\approx 9^{\circ}$. Integrating the flux over a circle with 9° radius around the feature, a total flux of $\approx 6.8 \cdot 10^{-6} \text{ photons cm}^{-2} \text{ s}^{-1}$ is obtained (see appendix D.1). This corresponds to a mass of ^{26}Al of $\approx 2 \cdot 10^{-4} \text{ M}_{\odot}$ that was ejected during the supernova translating into a progenitor

Figure 4.10: Nearby young NSs located inside an 18° circle (dashed) around the centre of the Monogem SNR (solid circle), PSR J0659+1414 (star) and Geminga (diamond). Arrows represent the scaled transverse velocities ($v_t = 4.74 \mu/\pi$)

mass of $\approx 30 \,M_\odot$ [548] (or $\approx 50 - 60 \,M_\odot$ [301]), in rough agreement with the estimate from the progenitor lifetime.⁵⁷

Doubts for this association could be raised because the kinematic age of the Geminga Pulsar of $0.58^{+0.14}_{-0.17}$ Myr is larger than its characteristic age of 0.34 Myr [243], however the characteristic age only gives an estimate of the order of magnitude and depends upon different assumptions such as the braking index (emission mechanism) and birth spin period (section 1.4). Moreover, if the braking index *n* is smaller than 3 (this is the case for e.g. the Vela Pulsar [320]) as it could be due to pulsar winds [550, 551], the real pulsar age is larger than its characteristic age. Assuming an initial spin period of 20 ms as estimated for the Crab Pulsar [341], the braking index of the Geminga Pulsar would be $n \approx 2.1$ if it was ≈ 0.6 Myr old.

No plausible former companion candidate was found for the Geminga Pulsar (appendix E.4). [458] suggested that Geminga is the remnant of an O or B type star that was ejected from the Orion complex, hence a runaway star itself. As it was found that the supernova can easily be placed into the Ori OB1a association, this scenario is not necessary, but not ruled out.

4.2.2 PSR J0659+1414

PSR J0659+1414 is the central source of the 25° diameter SNR G203.0+12.0 centred at $(I, b) \approx (203^\circ, 12^\circ)$ that is called the Monogem Ring [65, 393, 414]. The pulsar PSR J0659+1414 has been associated with the SNR [393, 491, 492] due to its closeness to the apparent centre of the ring, the agreement in distance (PSR: 288^{+33}_{-27} pc [60], SNR: 300 - 600 pc [414]) and age (PSR: $\tau_{char} = 0.11$ Myr [222], and expansion age of the SNR: 0.08 - 0.2 Myr [414]), see also [492]. However, since the proper motion vector of PSR J0659+1414 points towards the centre of the ring (Fig. 4.10), there have been doubts about the association.

⁵⁷Probably multiple (earlier) supernovae contributed to the presently seen 1.8 MeV emission, hence it is expected to derive a slightly higher ejected ²⁶Al mass.

Assuming typical NS velocities of 100 - 500 km/s (here, only transverse component) and a distance of 300 pc, a NS would have travelled up to pprox 18 $^\circ$ within 0.2 Myr. In the ATNF pulsar database, however, only one other pulsar with a characteristic age up to a few Myr (to allow for a one order of magnitude uncertainty for an expected SNR age of a few 10⁵ yr) and distance up to 1 kpc lies inside an 18° circle around the SNR centre, the Geminga Pulsar. However, Geminga is located far from the centre of the ring (Fig. 4.10). Moreover, the most probable birth place of the Geminga Pulsar is the Ori OB1a association (section 4.2.1). Hence, it is unlikely that Geminga is connected with the Monogem Ring. Although very young, the size of the Monogem Ring is large, at 300 pc distance, its diameter is \approx 130 pc. This can be explained if the explosion occurred in a medium of low density ($n \approx 5 \cdot 10^{-2} \,\mathrm{cm}^{-3}$ if standard explosion energy assumed, $E~=~10^{51}\,\mathrm{erg}$). Another possibility might be an extremely high explosion energy ($pprox 10^{52} - 10^{53} \, {
m erg}$ in normal ISM with $n = 1 \, {
m cm}^{-3}$); see also [414]. Probably, the released energy depends upon the mass of the progenitor star such that it increases for higher mass stars [170]. Then, a black hole might have formed that is not visible. However, there is indication that the explosions of lower mass (pprox 8 - 12 M $_{\odot}$) and very high mass stars ($\gtrsim 20 \, M_{\odot}$, black hole progenitors) release less energy than the intermediate mass ones ([510]; T. Janka, priv. comm.).

To exclude or propose other possible formation sites of the pulsar, it was investigated whether it could have been born within a young association or cluster. The analysis and discussion are presented in appendix E.5. If PSR J0659+1414 was not born in the supernova that created the Monogem Ring SNR, Mon OB1 and the YLA Tuc-Hor, β Pic-Cap, AB Dor and the Columba (ColA) and Argus associations remain as possible parent associations (although the YLA seem less likely due to their present mass functions, see section 2.1.2). However, it seems most likely that the Monogem SNR and PSR J0659+1414 are associated because they agree in distance and roughly in age. That the pulsar is located somewhat off-set the nominal centre of the X-ray SNR and apparently moving towards it is not inconsistent with that because the SNR shell is highly distorted. In the X-ray image (right panel of Fig. 4.11) an apparent blowout away from the Galactic plane is seen, indicating a lower density of the surrounding medium whereas on the opposite side the remnant seems less expanded indicating a higher ISM density. This agrees well with the 1.8 MeV γ intensity (COMPTEL, ²⁶Al, left panel of Fig. 4.11) that is lower in the direction of the blowout (less dense swept up ISM material) than in the opposite direction (denser swept up ISM material). Since it is not possible to derive the true centre of the SNR, i.e. the position of the explosion, from those images, it is plausible to accept PSR J0659+1414 as the associated pulsar.58

Counting the COMPTEL 1.8 MeV flux within a 25° diameter circle around the past position of the pulsar yields an ejected ²⁶Al mass of $\approx 1.5 \cdot 10^{-4} M_{\odot}$ (see appendix D.1) corresponding to a progenitor mass of $\approx 14 M_{\odot}$ [301] to $\approx 30 M_{\odot}$ [548] (Fig. 1.2).

⁵⁸Moreover, supernova explosions are asymmetric [50, 137, 209, 246, 441, 546].

Figure 4.11: The Monogem Ring as seen in γ rays (left panel, COMPTEL 1.8 MeV, ²⁶Al, the unit of the contours is cm⁻²s⁻¹sr⁻¹) and X-rays (right panel, ROSAT all-sky survey, 0.25 – 0.75 keV, figure taken from [492]). PSR J0659+1414 is marked with a yellow star in the left image and a white cross in the right image, respectively. The yellow 25° circle shows the remnant centred on the pulsar position 0.1 Myr ago [τ_{char} , end point of the yellow solid line, (I, b) = (201°, 7°)]. The red and magenta circles of the same size show the SNR in 1.8 MeV γ rays [centred at (I, b) = (198°, 10°)] and X-rays [centred at (I, b) = (203°, 12°) [414]], respectively (the white circle in the right image is centred on the present pulsar position). Note the discussion on the morphology of the ring in the text.

To strengthen the association between the Monogem SNR and PSR J0659+1414 it was searched for a former companion, if existing, that is now a runaway star. No runaway star was found to have possibly experienced a close encounter with PSR J0659+1414 inside the Monogem Ring ≈ 0.1 Myr in the past. However, this is consistent with the NS progenitor being a single runaway star itself since the supernova position (Monogem Ring) lies outside any young stellar association. The progenitor star might have been ejected from the nearby Orion complex.

It was also checked whether a runaway could be connected with PSR J0659+1414 if the NS was born outside the Monogem Ring, i.e. that would support a non-association between the SNR and the pulsar. Four possible former companion candidates were found that support an origin in the YLA 0.4 - 1.1 Myr ago (appendix E.5). However, the association between PSR J0659+1414 and the Monogem Ring SNR is considered more likely.

4.3 Other Neutron Stars – Possible Supernovae Within 500 Parsecs

4.3.1 PSR J0034-0721

If it is younger than 5 Myr (although the characteristic age is 36.6 Myr), PSR J0034-0721 was possibly born in the Argus association although it is questionable whether the Argus association could have hosted a supernova (section 2.1.2). Furthermore, the predicted

Predicted present-day parameters of PSR J0034–0721								
v _r [km/s]	504^{+96}_{-87}							
$\pi~[{\sf mas}]$	$0.9\substack{+0.1\\-0.1}$							
μ^*_lpha [mas/yr]	10.4 ± 0.1							
$\mu_\delta~[{\sf mas/yr}]$	-11.1 ± 0.2							
<i>v_{sp}</i> [km/s]	512^{+94}_{-87}							
Predicted supernova pos. and								
time								
<i>d</i> _{⊙,SN} [pc]	163^{+18}_{-32}							
<i>d</i> _{⊙,today} [pc]	130^{+19}_{-24}							
/ [°]	$81.5^{+1.4}_{-0.7}$							
b [°]	$6.9^{+1.7}_{-2.0}$							
au [Myr]	$1.85\substack{+0.47\\-0.36}$							
d_{Argus} [pc] (μ, σ)	(78.8, 31.3)							

Table 4.9: Predicted current parameters of PSR J0034–0721 if it was born in the Argus association.

Designations are as in Table 4.1.

supernova position lies at the association edge at \approx 80 pc from the Argus centre (nominal association radius 74 pc [498], Table A.1; $R_{crit} = 76$ pc). Nevertheless, a nearby recent origin is possible for that NS. If so, PSR J0034–0721 would have present properties as given in Table 4.9.

Five former companion candidates were found (appendix E.1) – HIP 52093, HIP 97198, HIP 101938, HIP 115263 and HIP 115755. The present parameters of PSR J0034–0721 if the respective runaway star was the former companion are given in Table 4.10. In that table, for two cases the mass of the supernova progenitor M_{prog} derived from progenitor lifetime (here: age of the runaway star minus the time τ since the potential supernova; HIP 52093: 10 ± 7 Myr, HIP 101938: 7 ± 3 Myr, section 2.3) are given. Since the stellar ages are rather uncertain, only lower limits on M_{prog} were obtained. Note that the stellar ages are much smaller than the age of the Argus association (40 Myr [498]), however very uncertain.

4.3.2 PSR J0835–4510 – The Vela Pulsar

PSR J0835-4510, the Vela Pulsar, is the central source of the Vela SNR [288]. There is no doubt about the association between the pulsar and the remnant ([11, 16]; S. Popov, priv. comm.) although the projected pulsar path does not cross the geometrical centre of the remnant. However, it is unlikely that the SNR expands symmetrically (cf. Monogem Ring SNR, section 4.2.2). Furthermore, distance ($\approx 250 - 280 \,\text{pc}$ for the SNR [54, 78], 290 pc for the pulsar [138]) and age ($\approx 0.01 \,\text{Myr}$ for the SNR [72, 90], $\tau_{char} = 0.0113 \,\text{Myr}$ for the pulsar, [139]) of both objects are in excellent agreement.

HIP Assoc./cl. τ Predicted present-day NS parameters Predicted supernova position M_{prog} Vr μ^*_{α} $d_{\odot,today}$ 1 Ь μ_{δ} Vsp π $d_{\odot,SN}$ [pc] [Myr] [km/s] [mas/yr] [mas/yr] [km/s] [mas] [pc] [pc] [°] [°] [M_☉] 732^{+116}_{-175} $10.4{\pm}0.1~-11.1{\pm}0.2~726^{+111}_{-169}~1.0^{+0.1}_{-0.1}$ 113^{+19}_{-16} 101^{+8}_{-21} $11.4^{+15.3}_{-18.4}$ $1.73^{+0.30}_{-0.42}$ $81.5^{+3.2}_{-2.3}$ 52093 $\gtrsim 9$ Argus $811^{+71}_{-101} \ 1.0^{+0.1}_{-0.1}$ 83^{+7}_{-10} 97198 Argus $1.28^{+0.20}_{-0.17}$ 786+92 $10.4{\pm}0.1$ $-11.1{\pm}0.2$ 101^{+8}_{-13} $78.1^{+1.3}_{-1.2}$ $33.5^{+8.1}_{-1.9}$ 605^{+128}_{-40} $606\substack{+119 \\ -51}$ $1.0^{+0.1}_{-0.1}$ 113^{+16}_{-12} 92^{+13}_{-11} $82.9^{+0.7}_{-0.9}$ $7.5^{+1.3}_{-1.8}$ 101938 $10.4{\pm}0.1~-11.1{\pm}0.2$ $\gtrsim 18$ Argus $89.4_{-0.8}^{+0.7}$ $1.64^{+0.37}_{-0.28}$ 555^{+48}_{-93} 533^{+95}_{-47} $0.9^{+0.1}_{-0.1}$ 183^{+14}_{-19} 168^{+15}_{-15} $-34.2^{+2.1}_{-1.4}$ 115263^s $10.4 \pm 0.1 - 11.1 \pm 0.2$ $1.37\substack{+0.13\\-0.12}$ 663^{+75}_{-150} 692^{+74}_{-125} $1.0^{+0.1}_{-0.1}$ 122^{+6}_{-12} 105^{+6}_{-10} $86.7^{+1.0}_{-0.9}$ 15.3+1.4 115755 $10.4{\pm}0.1$ $-11.1{\pm}0.2$ Argus

Table 4.10: Present-day parameters of PSR J0034–0721 and supernova position and time for former companion candidates and the respective parent association/cluster. Column designations are as in Table 4.5.

Note that it is possible that the derived value for v_r is larger than that of v_{sp} because v_r is heliocentric whereas v_{sp} is the peculiar velocity of the NS that reflects its kick velocity.

The predicted radial velocities v_r of HIP 52093, HIP 97198 and HIP 101938, which have no v_r measured yet, would be $v_{r,HIP52093} = 113^{+116}_{-51}$ km/s, $v_{r,HIP97198} = 55^{+20}_{-23}$ km/s and $v_{r,HIP101938} = 40^{+17}_{-15}$ km/s, respectively. For some runaway stars, no age estimation was possible (hence, no M_{prog}). They are considered young stars because of their luminosity class (section 2.3.1).

Figure 4.12: Panels as in Fig. 4.1 for encounters between the Vela Pulsar and HIP 42041. Only those runs are shown for which both stars were within 21 pc from the nominal centre of the Vela SNR (21 pc corresponds to an angular radius of 4° at a distance of 300 pc). The solid curve drawn in the d_{min} histogram (bottom panel) represents the theoretically expected distribution (equation 3.3) with $\mu = 6.6$ pc and $\sigma = 2.8$ pc, adapted to the first part of the histogram. The encounter time is $\tau = 0.12^{+0.10}_{-0.05}$ Myr.

To improve the pulsar and SNR ages, it is searched for a runaway star that could be the former companion of the Vela Pulsar progenitor if it exists.

For only one star from the Hipparcos runaway star catalogue (section 2.3), HIP 42041, close encounters with the Vela Pulsar within the past 10^5 yr (note that this is $10\tau_{char}$) are possible (assuming reasonable v_r values for the runaway star which has no measured v_r yet). However, the distribution of separations d_{min} suggests a recent fly-by of the two stars rather than a former binary system ($\mu = 6.6$ pc, Fig. 4.12).

While searching for early type runaway stars within SNRs, [8] found two stars within the boundaries of the Vela SNR, namely the candidate found also here, HIP 42041, and another star, HIP 42007. The latter is a B8/9V star with an age of 150 ± 14 Myr (section 2.3), hence too old to be associated with the young Vela Pulsar. However, the Vela region is populated with many SNRs making it difficult to apply the method of [8] (B. Dincel, priv. comm.).

The overall results do not change when adopting a broad v_r distribution (uniform or according to [221] in the range of -1500 - +1500 km/s) or a narrow one with $v_r = 60 \pm 50 \text{ km/s}$

Assoc.	(μ, σ)	au	P	redicted pres	ent-day NS	parameter	s	Predicted supernova position				
			Vr	μ^*_{lpha}	μ_{δ}	V _{sp}	π	$d_{\odot,SN}$	$d_{\odot,today}$	Ι	Ь	
	[pc]	[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[mas]	[pc]	[pc]	[°]	[°]	$[M_{\odot}]$
TWA	(12.2, 3.8)	$0.64\substack{+0.27 \\ -0.19}$	466^{+80}_{-67}	-46.3±1.0	21.3±0.5	460^{+94}_{-52}	$3.0^{+0.4}_{-0.3}$	$52\substack{+6\\-6}$	54^{+6}_{-6}	$284.1^{+3.3}_{-2.5}$	$28.9^{+1.7}_{-2.3}$	10 - 37
Tuc-Hor	(61.2, 10.9)	$0.54\substack{+0.10 \\ -0.10}$	466^{+80}_{-67}	-46.3 ± 1.0	$21.3{\pm}0.5$	460^{+94}_{-52}	$3.0\substack{+0.4\\-0.3}$	52^{+6}_{-6}	54^{+6}_{-6}	$278.0^{+3.5}_{-3.6}$	$23.8^{+2.7}_{-3.0}$	7 - 30
eta Pic-Cap	(50.0, 14.2)	$0.61\substack{+0.11 \\ -0.13}$	494^{+103}_{-119}	-46.3 ± 1.0	$21.3{\pm}0.5$	513^{+101}_{-117}	$3.2\substack{+0.3\\-0.4}$	50^{+9}_{-10}	46^{+11}_{-8}	$299.4^{+3.2}_{-3.6}$	$36.9\substack{+1.6\\-1.6}$	7 - 36
HD 141569	(4.7, 2.8)	$0.88\substack{+0.13 \\ -0.09}$	419^{+87}_{-20}	-46.3 ± 1.0	$21.3{\pm}0.5$	447^{+65}_{-43}	$3.0\substack{+0.2\\-0.2}$	109^{+3}_{-4}	96^{+4}_{-3}	$12.5^{+2.6}_{-3.9}$	$42.3_{-1.1}^{+0.9}$	42 - 50
Columba	(58.4, 11.2)	$0.45\substack{+0.07 \\ -0.09}$	458^{+163}_{-59}	-46.3 ± 1.0	$21.3{\pm}0.5$	535^{+82}_{-139}	$3.2\substack{+0.3\\-0.4}$	84^{+5}_{-3}	93^{+4}_{-5}	$253.2^{+1.7}_{-3.4}$	$-0.2^{+2.1}_{-3.3}$	8 – 9
Carina	(40.1, 1.5)	$0.53\substack{+0.13 \\ -0.07}$	471^{+82}_{-80}	-46.3 ± 1.0	$21.3{\pm}0.5$	478^{+81}_{-81}	$3.0\substack{+0.4\\-0.3}$	71^{+6}_{-3}	79^{+5}_{-4}	$258.3^{+2.8}_{-2.2}$	$6.0^{+2.5}_{-2.7}$	8 - 9
Octans	(52.8, 2.2)	$0.73\substack{+0.21 \\ -0.11}$	364^{+54}_{-76}	$-46.2{\pm}1.0$	$21.3{\pm}0.5$	345^{+76}_{-54}	$2.8\substack{+0.4\\-0.3}$	98^{+7}_{-6}	108^{+6}_{-7}	$261.5^{+2.1}_{-1.8}$	$9.1^{+2.2}_{-2.1}$	7 – 8
Argus	(71.7, 17.1)	$0.63\substack{+0.13 \\ -0.13}$	462^{+135}_{-81}	-46.3 ± 1.0	$21.3{\pm}0.5$	489^{+110}_{-105}	$3.1\substack{+0.4\\-0.3}$	56^{+10}_{-11}	54^{+8}_{-14}	$314.8^{+7.1}_{-4.6}$	$42.9\substack{+1.6\\-1.4}$	10 - 11
Col 140ª	(0, 3.8)	$0.82\substack{+0.12 \\ -0.19}$	74^{+57}_{-15}	-46.3 ± 1.0	$21.3{\pm}0.5$	87^{+64}_{-16}	$2.8\substack{+0.3\\-0.3}$	291^{+7}_{-5}	305^{+5}_{-5}	$245.1\substack{+0.5 \\ -0.4}$	$-7.8^{+0.6}_{-0.4}$	7 – 8
Col 132ª	(0, 4.1)	$1.01\substack{+0.21 \\ -0.14}$	$-50\substack{+20 \\ -28}$	$-46.4{\pm}1.0$	$21.2{\pm}0.5$	$91\substack{+9\\-4}$	$3.0\substack{+0.2\\-0.2}$	386^{+4}_{-3}	406^{+2}_{-3}	$243.4\substack{+0.6 \\ -0.3}$	$-9.3\substack{+0.5 \\ -0.3}$	8 – 9

Table 4.11: Present-day parameters of PSR J0630-2834 and supernova position and time forpossible parent associations. Column designations are as in Table 4.2.

^a The radial velocity found is very small. Therefore, the Monte Carlo simulation was repeated adopting a uniform radial velocity distribution (-1500 - +1500 km/s). The results for the latter are given here. They did not change significantly. Note that it is possible that the derived value for v_r is larger than that of v_{sp} because v_r is heliocentric whereas v_{sp} is the peculiar velocity of the NS that reflects its kick velocity.

of the Vela Pulsar. The latter is based on that it has been argued that the axis of rotation of the Vela Pulsar is aligned with its motion [74, 138, 216]. Although this might not be exactly true (the position angles of the proper motion and rotation axes are $\approx 302^{\circ}$ and $\approx 310^{\circ}$, respectively [138, 216]), the offset of the two axes is small. This offers the opportunity to estimate the pulsar's space velocity, hence its radial velocity. Given its proper motion and parallax, the transverse velocity of the Vela Pulsar is $v_t = 79^{+5}_{-4}$ km/s. Adopting the angle between the rotation axis (hence approximately axis of motion) and the line of sight given by [216] as $\approx 53^{\circ}$, this yields a (low) space velocity of ≈ 100 km/s, hence radial velocity of ≈ 60 km/s.

4.3.3 PSR J0630–2834 and PSR J0953+0755

For PSRJ0630–2834 and PSRJ0953+0755, it was found that the birth places of both stars probably lie in the Solar neighbourhood (see below), if they were born not earlier than 5 Myr ago. The characteristic ages of PSRJ0630–2834 and PSRJ0953+0755 are 17.5 Myr and 2.77 Myr (ATNF pulsar database), respectively. PSRJ0953+0755 could well be older than 5 Myr.

Ten associations and clusters were found to be birth place candidates for PSR J0630-2834. Eight of them are YLA with distances no farther than $\approx 150 \,\text{pc}$, the other two lie at $\approx 300 - 400 \,\text{pc}$ from the Sun. For the latter a very small spatial NS velocity is predicted, Table 4.11. Although such small kick velocities are possible for individual cases, they are unlikely. An origin of PSR J0630-2834 in the Solar neighbourhood is also supported by the identification of eight runaway stars that are former companion candidates to the NS (appendix E.3). All of these putative encounters could have occurred within the YLA.

HIP	Assoc./cl.	au	Р	redicted pres	sent-day NS	paramete	Predicted supernova position					
			Vr	μ^*_{lpha}	μ_{δ}	Vsp	π	$d_{\odot,SN}$	$d_{\odot,today}$	1	Ь	
	[pc]	[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[mas]	[pc]	[pc]	[°]	[°]	$[M_{\odot}]$
37385	Octans	$0.69\substack{+0.13 \\ -0.12}$	290^{+109}_{-39}	-46.4±1.0	21.1±0.5	279^{+91}_{-50}	$2.7^{+0.3}_{-0.2}$	178^{+4}_{-8}	188^{+5}_{-8}	$248.0^{+1.0}_{-0.6}$	$-5.3^{+1.1}_{-0.4}$	$\gtrsim 16$
39121 ^s	ColA, CarA, Oct	$0.52\substack{+0.14 \\ -0.13}$	420^{+162}_{-54}	$-46.3 {\pm} 1.0$	$21.3{\pm}0.5$	422^{+146}_{-60}	$3.1\substack{+0.3\\-0.4}$	78^{+16}_{-23}	75^{+26}_{-16}	$255.0^{+3.3}_{-2.2}$	$2.1^{+3.1}_{-2.8}$	_
40326 ^s	ColA, CarA, Oct	$0.37\substack{+0.03 \\ -0.03}$	528^{+137}_{-35}	$-46.3 {\pm} 1.0$	$21.2{\pm}0.5$	550^{+97}_{-74}	$3.2\substack{+0.4\\-0.2}$	88^{+4}_{-4}	94^{+5}_{-5}	$248.0^{+0.9}_{-0.8}$	$-5.6\substack{+1.1 \\ -0.8}$	_
47018	Octans	$1.15\substack{+0.32 \\ -0.18}$	230^{+46}_{-49}	$-46.3 {\pm} 1.0$	$21.3{\pm}0.5$	200^{+71}_{-24}	$2.6\substack{+0.4\\-0.3}$	124^{+32}_{-6}	$146\substack{+23 \\ -14}$	$264.1\substack{+0.9 \\ -0.6}$	$12.1\substack{+0.8 \\ -0.8}$	-
47155	CarA, Oct	$0.57\substack{+0.21 \\ -0.16}$	476^{+75}_{-98}	$-46.2{\pm}1.0$	$21.3{\pm}0.5$	459^{+88}_{-85}	$3.2\substack{+0.2\\-0.6}$	58^{+12}_{-10}	61^{+13}_{-11}	$271.0^{+5.9}_{-1.2}$	$18.9^{+3.0}_{-2.8}$	-
48745	Octans	$1.17\substack{+0.30 \\ -0.22}$	194^{+63}_{-34}	$-46.3 {\pm} 1.0$	$21.3{\pm}0.5$	202^{+51}_{-44}	$2.8^{+0.3}_{-0.5}$	136^{+29}_{-17}	165^{+15}_{-33}	$264.3^{+0.8}_{-0.8}$	$12.1\substack{+0.9 \\ -0.6}$	-
50901	TWA, CarA, Oct	$0.57\substack{+0.25 \\ -0.15}$	$444\substack{+142 \\ -72}$	-46.3 ± 1.0	$21.3{\pm}0.5$	$440\substack{+139 \\ -67}$	$3.1^{+0.3}_{-0.3}$	45^{+18}_{-6}	45^{+15}_{-8}	$294.1\substack{+5.5 \\ -5.7}$	$31.5^{+4.8}_{-1.5}$	_
53759	TWA, CarA, Oct	$0.57\substack{+0.29 \\ -0.15}$	$502\substack{+103 \\ -95}$	-46.3 ± 1.0	$21.3{\pm}0.5$	431^{+128}_{-67}	$3.3\substack{+0.2\\-0.6}$	43^{+15}_{-7}	$45\substack{+15\\-8}$	$292.7^{+4.7}_{-4.5}$	$34.6^{+1.2}_{-4.1}$	_

Table 4.12: Present-day parameters of PSR J0630-2834 and supernova position and time for former companion candidates and the respective parent association/cluster. Column designations are as in Table 4.5.

Note that it is possible that the derived value for v_r is larger than that of v_{sp} because v_r is heliocentric whereas v_{sp} is the peculiar velocity of the NS that reflects its kick velocity.

For some runaway stars, no age estimation was possible (hence, no M_{prog}). They are considered young stars because of their luminosity class (section 2.3.1).

The predicted radial velocities v_r of HIP 47155, HIP 50901 and HIP 53759, which have no v_r measured yet, would be $v_{r,HIP47155} = 157^{+55}_{-43}$ km/s, $v_{r,HIP50901} = 118^{+27}_{-62}$ km/s and $v_{r,HIP53759} = 203^{+59}_{-77}$ km/s, respectively.

Table 4.13: Present-day parameters of PSR J0953+0755 and supernova position and time for possible parent associations. Column designations are as in Table 4.2.

Assoc	(μ, σ)	au	Pr	Predicted present-day NS parameters						Predicted supernova position				
			Vr	μ^*_{lpha}	μ_{δ}	V _{sp}	π	$d_{\odot,SN}$	$d_{\odot,today}$	Ι	Ь			
	[pc]	[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[mas]	[pc]	[pc]	[°]	[°]	$[\rm M_{\odot}]$		
TWA	(34.1, 2.8)	$0.53\substack{+0.24 \\ -0.12}$	353^{+90}_{-92}	$-2.1{\pm}0.1$	29.5±0.1	305^{+115}_{-63}	$3.8^{+0.1}_{-0.1}$	34^{+6}_{-3}	40^{+8}_{-4}	$259.4^{+3.6}_{-4.0}$	$6.6^{+7.4}_{-5.3}$	10 - 25		
Tuc-Hor	(8.8, 2.1)	$0.69\substack{+0.13 \\ -0.07}$	365^{+62}_{-30}	-2.1 ± 0.1	$29.5{\pm}0.1$	358^{+61}_{-31}	$3.8\substack{+0.1\\-0.1}$	38^{+3}_{-3}	39^{+5}_{-3}	$313.4_{-3.8}^{+8.3}$	$-52.8\substack{+1.9 \\ -2.3}$	7 - 30		
β Pic-Cap	(0, 25.4)	$0.54\substack{+0.05 \\ -0.11}$	344^{+170}_{-121}	-2.1 ± 0.1	$29.5{\pm}0.1$	337^{+175}_{-114}	$3.8\substack{+0.1\\-0.1}$	$25\substack{+10\\-5}$	$26\substack{+4\\-6}$	$296.6^{+9.9}_{-10.5}$	$-43.8^{+7.9}_{-7.1}$	7 - 36		
AB Dor	(31.7, 5.2)	$0.50\substack{+0.05 \\ -0.10}$	432^{+157}_{-47}	$-2.1{\pm}0.1$	$29.5{\pm}0.1$	$425\substack{+156 \\ -47}$	$3.8\substack{+0.1\\-0.1}$	22^{+3}_{-5}	$25\substack{+5\\-5}$	$291.4^{+9.1}_{-6.0}$	$-37.9^{+5.0}_{-7.8}$	4 – 9		
ColA	(55.5, 1.7)	$0.91\substack{+0.24 \\ -0.12}$	245^{+15}_{-21}	-2.1 ± 0.1	$29.5{\pm}0.1$	246^{+10}_{-27}	$3.8\substack{+0.1\\-0.1}$	39^{+4}_{-3}	49^{+5}_{-3}	$277.7^{+0.4}_{-1.8}$	$-21.6\substack{+1.3 \\ -1.6}$	8 – 9		
CarA	(8.3, 1.5)	$1.59\substack{+0.11 \\ -0.06}$	156^{+4}_{-9}	-2.1 ± 0.1	3.8±0.1	149^{+7}_{-5}	$3.8\substack{+0.1\\-0.1}$	60^{+4}_{-1}	78^{+4}_{-3}	$274.2^{+0.8}_{-1.2}$	$-17.8\substack{+1.2 \\ -1.5}$	8 – 9		
Octans	(39.4, 2.8)	$2.31^{+0.28}_{-0.27}$	110^{+24}_{-14}	$-2.1{\pm}0.1$	29.5±0.1	119^{+9}_{-23}	$3.8\substack{+0.1\\-0.1}$	76^{+19}_{-4}	98^{+25}_{-6}	$268.0^{+0.7}_{-1.2}$	$-9.9^{+1.5}_{-0.9}$	10 - 12		
Argus	(34.5, 5.9)	$0.57\substack{+0.05 \\ -0.12}$	344^{+165}_{-99}	-2.1 ± 0.1	29.5±0.1	337^{+168}_{-93}	$3.8\substack{+0.1\\-0.1}$	$32\substack{+6\\-3}$	$32\substack{+9\\-4}$	$301.8^{+24.0}_{-11.7}$	$-58.6\substack{+10.7\\-0.5}$	7 – 8		

Note that it is possible that the derived value for v_r is larger than that of v_{sp} because v_r is heliocentric whereas v_{sp} is the peculiar velocity of the NS that reflects its kick velocity.

The present parameters of PSR J0630—2834 if the respective runaway star was the former companion are given in Table 4.12.

Eight possible parent associations were found for PSR J0953+0755, all of them belong to the YLA. In either case, PSR J0953+0755 was born in a nearby supernova if it is not older than 5 Myr. The present parameters of PSR J0953+0755 if it was born in one of the YLA are given in Table 4.13. Also for PSR J0953+0755 an origin in the Solar neighbourhood is supported by the finding of eight former companion candidates (appendix E.8). The present NS parameters and time and place of the supernova for each case are given in Table 4.14. If PSR J0953+0755 was born inside the YLA, HIP 75769 and HIP 94899 might be excluded as former companion candidates since they are too young to be associated with the YLA although they could be blue stragglers as expected for BSS runaway stars. However, then their true age must be by a factor of a few larger than their apparent age.

Table 4.14: Present-day parameters of PSR J0953+0755 and supernova position and time for former companion candidates. Most of the possible encounters could have occurred inside any of the possible parent associations, hence nearby. Therefore, the listing of associations is omitted here. Column designations are as in Table 4.5.

HIP	au	P	redicted pres	ent-day NS	paramet	ers	Pr	M _{prog}			
		Vr	μ^*_{lpha}	μ_δ	Vsp	π	$d_{\odot,SN}$	$d_{\odot,today}$	1	Ь	
	[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[mas]	[pc]	[pc]	[°]	[°]	[M⊙]
33774	$1.79\substack{+0.26 \\ -0.22}$	157^{+24}_{-15}	$-2.1{\pm}0.1$	29.5±0.1	158^{+19}_{-19}	$3.8^{+0.1}_{-0.1}$	79^{+12}_{-10}	90^{+13}_{-12}	$297.7^{+2.1}_{-1.7}$	$-42.9^{+1.1}_{-1.7}$	_
40929	$0.67\substack{+0.08 \\ -0.13}$	372^{+9}_{-48}	-2.1 ± 0.1	$29.5{\pm}0.1$	365^{+5}_{-52}	$3.8^{+0.1}_{-0.1}$	35^{+3}_{-3}	43^{+3}_{-3}	$259.2\substack{+0.7 \\ -0.9}$	$7.0^{+1.1}_{-1.2}$	_
47904	$0.95\substack{+0.30 \\ -0.27}$	$126\substack{+106 \\ -19}$	-2.1 ± 0.1	$29.5{\pm}0.1$	157^{+41}_{-66}	$3.8\substack{+0.1\\-0.1}$	100^{+25}_{-14}	$114\substack{+26 \\ -19}$	$246.1^{+2.1}_{-1.5}$	$26.1^{+1.5}_{-4.1}$	_
53557	$0.70\substack{+0.15 \\ -0.09}$	309^{+44}_{-25}	-2.1 ± 0.1	$29.5{\pm}0.1$	303^{+47}_{-20}	$3.8^{+0.1}_{-0.1}$	34^{+4}_{-3}	42^{+5}_{-3}	$261.8\substack{+0.8 \\ -0.9}$	$2.6^{+1.6}_{-1.1}$	_
60134	$0.62\substack{+0.16 \\ -0.09}$	360^{+37}_{-57}	-2.1 ± 0.1	$29.5{\pm}0.1$	321^{+69}_{-24}	$3.8^{+0.1}_{-0.1}$	32^{+5}_{-3}	40^{+5}_{-4}	$258.9^{+1.1}_{-0.5}$	$6.1^{+2.2}_{-0.5}$	_
66057	$0.48\substack{+0.18 \\ -0.13}$	316^{+30}_{-11}	-2.1 ± 0.1	$29.5{\pm}0.1$	310^{+32}_{-7}	$3.8^{+0.1}_{-0.1}$	29^{+2}_{-2}	38^{+1}_{-4}	$276.8^{+1.5}_{-1.6}$	$-20.8^{+2.4}_{-1.9}$	_
75769	$0.97\substack{+0.11 \\ -0.09}$	261^{+28}_{-31}	-2.1 ± 0.1	$29.5{\pm}0.1$	252^{+11}_{-44}	$3.8^{+0.1}_{-0.1}$	36^{+6}_{-3}	46^{+8}_{-3}	$270.5^{+2.4}_{-0.3}$	$-14.5\substack{+2.2\\-1.7}$	18 - 38
94899	$1.11\substack{+0.06 \\ -0.05}$	298^{+9}_{-8}	-2.1 ± 0.1	$29.5{\pm}0.1$	292^{+9}_{-8}	$3.8\substack{+0.1\\-0.1}$	86^{+5}_{-4}	85^{+4}_{-3}	$351.5^{+2.6}_{-2.9}$	$-58.4\substack{+0.2\\-0.2}$	\gtrsim 50

Note that it is possible that the derived value for v_r is larger than that of v_{sp} because v_r is heliocentric whereas v_{sp} is the peculiar velocity of the NS that reflects its kick velocity.

For some runaway stars, no age estimation was possible (hence, no M_{prog}). They are considered young stars because of their luminosity class (section 2.3.1).

The predicted radial velocities v_r of HIP 40929, HIP 53557, HIP 60134 and HIP 66057, which have no v_r measured yet, would be $v_{r,HIP40929} = 162^{+14}_{-22}$ km/s (peculiar spatial velocity $v_{pec,HIP40929} = 150^{+17}_{-17}$ km/s), $v_{r,HIP53557} = 180^{+48}_{-49}$ km/s, $v_{r,HIP60134} = 84^{+21}_{-13}$ km/s and $v_{r,HIP6057} = 131^{+10}_{-25}$ km/s, respectively.

Figure 4.13: The Antlia SNR (thick circle) and the projected past flight paths of seven NSs (calculated back in time for 5 Myr assuming $v_r = 0 \text{ km/s}$ for six stars and $v_r = 100 \text{ km/s}$ for PSR J0953+0755 [as 353]; dashed lines indicate the 1σ error on the proper motion). The four NSs drawn in black are too distant ($\approx 2 \text{ kpc}$) for a common origin with the Antlia SNR. The three NSs drawn in red are candidates for a common origin with the Antlia SNR.

[353] found a nearby old SNR in the constellation Antlia Pneumatica located at (I, b) = (276°, 5, 19°) with a projected diameter of 24°. It was later confirmed as a SNR by [450]. [353] estimated the distance to the Antlia remnant as $d_{Antlia} \leq 500$ pc with a preference for smaller distances, $d_{Antlia} \approx 100$ pc. They suggested the pulsar PSR J0953+0755 as the NS born in the supernova that formed the Antlia remnant but only considered eight nearby pulsars listed by [230]. Hence, it is worthwhile to consider a larger sample of NSs.

The projected past paths of seven NSs from the sample introduced in section 2.2 cross the Antlia SNR during the past 5 Myr, Fig. 4.13. Four of them are too distant ($\approx 2 \text{ kpc}$) and were not closer than a few hundred pc to the remnant. Among the other three is RX J0720.4–3125 which was probably born in the Tr 10 association $\approx 1 \text{ Myr}$ ago but still should be considered as a candidate for an origin in the Solar neighbourhood (see also

Figure 4.14: Distributions of minimum separations d_{min} and corresponding flight times τ for encounters between the Antlia SNR and three NSs, PSR J0630–2834 (top left panel), RX J0720.4–3125 (top right panel) and PSR J0953+0755 (bottom panel). The solid curves drawn in the d_{min} histograms (bottom panels) represent the theoretically expected distributions (equation 3.2), adapted to the first part of each histogram: For PSR J0630–2834 $\mu = 0$, $\sigma = 23.9 \,\mathrm{pc}$; for RX J0720.4–3125 $\mu = 0$, $\sigma = 27.1 \,\mathrm{pc}$; for PSR J0953+0755 $\mu = 0$, $\sigma = 36.9 \,\mathrm{pc}$. The encounter times are $\tau = 0.64^{+0.36}_{-0.21} \,\mathrm{Myr}$ for PSR J0630–2834, $\tau = 0.47^{+0.20}_{-0.22} \,\mathrm{Myr}$ for RX J0720.4–3125 and $\tau = 0.43^{+0.31}_{-0.15} \,\mathrm{Myr}$ for PSR J0953+0755, respectively. One of these stars might be associated with the Antlia SNR.

section 4.1.2). The remaining two are PSR J0630–2834 and PSR J0953+0755. For each of them an origin in the Solar neighbourhood is very likely (see above).

The distance to the Antlia SNR is uncertain. In the Monte Carlo simulations distances $\leq 500 \text{ pc}$ were adopted and the past separation between the Antlia SNR and the three NSs PSR J0630–2834, PSR J0953+0755 and RX J0720.4–3125 were evaluated, Fig. 4.14.⁵⁹ For PSR J0953+0755 equation 3.3 ($\mu = 0$) fits well the d_{min} distribution. Note that the obtained encounter time of $\approx 0.5 \text{ Myr}$ is considerably smaller than the one claimed by [353] ($\tau \approx 2-4 \text{ Myr}$). An encounter time of $\approx 2 \text{ Myr}$ is obtained if $v_r = 50 \pm 50 \text{ km/s}$ is assumed for the pulsar (comparable to the range [353] adopted). However, then a theoretical curve with $\mu = 48.2 \text{ pc}$ and $\sigma = 25.8 \text{ pc}$ fits well the d_{min} distribution rather than $\mu = 0$. It is still possible that PSR J0953+0755 was inside the Antlia SNR, however less likely. Moreover, the resulting space velocity of the pulsar would be very small, $\approx 80 \text{ km/s}$, which is unlikely but not impossible though.

For the calculation using a reasonable space velocity distribution for PSR J0953+0755 [from

⁵⁹The Antlia remnant was assumed to be moving on a constant orbit around the Galactic centre.

NS	(μ, σ)	au	P	redicted pres	ent-day NS	s	Predicted supernova position					
			Vr	μ^*_{lpha}	μ_{δ}	V _{sp}	π	$d_{\odot,SN}$	$d_{\odot, today}$	Ι	Ь	
	[pc]	[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[mas]	[pc]	[pc]	[°]	[°]	
PSR J0630-2834	(0, 23.9)	$0.64^{+0.36}_{-0.21}$	365^{+136}_{-94}	-46.3±1.0	21.2±0.5	375^{+131}_{-84}	$2.9^{+0.5}_{-0.3}$	62^{+24}_{-17}	72^{+21}_{-26}	$268.4^{+17.6}_{-14.0}$	$16.7^{+14.2}_{-12.7}$	
RX J0720.4-3125	(0,27.1)	$0.47\substack{+0.20 \\ -0.22}$	432^{+92}_{-187}	$-92.8{\pm}1.4$	55.3±1.7	352^{+172}_{-100}	$4.1\substack{+0.8\\-1.4}$	67^{+56}_{-22}	75^{+47}_{-35}	$269.9^{+16.4}_{-10.2}$	$10.9^{+9.9}_{-6.2}$	
PSR J0953+0755	(0, 36.9)	$0.43\substack{+0.31 \\ -0.15}$	442^{+88}_{-139}	-2.1 ± 0.1	$29.5{\pm}0.1$	435^{+86}_{-139}	$3.8\substack{+0.1\\-0.1}$	50^{+28}_{-17}	57^{+17}_{-28}	$250-290^{a}$	$-60 - +25^{a}$	

 Table 4.15: Present-day parameters and encounter position and time for three NSs that might be associated with the Antlia SNR. Column designations are as in Table 4.2.

^a For PSR J0953+0755 the distributions for *I* and *b* are very broad with no clear peak, thus an interval is given. Note that it is possible that the derived value for v_r is larger than that of v_{sp} because v_r is heliocentric whereas v_{sp} is the

peculiar velocity of the NS that reflects its kick velocity.

221], the present NS parameters and position of the encounter are given in Table 4.15. As already expected from Fig. 4.13, the predicted encounter position is only marginally consistent with the observed position of the Antlia SNR.

Table 4.16: Predicted current parameters of PSR J0630–2834 and supernova position and time for those runs where PSR J0630–2834 and HIP 47155 were within the Antlia SNR. Note that the parameters are consistent with that given in Table 4.12.

Predicted present-day parameters of									
PSR J0630-2834									
v _r [km/s]	395^{+166}_{-37}								
$\pi~[{\sf mas}]$	$2.9^{+0.5}_{-0.3}$								
$\mu^*_lpha~$ [mas/yr]	46.3 ± 1.0								
$\mu_{\delta}~[{\sf mas/yr}]$	21.3 ± 0.5								
<i>v_{sp}</i> [km/s]	475_{-141}^{+62}								
Predicted super	nova pos. and time								
<i>d</i> _{⊙,SN} [pc]	60^{+15}_{-17}								
$d_{\odot,today}$ [pc]	66^{+15}_{-20}								
/ [°]	$274.0^{+1.5}_{-5.5}$								
<i>b</i> [°] 20.3 ^{+1.7} _{-4.2}									
au [Myr]	$0.55\substack{+0.29 \\ -0.12}$								

Designations are as in Table 4.1. The predicted radial velocity v_r of HIP 47155, which has no v_r measured yet, is $v_{r,run} = 170^{+99}_{-49}$ km/s.

Although the d_{min} distributions in the cases PSR J0630-2834 and RX J0720.4-3125 are not well presented by equations 3.2 or 3.3 (probably because the parallax error is large in both cases, 14%for PSR J0630-2834, 44 % for RX J0720.4-3125, whereas for PSR J0953+0755 it is only 2%), they suggest that both objects could have been at the same place at the same time in the past. In the case of RX J0720.4-3125, the predicted encounter position is again only marginally consistent with the observed SNR centre (also seen in Fig. 4.13). Whereas for PSRJ0630-2834 it is consistent with the observed coordinates of the Antlia SNR centre, making it the best candidate for the pulsar that can be associated with the Antlia SNR. The inferred ages of the pulsar and the SNR if they originated from the same supernova event are ≈ 0.6 Myr, again considerably smaller than the SNR age claimed by [353]. As a further argument for an age of a few Myr [353] give an estimation of the ejected mass of ²⁶Al and compare it with theoretical yields. They obtain an

age range of 1.1-2.5 Myr. However, their derived ejected mass is a factor of two too small because they did not take into account that only half of the flux is observed (the part that is emitted towards the observer.). Therefore their age estimate must be halved. Then it is in agreement with ≈ 0.6 Myr obtained when accepting the pulsar PSR J0630-2834 as the stellar remnant.

This scenario is supported by the identification of the former companion candidate HIP 47155 for which the encounter position with PSR J0630-2834 coincides with the Antlia SNR (appendix E.3, Table 4.16).

4.3.4 PSR B1929+10

Given its proper motion and parallax, the transverse velocity of PSRB1929+10 (PSRJ1932+1059) is $v_t = 177^{+4}_{-4} \text{ km/s}$. [238] analysed its bow shock and obtained an inclination of $i \gtrsim 40^{\circ}$ (with respect to the line of sight).⁶⁰ This implies $|v_r| \lesssim 250 \text{ km/s}$ (for a 3σ upper limit on v_t).

Encounters with seven nearby associations/stellar groups (US, TWA, β Pic-Cap, CarA, Octans, Argus, Pleiades B1) could be placed inside the respective association boundaries (*R_{crit}*). In all cases, the predicted pulsar space velocity is close to the peak of the distribution for pulsar space velocities by [221] adopted in the calculations $(|v_r| \approx 400 \, {
m km/s})$ with a positive radial velocity. In three cases (β Pic-Cap, CarA, Argus) v_r exceeds 1000 km/s; in the other cases $v_r \approx 300 - 400 \,\mathrm{km/s}$. Apparently, this result contradicts the smaller v_r estimate from the bow shock. However, larger v_r values are more likely to occur in the simulations and might be compensated for by a smaller predicted kinematic age. Nonetheless, this result leads to the conclusion that there is a non-zero positive pulsar *v*_r of a few hundred km/s (cf. RX J1856.5-3754, section 4.1.1 where a near-

Table 4.17: Predicted current parameters of PSR B1929+10 if it was born \approx 100 \pm 20 pc from US.

Predicted present-day parameters of										
PSR B1929+10										
v _r [km/s]	167^{+31}_{-12}									
$\pi~[{\sf mas}]$	$2.8\substack{+0.1 \\ -0.1}$									
$\mu^*_{lpha}~[{\sf mas}/{\sf yr}]$	94.1 ± 0.1									
$\mu_{\delta}~[{\sf mas/yr}]$	43.0 ± 0.2									
<i>v_{sp}</i> [km/s]	252^{+21}_{-13}									
Predicted superr	nova pos. and time									
<i>d</i> _{⊙,SN} [pc]	247^{+8}_{-20}									
$d_{\odot,today}$ [pc]	248^{+21}_{-8}									
/ [°]	$359.6^{+1.9}_{-1.5}$									
b [°]	$25.0^{+0.7}_{-0.8}$									
au [Myr]	$1.18\substack{+0.04 \\ -0.08}$									

Designations are as in Table 4.1.

zero v_r was found). To achieve a more precise kinematic pulsar age, $v_r = 150 \pm 100$ km/s was adopted for PSR B1929+10, consistent with the bow shock estimation.

Even so, no clear identification of a birth association could be made. US and the Pleiades B1 moving group remain possible birth places of PSRB1929+10. However, the potential birth place is not close to the centre of any of this groups (Fig. 4.15). Concluding, the birth place lies near the Sco-Cen region, \approx 100 pc from the US centre. The kinematic pulsar age is then \approx 1.2 Myr. The predicted current NS parameters as well as time and location of the supernova are given in Table 4.17.

A similar result was already found by [230]. However, they used a pulsar distance of $\approx 170 \text{ pc}$ [71] which is half the precise parallactic distance of 361^{+9}_{-9} pc recently obtained

 $^{^{60}}$ Note that in their paper they give the inclination angle with respect to the plane of the sky, \lesssim 50 $^{\circ}$.

Figure 4.15: Distributions of minimum separations d_{min} and corresponding flight times τ for encounters between PSR B1929+10 and US (left) and the Pleiades B1 group (right), respectively. Only those runs are shown for which $|v_r| \leq 250 \text{ km/s}$. The solid curves drawn in the d_{min} histograms (bottom panels) represent the theoretically expected distributions (equation 3.2), adapted to the first part of each histogram: For US $\mu = 102.2 \text{ pc}$, $\sigma = 18.5 \text{ pc}$; for the Pleiades B1 group $\mu = 150.5 \text{ pc}$, $\sigma = 18.1 \text{ pc}$. The encounter times are $\tau = 1.18^{+0.04}_{-0.08}$ Myr for US and $\tau = 1.26^{+0.04}_{-0.04}$ Myr for the Pleiades B1 group, respectively.

This indicates that the birth place of PSR B1929+10 lies near the Sco-Cen region $\approx 100\, pc$ from the US centre.

Table 4.18: Present-day parameters of PSRB1929+10 and supernova position and time for former companion candidates and the respective parent association/cluster. Column designations are as in Table 4.2. For all cases, the position of the predicted supernova lies in the vicinity of US. Since all stars are giants for which age determination is difficult (hence they entered the young star sample owing to their luminosity class), no progenitor mass could be estimated from their lifetimes.

HIP	au	Pre	dicted prese	ent-day NS	Predicted supernova position					
		Vr	μ^*_{lpha}	μ_{δ}	V _{sp}	π	$d_{\odot,SN}$	$d_{\odot,today}$	1	Ь
	[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[mas]	[pc]	[pc]	[°]	[°]
77471	$1.20\substack{+0.14 \\ -0.14}$	179^{+29}_{-29}	94.1±0.1	43.0±0.2	250^{+32}_{-13}	$2.8^{+0.1}_{-0.1}$	255^{+22}_{-27}	241^{+24}_{-22}	$352.4^{+0.6}_{-0.7}$	$27.9^{+0.2}_{-0.3}$
78171	$1.02\substack{+0.22 \\ -0.11}$	173^{+73}_{-31}	94.1±0.1	43.0±0.2	260^{+54}_{-23}	$2.8\substack{+0.1\\-0.1}$	204^{+50}_{-22}	193^{+56}_{-23}	$350.6^{+3.8}_{-1.6}$	$28.4^{+0.7}_{-1.3}$
85015	$0.85\substack{+0.14 \\ -0.14}$	201^{+52}_{-31}	94.1±0.1	43.0±0.2	281^{+34}_{-32}	$2.8\substack{+0.1\\-0.1}$	$236\substack{+19\\-30}$	$218\substack{+21 \\ -26}$	$6.9^{+3.1}_{-2.0}$	$21.8^{+0.9}_{-1.8}$

The predicted radial velocities v_r of HIP 78171 and HIP 85015, which have no v_r measured yet, would be $v_{r,HIP78171} = 144^{+100}_{-144}$ km/s and $v_{r,HIP85015} = 50^{+101}_{-58}$ km/s, respectively.

by [84]. Using the smaller distance value they concluded that PSR B1929+10 was ejected from US.

Three former companion candidates to PSR B1929+10 were found (appendix E.13): HIP 77471, HIP 78171 and HIP 85015. The predicted NS parameters and time and place of the respective supernova event are given in Table 4.18.

Another possibility is that the progenitor of PSR B1929+10 was a single (runaway) star that was ejected from Sco-Cen. The result that no clear birth association was found supports this scenario.

Note that the previously proposed former companion ζ Ophiuchi (HIP 81377) [230] was not recovered. It was already noted by [84] that the association between PSR B1929+10 and ζ Oph is unlikely with the improved proper motion and parallax of the pulsar. It was also shown by [51] and Tetzlaff et al. 2010 [487] that it is necessary to increase the error bars

Figure 4.16: Panels as in Fig. 4.1 for encounters between PSR B1929+10 and HIP 86768. The solid curves drawn in the d_{min} histograms (bottom panel) represent the theoretically expected distribution (equation 3.3) with $\mu = 15.8 \,\mathrm{pc}$ and $\sigma = 1.3 \,\mathrm{pc}$, adapted to the first part of the histogram.

of the pulsar proper motion and parallax by one order of magnitude to associate the two stars with each other. Using the nominal error bars as published by [84], PSR B1929+10 and ζ Oph do not approach each other closer than a few parsecs. Furthermore, the radial velocity of the NS for close approaches is required to be $\approx 550 \pm 70 \text{ km/s}$.

[51] also propose the star HIP 86768 as a former companion candidate. This star was not considered runaway star in this work (section 2.3) due to different input parameters (parallax and radial velocity). The radial velocity used by [51] of 19.0 ± 4.3 km/s (referenced [188], however not given in this reference; adopted by mistake, V. Bobylev, priv. comm.) differs significantly from the published value of -26 km/s [188, 541]. Surprisingly, this does not change the overall result because the positive radial velocity used by [188] is compensated for by a larger initial distance (smaller parallax) in the calculations which is possible due to the parallax error of this star ($\pi = 3.00 \pm 0.54$ mas [518]). However, [51] increased the error bars of the pulsar proper motion and parallax by one order of magnitude (as in the case of ζ Oph). It can already be seen from their Figure 5 (pulsar parameters for which encounters between PSR B1929+10 and HIP 86768 are possible) that the pulsar proper motion and parallax to be the two stars are barely consistent with the measured values. Indeed not increasing the error bars yields a separation between PSR B1929+10 and HIP 86768 of ≈ 16 pc at ≈ 1 Myr in the past (Fig. 4.16), hence inconsistent with that both stars were ejected in the same supernova event.

4.3.5 PSR J2313+4253

Three associations were identified as possible birth places of PSR J2313+4253: US, UCL and Ser OB1. However, for US and UCL the required space velocity of the NS is about 700-1000 km/s. Although this could be possible, it appears less likely, hence preferring an origin in Ser OB1. The predicted present NS parameters as well as time and position of the supernova are given in Table 4.19. The young age of Ser OB1 of 8-13 Myr (Table A.1) and predicted time of the supernova infer a high progenitor mass of 17-63 M_{\odot} [277, 327, 494].

Predicted present-day parameters of PSR J2313+4253									
$ \begin{array}{c} v_r \; [\rm km/s] \\ \pi \; [\rm mas] \\ \mu^{*}_{\alpha} \; [\rm mas/yr] \\ \mu_{\delta} \; [\rm mas/yr] \\ v_{sp} \; [\rm km/s] \end{array} $	$\begin{array}{c} 247^{+33}_{-17} \\ 0.9^{+0.1}_{-0.1} \\ 24.1 \pm 0.1 \\ 6.0 \pm 0.1 \\ 282^{+30}_{-17} \end{array}$								
Predicted supernova	a pos. and time								
	$\begin{array}{r} 524\substack{+45\\-17}\\ 486\substack{+52\\-13}\\ 264.7\substack{+1.4\\-2.8}\\ 35.9\substack{+0.4\\-1.1}\\ 4.03\substack{+0.41\\-0.35}\\ (77.9, 6.9)\end{array}$								

Table 4.19: Predicted current parameters of PSR J2313+4253 if it was born inSer OB1.

Designations are as in Table 4.1.

Table 4.20: Present-day parameters of PSR J2313+4253 and supernova position and time for former companion candidates. All encounters would have occurred outside any association or cluster.

HIP	au	Pr	edicted pres	ent-day NS	paramet	ers	Pre	M _{prog}			
		Vr	μ^*_{lpha}	μ_{δ}	Vsp	π	$d_{\odot,SN}$	$d_{\odot,today}$	1	Ь	
	[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[mas]	[pc]	[pc]	[°]	[°]	$[M_{\odot}]$
70574	$2.10\substack{+0.22\\-0.24}$	622^{+50}_{-55}	24.1±0.1	5.9±0.1	643^{+52}_{-55}	$1.0\substack{+0.1\\-0.1}$	391^{+18}_{-26}	366^{+28}_{-14}	$322.9^{+1.0}_{-0.9}$	$16.7^{+0.2}_{-0.3}$	10 - 12
70586	$1.93\substack{+1.14 \\ -0.49}$	460^{+156}_{-69}	$24.2{\pm}0.1$	$6.0{\pm}0.1$	563^{+104}_{-107}	$0.9\substack{+0.1\\-0.1}$	258^{+109}_{-22}	$326\substack{+50 \\ -90}$	$331.2\substack{+30.6 \\ -12.2}$	$14.8\substack{+2.4\\-5.3}$	_
88981	$2.32\substack{+0.28\\-0.34}$	454^{+41}_{-61}	$24.2{\pm}0.1$	$5.9{\pm}0.1$	492^{+56}_{-45}	$0.9\substack{+0.1\\-0.1}$	294^{+28}_{-22}	281^{+12}_{-36}	$8.2^{+1.0}_{-0.7}$	$7.7^{+0.5}_{-0.3}$	_
93051	$2.48\substack{+0.24 \\ -0.26}$	350^{+35}_{-35}	$24.2{\pm}0.1$	6.0±0.1	390^{+41}_{-29}	$0.9\substack{+0.1\\-0.1}$	363^{+32}_{-16}	342^{+28}_{-21}	$41.4\substack{+0.4 \\ -0.5}$	$-2.3\substack{+0.3 \\ -0.3}$	-

For some runaway stars, no age estimation was possible (hence, no M_{prog}). They are considered young stars because of their luminosity class (section 2.3.1).

The predicted radial velocity v_r of HIP 70586, which has no v_r measured yet, would be $v_{r,HIP} = 23^{+256}_{-118}$ km/s.

Four former companion candidates were found (appendix E.15) – HIP 70574, HIP 70586, HIP 88981 and HIP 93051. The present parameters of PSR J2313+4253 if the respective runaway star was the former companion are given in Table 4.20.

4.3.6 PSR J2330-2005

Four possible parent associations/clusters were found for PSR J2330-2005: the YLA HD 141569, Ext. R CrA, Argus and the cluster IC 4725. Considering the present YLA mass functions and content of stars, it is possible (although unlikely) that a NS progenitor was formed in one of these associations (section 2.1.2). [268] give an age for IC 4725 of \approx 70 Myr. However, several early B stars still belong to that cluster (the earliest present member is the B1.5V star CPD-19 6854 with a lifetime of \approx 15 – 18 Myr [277, 327, 494]), hence possibly several stages of star formation happened or the cluster is younger. The present parameters of PSR J2330-2005 if it was born in the respective association or cluster

Table 4.21: P	resent-day pa	arameters	of PSR J2330	-2005	and superno	va position	and	time for
possible parent	associations	. Column	designations a	re as ir	n Table 4.2.			

Assoc.	(μ, σ)	au	Pr	Predicted present-day NS parameters						Predicted supernova position				
			Vr	μ^*_{lpha}	μ_{δ}	V_{sp}	d _{SN} ª	$d_{\odot,SN}$	$d_{\odot, today}$	1	Ь			
	[pc]	[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[pc]	[pc]	[pc]	[°]	[°]	$[M_{\odot}]$		
HD 141569	(0, 5.3)	$0.69\substack{+0.09 \\ -0.08}$	608^{+90}_{-64}	74.6±1.9	5.0±2.7	631^{+80}_{-74}	388^{+41}_{-16}	112^{+4}_{-8}	100^{+5}_{-6}	$10.7^{+2.1}_{-3.5}$	$38.9^{+2.7}_{-2.0}$	39 - 47		
Ext. R CrA	(35.6, 3.5)	$0.62\substack{+0.10 \\ -0.10}$	568^{+96}_{-79}	74.6±1.9	5.8±2.6	580^{+98}_{-76}	404^{+35}_{-39}	$102^{+10}_{-11} \\$	94^{+9}_{-11}	$20.9^{+1.9}_{-2.2}$	$-12.2^{+1.9}_{-2.9}$	12 - 30		
Argus	(100.3, 26.6)	$0.77\substack{+0.14 \\ -0.17}$	637^{+156}_{-122}	74.5±1.9	4.8±3.0	$615\substack{+182 \\ -95}$	358^{+55}_{-26}	89^{+3}_{-15}	81^{+4}_{-12}	$20.4\substack{+2.3\\-2.2}$	$-10.1^{+2.8}_{-2.2}$	7 – 8		
IC 4725 ^b	(0, 53.3)	$3.61\substack{+0.52 \\ -0.35}$	48^{+22}_{-14}	74.5±1.9	8.3±2.0	147^{+22}_{-22}	455^{+33}_{-63}	582^{+53}_{-16}	582^{+36}_{-30}	$16.9^{+0.9}_{-1.9}$	$-6.1^{+1.0}_{-0.9}$	$5-6^{\rm c}$		

 a Instead of the current parallax π (as in Table 4.2) the current distance of PSR J2330–2005 is given here since no parallax was

measured. ^bSince a small v_r of the NS was predicted, the calculations were repeated using a uniform v_r distibution in the range 1500-+1500 km/s. These results are given here. They did not change significantly.

 $^{
m c}$ Although the nominal age of the cluster of 68 Myr [268] is rather high, there are sill several early B stars that belong to it. The derived progenitor mass should therefore be seen as a lower limit.

Note that it is possible that the derived value for v_r is larger than that of v_{sp} because v_r is heliocentric whereas v_{sp} is the peculiar velocity of the NS that reflects its kick velocity.

Table 4.22: Present-day parameters of PSR J2330–2005 and supernova position and time for former companion candidates and the respective parent association/cluster. Column designations are as in Table 4.5.

HIP	Assoc./cl.	au	Predicted present-day NS parameters					Pre	Predicted supernova position				
			Vr	μ^*_{lpha}	μ_{δ}	Vsp	d _{SN} ^a	$d_{\odot,SN}$	$d_{\odot, today}$	1	Ь		
		[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[pc]	[pc]	[pc]	[°]	[°]	$[\rm M_{\odot}]$	
78131	HD 141569	$0.78\substack{+0.43 \\ -0.24}$	$608\substack{+101 \\ -53}$	74.6±1.9	5.5±2.5	620^{+106}_{-48}	416^{+38}_{-31}	109^{+5}_{-9}	94^{+11}_{-4}	$11.8^{+2.1}_{-3.0}$	$34.5^{+1.6}_{-3.1}$	\gtrsim 50	
81007	-	$0.86\substack{+0.13 \\ -0.10}$	510^{+89}_{-32}	74.7±1.9	4.6±2.8	530^{+72}_{-47}	435^{+41}_{-35}	141^{+12}_{-9}	129^{+12}_{-7}	$11.1^{+3.0}_{-2.7}$	$34.6^{+3.6}_{-1.6}$	-	
89828	Argus	$0.57\substack{+0.07 \\ -0.05}$	650^{+68}_{-84}	74.4±1.8	4.3±2.6	598^{+119}_{-40}	400^{+35}_{-30}	83^{+4}_{-4}	$75\substack{+4\\-4}$	$19.3\substack{+1.1\\-3.3}$	$2.5^{+1.8}_{-1.6}$	-	
94391	Ext. R CrA	$0.68\substack{+0.15 \\ -0.13}$	443^{+183}_{-163}	74.8±1.9	4.9±2.8	369^{+232}_{-105}	435_{-35}^{+65}	109^{+56}_{-42}	116^{+43}_{-48}	$19.8\substack{+2.7 \\ -1.5}$	$-3.2_{-4.2}^{+0.7}$	-	
101608	Argus	$0.45\substack{+0.05 \\ -0.05}$	630^{+160}_{-50}	74.4±1.8	4.6±2.6	708^{+112}_{-75}	370^{+47}_{-25}	74^{+6}_{-3}	71^{+4}_{-5}	$23.5^{+1.8}_{-1.9} \\$	$-22.8^{+1.6}_{-3.5}$	-	

^aInstead of the current parallax π (as in Table 4.2) the current distance of PSR J2330–2005 is given here since no parallax was measured.

Note that it is possible that the derived value for v_r is larger than that of v_{sp} because v_r is heliocentric whereas v_{sp} is the peculiar velocity of the NS that reflects its kick velocity.

For some runaway stars, no age estimation was possible (hence, no M_{prog}). They are considered young stars because of their luminosity class (section 2.3.1).

The predicted radial velocity v_r of HIP 78131 and HIP 94391, which have no v_r measured yet, would be $v_{r,HIP78131} = 38 \pm 35$ km/s and $v_{r,HIP94391} = -59^{+59}_{-35} \text{ km/s, respectively.}$

are given in Table 4.21. For IC 4725 a near-zero radial velocity was found. For that reason the analysis was repeated adopting a uniform radial velocity. These results are given in the table. However, since the transverse velocity of PSR J2330-2005 is small this scenario appears less likely although the supernova kick velocity could have been small.

Five former companion candidates were found (appendix E.16) – HIP 78131, HIP 81007, HIP 89828, HIP 94391 and HIP 101608. No clear conclusion can be drawn at this point. The present parameters of PSR J2330-2005 if the respective runaway star was the former companion are given in Table 4.22. HIP 78131 currently lies on the main-sequence. It's derived age of $1.6\pm0.6\,{
m Myr}$ (section 2.3) therefore corresponds to the age on the ZAMS. The deduced progenitor mass (lifetime of the progenitor star equals lifetime of former companion candidate minus flight time) should therefore be treated with caution.

Assoc.	(μ, σ)	au	Pr	Predicted supernova position								
			Vr	μ^*_α	μ_{δ}	V _{sp}	π	$d_{\odot,SN}$	$d_{\odot,today}$	1	Ь	
	[pc]	[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[mas]	[pc]	[pc]	[°]	[°]	$[M_{\odot}]$
Per OB1	(73.0, 18.5)	$1.94\substack{+0.24 \\ -0.30}$	-293^{+48}_{-32}	53.3±0.1	$-17.6 {\pm} 0.1$	428^{+20}_{-18}	$0.8^{+0.1}_{-0.1}$	1890^{+33}_{-26}	1843^{+16}_{-32}	$135.5^{+1.0}_{-1.1}$	$-3.9^{+0.6}_{-0.8}$	17 - 40
Cam OB1	(16.6, 3.5)	$0.64\substack{+0.05 \\ -0.08}$	530^{+119}_{-59}	53.3±0.1	$-17.6{\pm}0.1$	$617\substack{+105 \\ -62}$	$0.9\substack{+0.1\\-0.1}$	811^{+6}_{-9}	803^{+5}_{-7}	$141.9\substack{+0.5\\-0.4}$	$-0.1\substack{+0.3 \\ -0.2}$	13 - 39

Table 4.23: Present-day parameters of PSR J0454+5543 and supernova position and time for possible parent associations. Column designations are as in Table 4.2.

Figure 4.17: Proposed region of the supernova in that PSR J0454+5543 was formed in the COMPTEL 1.8 MeV map [136, 416] (the unit of the contours is $cm^{-2}s^{-1}sr^{-1}$). The proposed supernova position and sizes of the respective SNR are shown in green for the Per OB1 scenario and red for Cam OB1 (dashed circles indicate 1σ errors). The positions and sizes of the host associations Per OB1 and Cam OB1 are indicated in black where the solid and dashed circles indicate the nominal radii and R_{crit} , respectively.

4.4 Other Neutron Stars – Possible Supernovae More Distant Than 500 Parsecs

4.4.1 PSR J0454+5543

Per OB1 and Cam OB1 were found to be possible birth associations for PSR J0454+5543. The present parameters of PSR J0454+5543 and the positions of the predicted supernovae are given in Table 4.23. Cam OB1 seems more likely since the proposed supernova position is well inside the association ($R_{crit} \approx 119 \,\mathrm{pc}$), whereas for Per OB1 it is near the edge ($R_{crit} \approx 137 \,\mathrm{pc}$), see Fig. 4.17. In the Cam-Per region there are several features in the ²⁶Al 1.8 MeV COMPTEL map [136, 416], however the SNR resulting from the supernova in which PSR J0454+5543 was formed is probably too distant and too old for a significant γ 1.8 MeV signal to be detectable.

No convincing former companion candidate was found (appendix E.2).

4.4.2 PSR J0820-1350

The kinematic age of PSR J0820-1350 is probably close to or larger than 5 Myr, the limit applied in this work (section 2.2). Due to the large spread of values in the d_{min} - τ_{kin} space (because of the errors on the observables, increasing with calculation time), in general, also birth places can be found if the kinematic age is larger than 5 Myr (the typical spread in

Assoc./cl.	$ au_{kin}$	Vr	V _{sp}	$d_{\odot,SN}$		
	[Myr]	[km/s]	[km/s]	[kpc]		
Cep OB1	$3.4^{+0.3}_{-0.2}$	pprox 700	pprox 800	pprox 1.8		
Cas OB2	> 5	pprox 600	pprox 700	pprox 2.2		
Cas OB1	> 5	pprox 550	pprox 650	pprox 2.2		
Cas OB8	pprox 5	pprox 500	pprox 600	pprox 2.0		
Cam OB1	$2.3^{+0.1}_{-0.1}$	pprox 750	pprox 850	pprox 1.0		
NGC 1027	$3.3^{+0.2}_{-0.2}$	pprox 550	pprox 700	pprox 1.3		
Stock 7	$1.8\substack{+0.1\\-0.1}$	pprox 950	pprox 1000	pprox 0.7		
NGC 7510	pprox 5	pprox 600	pprox 700	pprox 2.1		
NGC 129	pprox 5	pprox 600	pprox 700	pprox 2.1		
NGC 433	$4.5_{-0.3}^{+0.4}$	pprox 450	pprox 550	pprox 1.9		
NGC 581	≈ 5	pprox 550	pprox 650	≈ 2.2		
NGC 659	pprox 5	pprox 550	pprox 650	pprox 2.1		
Czernik 2	$4.1^{+0.4}_{-0.6}$	pprox 650	pprox 700	pprox 1.7		
Czernik 6	≈ 5	pprox 500	pprox 650	≈ 2.2		

Table4.24:PossibleparentassociationsofPSR J0820-1350.

Column 2: encounter time τ (= τ_{kin}). Columns 3-4: predicted present NS radial velocity v_r and space velocity v_{sp} . Column 5: predicted supernova distance to the Sun (at the time of the supernova).

 τ_{kin} is a few Myr and increases as $|\tau|$ increases). However, a final evaluation is not possible at the current state since the uncertainties are too large to calculate orbits for longer time spans than 5 Myr. In Table 4.24 possible birth associations and clusters with an estimate of the respective kinematic age (if PSR J0820–1350 is not older than five plus a few Myr), NS radial and peculiar spatial velocities are listed. As PSR J0820–1350 is probably somewhat older than 5 Myr, it is not convenient to derive more precise NS parameters as well as supernova positions (as done for other NSs). The closer the predicted supernova site to Earth, the higher is the predicted spatial velocity of the NS and the smaller the kinematic age. Since extraordinary high pulsar space velocities are unlikely although possible (e.g. Guitar Pulsar, section 4.4.8), this indicates that the true age of PSR J0820–1350 is larger than 5 Myr, possibly close to its characteristic age $\tau_{char} = 9.32$ Myr [222].

All proposed associations lie within the scale height of the Galactic plane (scale height of thin disk $\approx 250 \,\text{pc}$ [394]). It was already mentioned by [80] that the kinematic age of PSR J0820-1350 could be larger than $\approx 10 \,\text{Myr}$ although they only roughly investigated the flight time assuming radial velocities of $-200 \dots + 200 \,\text{km/s}$ and that the NS was born in the Galactic plane.

No former companion candidate was found (appendix E.6). This supports the result that PSR J0820-1350 is probably \approx 5 Myr old or even older. By constraining the NS parameters

Assoc.	(μ, σ)	au	Predicted present-day NS parameters					Pre	M _{prog}			
			Vr	μ^*_{lpha}	μ_{δ}	V _{sp}	π	$d_{\odot,SN}$	$d_{\odot,today}$	Ι	Ь	
	[pc]	[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[mas]	[pc]	[pc]	[°]	[°]	$[M_{\odot}]$
Cam OB1	62^{+92}_{-35}	3.56 ^{0.80}	-13^{+29}_{-37}	61.1±3.0	-90.0±2.0	173^{+56}_{-28}	$2.6^{+0.7}_{-0.6}$	827^{+65}_{-39}	776^{+57}_{-49}	$144.0^{+5.8}_{-2.9}$	$1.1^{+2.8}_{-3.4}$	$\gtrsim 15$
lpha Per	(17.8, 7.2)	$0.75\substack{+0.18 \\ -0.15}$	315^{+112}_{-43}	61.3±2.9	$-90.0{\pm}2.0$	363^{+111}_{-45}	$2.7^{+0.3}_{-0.3}$	159^{+23}_{-8}	157^{+21}_{-9}	$141.1\substack{+1.0 \\ -0.8}$	$-2.0^{+1.1}_{-1.1} \\$	5 – 7
Cas-Tau	(68.2, 6.7)	$0.69\substack{+0.20 \\ -0.12}$	367^{+102}_{-65}	61.4±2.9	$-89.9{\pm}2.0$	422^{+92}_{-77}	$2.7\substack{+0.4\\-0.4}$	141^{+28}_{-17}	$142^{+28}_{-17} \\$	$141.1\substack{+1.5 \\ -1.3}$	$-2.3^{+1.7}_{-1.3} \\$	6 – 7
Stock 7ª	(0, 31.9)	$3.1^{+0.7}_{-0.7}$	-12^{+52}_{-9}	$59.6{\pm}2.1$	$-90.4{\pm}2.0$	187^{+55}_{-35}	$2.7^{+0.5}_{-0.7}$	695^{+28}_{-16}	661^{+33}_{-7}	$141.7^{+1.8}_{-2.5}$	$0.4\substack{+0.2 \\ -1.1}$	15 - 30
NGC 433ª	(0, 196.6)	pprox 4.7	-7^{+34}_{-26}	58.8±2.7	$-90.7{\pm}1.9$	394^{+29}_{-34}	$1.3\substack{+0.2\\-0.1}$	1934_{-41}^{+42}	$1840\substack{+43 \\ -50}$	$128.8\substack{+2.4 \\ -0.8}$	$-2.3^{+1.2}_{-1.5}$	$6-7^{b}$
NGC 1027 ^a	(0, 36.2)	$\gtrsim 1.5$	-36^{+17}_{-5}	61.0±2.0	$-90.0{\pm}2.0$	234_{-12}^{+52}	$2.2\substack{+0.2\\-0.4}$	1335^{+16}_{-6}	1251^{+29}_{-19}	$138.9\substack{+0.9 \\ -0.6}$	$-0.3\substack{+0.4 \\ -0.8}$	$\gtrsim 5^{b}$
NGC 1444ª	(0, 178.9)	pprox 4.1	-82^{+37}_{-8}	61.1±2.7	$-90.0{\pm}2.0$	187^{+26}_{-8}	$2.5_{-0.2}^{+0.4}$	1055^{+46}_{-28}	997^{+52}_{-41}	$144.5^{+6.1}_{-3.6} \\$	$4.8_{-1.9}^{+4.1}$	$5-6^{b}$

Table 4.25: Present-day parameters of PSR J0826+2637 and supernova position and time for possible parent associations. Column designations are as in Table 4.2.

^aSince small v_r of the NS were predicted, the calculations were repeated using a uniform v_r distibution in the range 1500 - +1500 km/s. These results are given here. They did not change significantly.

^bThese M_{prog} estimates are smaller than the minimum mass of a star that can experience a core-collapse supernova ($\approx 8-9 M_{\odot}$, [e.g. 214]). However, isochrone ages of NGC 433, NGC 1027 and NGC 1444 as given in Table A.1 are upper limits (L. Bukowiecki, priv. comm.). Then, higher progenitor masses ($> 8 M_{\odot}$) are derived.

it might be possible to calculate the orbits even for larger timescales than done in this work; a restriction on the radial velocity of the NS is crucial here.

4.4.3 PSR J0826+2637

Seven associations and clusters are candidates to have hosted the birth place of PSR J0826+2637. The NS either originated in a nearby (< 200 pc) association $\lesssim 1$ Myr ago or in a more distant one ($\approx 600-900$ pc) up to ≈ 5 Myr ago (Table 4.25). In the latter cases a near-zero radial velocity of the NS is necessary. For that reason, the results given in Table 4.25 are obtained from calculations that used a uniform v_r distribution. Considering the estimated masses of the supernova progenitor star given in that table, it is unlikely that one of the nearby associations Per OB3 (α Per) and Cas-Tau is the parent association of PSR J0826+2637 since the predicted masses are smaller than the minimum mass of a star that can experience a core-collapse supernova ($\approx 8-9$ M_{\odot}, [e.g. 214]). It is more probable that PSR J0826+2637 was born $\approx 2-4$ Myr ago in an association or cluster $\gtrsim 700$ pc distant in the Camelopardalis region.

The GOIa runaway star HIP 13962 was identified as a former companion candidate to PSR J0826+2637 (appendix E.7). Considering the small size of the proposed host of the supernova, the small open cluster Stock 7 (nominal radius $\approx 2 \text{ pc}$ [268]; $R_{crit} = 30 \text{ pc}$), it is very likely that PSR J0826+2637 and HIP 13962 were ejected in the same supernova event $3.0\pm0.6 \text{ Myr}$ ago (Fig. 4.18). This kinematic age is comparable to the characteristic age of PSR J0826+2637, $\tau_{char} = 4.92 \text{ Myr}$ [222]. The present NS parameters and position of the predicted supernova are given in Table 4.26. [506] propose that HIP 13962 is a member of a yet unknown sparsely populated young cluster (9 \pm 1 Myr) that is presently dissolving into the field. The existence of that cluster is questionable, however. If existing, the cluster
Table 4.26: Predicted current parameters of PSR J0826+2637 and supernova position and time if HIP 13962 was the former companion.

Predicted present-day parameters of PSR J0826+2637								
$\begin{array}{ccc} \nu_r \; [\rm km/s] & 1^{+36}_{-15} \\ \pi\; [\rm mas] & 2.6^{+0.5}_{-0.5} \\ \mu^*_{\alpha}\; [\rm mas/yr] & 60.0 \pm 2.4 \\ \mu_{\delta}\; [\rm mas/yr] & -90.4 \pm 1.9 \\ \nu_{sp}\; [\rm km/s] & 183^{+39}_{-32} \end{array}$								
Predicted super	nova pos. and time							
$ \begin{array}{c} d_{\odot,SN} \; [pc] \\ d_{\odot,today} \; [pc] \\ l \; [^{\circ}] \\ b \; [^{\circ}] \\ \tau \; [Myr] \end{array} $	$707^{+19}_{-32} \\ 671^{+23}_{-25} \\ 140.5^{+1.6}_{-1.2} \\ -0.2^{+0.7}_{-1.4} \\ 3.0 \pm 0.6$							

Designations are as in Table 4.1. Since for an origin in Stock 7, the NS v_r was found to be very small, the results given here were obtained using a NS $v_r = 0 \pm 100 \text{ km/s}$ in the Monte Carlo simulations.

Figure 4.18: Panels as in Fig. 4.1 for encounters between PSR J0826+2637 and HIP 13962, only those Monte Carlo runs are shown for which both stars were within 30 pc from the centre of Stock 7. The solid curves drawn in the d_{min} histograms (bottom panel) represent the theoretically expected distribution (equation 3.3) with $\mu = 0$ and $\sigma = 13.0$ pc, adapted to the first part of the histogram.

is only marginally detectable by eye (see Figure 9 in [506]). It is not detectable in infrared data (2MASS JHK_S [107], L. Bukowiecki, priv. comm., see also [64] for the method of detection). Hence, the existence of this cluster is arguable.

4.4.4 PSR J1136+1551

The association Cen OB1 and the cluster NGC 4609 were found to be a possible birth places for PSRJ1136+1551. The present parameters of PSRJ1136+1551 and the positions of the predicted supernovae are given in Table 4.27. Since it was found that the radial velocity of PSRJ1136+1551 is close to zero in both cases, the calculation was repeated adopting a uniform v_r distribution for the pulsar. The results of these are given in Table 4.27. No

					-							
Assoc.	(μ, σ)	au	Р	redicted pres	sent-day NS	parameter	s	Pred	icted sup	ernova po	sition	M _{prog}
			Vr	μ^*_{lpha}	μ_{δ}	V_{sp}	π	$d_{\odot,SN}$	$d_{\odot,today}$	Ι	Ь	
	[pc]	[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[mas]	[pc]	[pc]	[°]	[°]	$[M_{\odot}]$
Cen OB1	(109.3, 53.5)	$2.92\substack{+0.19 \\ -0.17}$	5^{+15}_{-31}	-74.0±0.4	368.1±0.3	629^{+48}_{-24}	$2.8^{+0.2}_{-0.2}$	1943_{-18}^{+74}	1890^{+38}_{-47}	$300.4^{+0.7}_{-0.7}$	$0.9^{+1.5}_{-1.9}$	$\gtrsim 17$
NGC 4609	(0, 19.3)	$1.89\substack{+0.10 \\ -0.11}$	70^{+15}_{-10}	$-74.0{\pm}0.4$	368.1±0.3	643^{+21}_{-19}	$2.8\substack{+0.1\\-0.1}$	1250^{+9}_{-5}	$1229\substack{+9\\-4}$	$301.9\substack{+0.4 \\ -0.2}$	$0.4\substack{+0.6\\-1.2}$	$6-7^{a}$

Table 4.27: Present-day parameters of PSR J1136+1551 and supernova position and time for possible parent associations. Column designations are as in Table 4.2.

^aThis range of M_{prog} yields to an exclusion of NGC 4609 as possible birth cluster since the predicted masses are smaller than the minimum mass of a star than can experience a core-collapse supernova ($\approx 8 - 9 M_{\odot}$, e.g. [214]). However, isochrone ages as small as 15 Myr are possible (L. Bukowiecki, priv. comm.). Then, a higher progenitor mass (up to 17 M_{\odot}) can be derived.

significant differences were found when adopting the [221] distribution instead. A small radial velocity is also supported by the evidence of a bow shock (seen as an extended trail behind the pulsar) claimed by [559]. The extended trail is only marginally seen because the pulsar is situated at high Galactic latitude where the density of the local ISM is low.

Three stars were identified that are possible former companion candidates to PSR J1136+1551 (appendix E.9). The possible past encounter with the Be star HIP 63049 was found in the vicinity (within $\approx 50 \,\mathrm{pc}$ from the cluster centre) of the small cluster NGC 4609 (nominal radius 2 pc [64], $R_{crit} \approx 10 \,\mathrm{pc}$), a possible birth place of PSR J1136+1551. Furthermore, HIP 63049 shows signatures of a BSS runaway star (high $v \sin i = 445 \,\mathrm{km/s}$ [19]). Although in section 2.3 a stellar age of only 0.1 Myr was estimated, the star could be much older. First, the distance of HIP 63049 is rather uncertain, $d = 645^{+1396}_{-261} \,\mathrm{pc}$ [518]. If it was the former companion of PSR J1136+1551, its current distance would be $1250^{+179}_{-139} \,\mathrm{pc}$. Using this value and a spectral type of B0, the age obtained using evolutionary models (as in section 2.3) is $2.4 \pm 1.1 \,\mathrm{Myr}$. As the spectral type is uncertain it could also be that the star is a middle or late B type star yielding ranges of stellar ages up to tens of million years. This would be well consistent with being a (former) member of the $\approx 15 - 60 \,\mathrm{Myr}$ old ([64, 268]; L. Bukowiecki, priv. comm.) cluster NGC 4609.

A possible past encounter with the O9.5III star HIP 63449 would have occurred outside any association or cluster ≈ 1.2 Myr ago. The radial velocity of the NS is somewhat higher, $v_r \approx 125$ km/s. HIP 63449 has a rotational velocity of $v \sin i = 51$ km/s [405]. This low $v \sin i$ may indicate that the star is not a BSS runaway star. Therefore, it is not considered further former companion candidate to PSRJ1136+1551.

The candidate HIP 61766 is a K0II/III star without radial velocity measurements available. The possible encounter would have occurred more recent (≈ 0.8 Myr) and nearby ($\approx 600 \text{ pc}$) outside any association or cluster. The predicted radial velocity of the runaway star is $v_{r,HIP} = -327^{+225}_{-163}$ km/s ($v_{pec,HIP} = 65^{+249}_{-48}$ km/s).

In Table 4.28 the predicted current NS parameters and supernova positions for the former companion candidates HIP 63049 and HIP 61766 are given. For the case with HIP 63049 being the former companion, no progenitor mass can be estimated from 26 Al because with

Predicted present-day parameters of $PSRJ1136{+}1551$											
former comp. cand. HIP 63049 HIP 61766											
v _r [km/s]	68^{+16}_{-22}	35^{+60}_{-5}									
π [mas]	$2.8^{+0.2}_{-0.2}$	$2.8^{+0.2}_{-0.2}$									
μ^*_lpha [mas/yr]	-74.0 ± 0.4	-74.0 ± 0.4									
$\mu_\delta~[{\sf mas/yr}]$	$\textbf{368.1} \pm \textbf{0.3}$	368.1 ± 0.3									
<i>v_{sp}</i> [km/s]	640^{+36}_{-34}	633^{+41}_{-31}									
Predicted s	upernova positic	on and time									
<i>d</i> _{⊙,SN} [pc]	1244^{+14}_{-191}	629^{+35}_{-75}									
$d_{\odot,today}$ [pc]	1220^{+14}_{-18}	580^{+77}_{-32}									
/ [°]	$301.5\substack{+0.6 \\ -0.3}$	$296.6^{+0.3}_{-0.2}$									
b [°]	$1.1^{+1.2}_{-1.2}$	$19.0\substack{+0.5 \\ -0.9}$									
τ [Myr] $1.91^{+0.10}_{-0.12}$ $0.80^{+0.21}_{-0.15}$											

Table 4.28: Predicted current parameters of PSR J1136+1551 and supernova position and time for two former companion candidates.

Designations are as in Table 4.1. HIP 61766 would have a radial velocity of $v_{r,run}=-229^{+177}_{-174}\,\rm km/s.$

a supernova distance of \approx 1.2 kpc and time of \approx 2 Myr, the γ 1.8 MeV emission is not detectable. Moreover, the predicted supernova position lies in the Galactic plane.

In the case of HIP 61766, a 1 Myr old SNR at a distance of 600 pc would have an angular radius of $\approx 5^{\circ}$. Integrating the γ 1.8 MeV COMPTEL flux at the predicted supernova position and converting them into a presently observed ²⁶Al mass yields an ejected mass of ²⁶Al of $\approx 1.8 \cdot 10^{-4} \,\text{M}_{\odot}$ (see appendix D.1). This value exceeds the theoretically predicted ²⁶Al masses even for very massive progenitors by one half to one order of magnitude. Hence, the signal in the 1.8 MeV COMPTEL map is probably due to a more recent and nearby supernova or multiple supernova events. This is well possible since the considered position is in the Vela region where many associations and clusters harbouring massive stars are present.

4.4.5 PSR J1239+2453

Three associations/cluster were found to be possible birth places of PSRJ1239+2453: Sgr OB1, Ser OB1 and the open cluster NGC 6514. The predicted present NS parameters as well as time and position of the supernovae are given in Table 4.29. The projected predicted positions lie close to the Galactic centre. Therefore, no progenitor mass estimation is feasible from ²⁶Al measurements.

[230] found that PSR J1239+2453 could have originated from the Solar neighbourhood $\approx 1 \text{ Myr}$ ago; however, they used a distance of 560 pc as derived from dispersion measure [479]. One year after their publication a parallactic distance of 862^{+64}_{-56} pc was obtained

Assoc.	(μ, σ)	au	Pi	redicted pres	ent-day NS	parameter	Pred	M _{prog}				
			Vr	μ^*_{lpha}	μ_{δ}	V _{sp}	π	$d_{\odot,SN}$	$d_{\odot,today}$	Ι	Ь	
	[pc]	[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[mas]	[pc]	[pc]	[°]	[°]	$[\rm M_{\odot}]$
Sgr OB1	(84., 25.7)	$3.26\substack{+0.19 \\ -0.28}$	297_48-	-104.5±1.1	49.2±1.4	526^{+40}_{-26}	$1.1\substack{+0.1\\-0.1}$	1597^{+9}_{-60}	1555^{+8}_{-60}	$4.9^{+0.8}_{-0.6}$	$0.7^{+0.8}_{-3.4}$	$\gtrsim 32$
Ser OB1	(103.1, 8.2)	$1.17\substack{+0.09 \\ -0.08}$	721^{+29}_{-72} -	-104.6 ± 1.1	49.0±1.2	789^{+76}_{-23}	$1.2\substack{+0.1\\-0.1}$	549^{+19}_{-27}	537^{+18}_{-28}	$5.1\substack{+0.6\\-0.6}$	$-0.3^{+2.1}_{-1.3} \\$	14 - 38
NGC 6514	(0,127.1)	$1.72\substack{+0.12 \\ -0.10}$	483 ⁺³⁷ -49	-104.5±1.1	49.3±1.4	670^{+48}_{-41}	$1.2\substack{+0.1\\-0.1}$	833^{+11}_{-23}	804_{-14}^{+20}	$4.8\substack{+0.8\\-0.6}$	$0.8\substack{+1.1\\-1.4}$	10 - 12

Table 4.29: Present-day parameters of PSR J1239+2453 and supernova position and time for possible parent associations. Column designations are as in Table 4.2.

by [57], significantly larger than the value they adopted. Here, it was not found that the pulsar could have originated from the Solar neighbourhood. The closer and the more recent the birth scenario for PSR J1239+2453 would have occurred, the larger the required radial velocity of the NS. That is why [230] finally excluded a closeby birth place for PSR J1239+2453 because they conclude that a spatial velocity of 700 km/s is unlikely. Instead, they suggest that PSR J1239+2453 was born ≈ 25 Myr ago in the Galactic plane, a kinematic age comparable to the characteristic pulsar age of $\tau_{char} = 23$ Myr. However, they only considered a small number of nearby associations as possible parents. It is well possible that PSR J1239+2453 was born in the Sgr-Ser region 1 - 3 Myr ago.

No former companion candidate was found for PSR J1239+2453 (appendix E.10).

4.4.6 PSR J1509+5531

PSR J1509+5531 has a very high transverse velocity of 970 ± 60 km/s. Therefore, its radial velocity is expected to be small. In the simulations, however, a uniform radial velocity distribution in the range -1500 to 1500 km/s was adopted to not give too strong a priori restriction on the direction of motion, i.e. space velocity (the same approach was used for the Guitar Pulsar, section 4.4.8; Tetzlaff et al. 2009 [485]; Hui, Huang, Trepl, Tetzlaff et al. 2012 [239]).

Even so, no association was found to be a candidate for hosting the supernova in which PSR J1509+5531 was formed.

It is possible that the progenitor star was a massive runaway star that already left its parent association or cluster due to a possible primary supernova or dynamical ejection. In this case, the parent association or cluster of the progenitor star cannot be identified. However, if the progenitor was a runaway binary system⁶¹, it might still be possible to identify the birth place of the NS as the intersection of its past path with the past path of a former companion, hence determine its age kinematically. Unfortunately but not surprisingly, no former companion candidate was found (appendix E.11). This suggests that the progenitor

⁶¹It is still not clear whether a former binary companion could survive a supernova explosion. There are binary runaway stars observed but it is unknown whether they are BSS or DES runaway stars. It seems possible that in a hierarchical triple system the binary companion can get ejected as a system, i.e. does not get disrupted.

Assoc.	(μ, σ)	au	Pi	redicted pres	ent-day NS	parameter	Pred	M _{prog}				
			Vr	μ^*_{lpha}	μ_{δ}	V _{sp}	π	$d_{\odot,SN}$	$d_{\odot,today}$	1	Ь	
	[pc]	[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[mas]	[pc]	[pc]	[°]	[°]	$[M_{\odot}]$
Ser OB1	(70.7, 25.4)	$1.66\substack{+0.07 \\ -0.06}$	-165^{+30}_{-41}	113.2±0.1	-4.6±0.3	540^{+10}_{-15}	$1.0^{+0.1}_{-0.1}$	1534^{+19}_{-64}	1491^{+65}_{-20}	$18.6_{-0.5}^{+0.4}$	$-0.4^{+1.7}_{-1.2}$	8 – 39
Ser OB2	(0, 25.3)	$1.86\substack{+0.05 \\ -0.06}$	-173^{+9}_{-10}	$113.2{\pm}0.1$	$-4.6{\pm}0.3$	535^{+6}_{-6}	$1.1\substack{+0.1\\-0.1}$	1594^{+9}_{-8}	1589^{+12}_{-4}	$17.8^{+0.2}_{-0.1}$	$1.6\substack{+0.7 \\ -0.1}$	$\gtrsim 100$
NGC 6604	(0, 8.2)	$1.92\substack{+0.05 \\ -0.07}$	$-202^{+7}_{-10} \\$	$113.2{\pm}0.1$	$-4.6{\pm}0.3$	550^{+6}_{-7}	$1.0\substack{+0.1\\-0.1}$	1684^{+8}_{-20}	1684^{+8}_{-22}	$18.0\substack{+0.2 \\ -0.1}$	$1.6^{+0.2}_{-0.6}$	$\gtrsim 100$

Table 4.30: Present-day parameters of PSR J2048–1616 and supernova position and time for possible parent associations. Column designations are as in Table 4.2.

of PSR J1509+5531 was a single runaway star that experienced a supernova outside any stellar group.

4.4.7 PSR J2048-1616

Three possible birth associations/clusters were found for PSRJ2048-1616, Ser OB1, Ser OB2 and NGC 6604. In all cases, the supernova would have taken place $\approx 1.6-2.0$ Myr ago at a distance of ≈ 1.6 kpc (Table 4.30).

Ser OB2 and NGC 6604 are only ≈ 5 Myr old [268, 487]. Therefore, the progenitor star of PSR J2048–1616 would have been extremely massive ($\gtrsim 100 M_{\odot}$). Such a star would probably not have formed a NS. Hence, Ser OB2 and NGC 6604 are too young to have formed a NS yet. The age of Ser OB1 is greater ($\approx 8-45$ Myr, [487]; L. Bukowiecki, priv. comm.). The deduced progenitor mass of $8-39 M_{\odot}$ is plausible for the formation of a NS. Hence, it is most likely that PSR J2048–1616 was formed in Ser OB1 ≈ 1.7 Myr ago. The projected predicted supernova positions are all close to the Galactic centre. For that reason, no estimation of the progenitor mass can be drawn from ²⁶Al measurements.

No suitable former companion candidate was found for PSR J2048-1616 (appendix E.14).

4.4.8 PSR J2225+6535 – The Guitar Pulsar

The results presented in this section were published in their first version in *The Astrophys-ical Journal*, Volume 747 (Hui, Huang, Trepl, Tetzlaff et al. 2012 [239]).

The Guitar Pulsar (PSR J2225+6535) is outstanding among normal radio pulsars because its transverse velocity, $v_t = 1300 \pm 430$ km/s, is certainly one of the highest ones measured. This, as well as the well measured bow shock [82] suggest a negligible radial velocity of this NS which was confirmed by the identification of its birth place in the Cygnus region (Tetzlaff et al. 2009 [485]). A new analysis of the birth association or cluster was carried out here again since the list of possible parent associations or clusters was updated in this work (section 2.1, cf. Tetzlaff et al. 2010 [487]). Since the transverse velocity of the Guitar Pulsar is already very large, radial velocities in the range between -1500 - +1500 km/s were adopted in the Monte Carlo simulation rather than a distribution derived from the

Assoc.	(μ, σ)	au	Р	redicted pres	sent-day NS	paramete	Pre	Predicted supernova position					
			Vr	μ^*_{lpha}	μ_{δ}	V _{sp}	d_{NS}^{a}	$d_{\odot,SN}$	$d_{\odot, today}$	1	Ь		
	[pc]	[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[pc]	[pc]	[pc]	[°]	[°]	$[M_{\odot}]$	
Vul OB1	(0.0, 30.5)	$1.22\substack{+0.15 \\ -0.14}$	61^{+37}_{-77}	144.1±2.9	112.3±2.7	935^{+78}_{-36}	1074^{+80}_{-42}	1623^{+8}_{-57}	1627^{+8}_{-57}	$59.7^{+1.4}_{-1.0}$	$-0.1^{+0.8}_{-0.5}$	12 - 32	
NGC 6823	(0.0, 26.4)	$1.17\substack{+0.21 \\ -0.11}$	42^{+53}_{-53}	$143.9{\pm}2.9$	$112.0{\pm}2.8$	834^{+70}_{-37}	1028^{+28}_{-85}	1445^{+14}_{-30}	1446^{+14}_{-30}	$60.2^{+1.0}_{-0.7}$	$0.2^{+0.4}_{-1.0}$	$\gtrsim 18$	
Cyg OB3	(0.0, 26.1)	$0.77\substack{+0.05 \\ -0.03}$	78^{+15}_{-132}	$144.0{\pm}2.9$	$112.1{\pm}2.8$	1296^{+71}_{-31}	1495^{+58}_{-49}	1811^{+27}_{-27}	$1823^{+16}_{-38} \\$	$73.4^{+0.4}_{-0.6}$	$2.3^{+0.5}_{-0.5}$	15 - 37	
Cyg OB1	(51.1, 21.7)	$0.71\substack{+0.04 \\ -0.05}$	8^{+60}_{-68}	$143.5{\pm}2.8$	$112.5{\pm}2.9$	1089^{+71}_{-8}	1256^{+78}_{-7}	1509^{+49}_{-16}	1510^{+43}_{-23}	$75.9\substack{+0.9 \\ -0.6}$	$2.6^{+0.4}_{-0.5}$	21 - 36	
Cyg OB8	(0.0, 21.8)	$0.65\substack{+0.03 \\ -0.03}$	-24^{+86}_{-55}	$143.9{\pm}2.9$	$112.1{\pm}2.7$	1397^{+50}_{-42}	1545^{+78}_{-16}	1809^{+27}_{-28}	$1806\substack{+27 \\ -28}$	$78.4_{-0.7}^{+0.3}$	$3.0\substack{+0.4\\-0.4}$	> 100	
Cyg OB9	(30.0, 16.1)	$0.64\substack{+0.05 \\ -0.04}$	7^{+77}_{-52}	$143.6{\pm}3.1$	$112.4{\pm}2.9$	789^{+31}_{-45}	$911\substack{+17 \\ -66}$	1027^{+24}_{-26}	1009^{+22}_{-27}	$78.7^{+0.5}_{-0.9}$	$2.9\substack{+0.4\\-0.6}$	$21 - 87^{b}$	
Cyg OB7	(50.1, 6.5)	$0.40\substack{+0.05 \\ -0.03}$	28^{+71}_{-81}	143.7±2.9	$112.6{\pm}2.8$	488^{+36}_{-23}	572^{+34}_{-28}	614^{+12}_{-23}	609^{+13}_{-22}	$88.7^{+0.6}_{-0.7}$	$4.2\substack{+0.4 \\ -0.3}$	14 - 19	
Cep OB2	(20.2, 3.0)	$0.14\substack{+0.01 \\ -0.01}$	-37^{+118}_{-72}	$143.5{\pm}2.8$	$112.3{\pm}2.9$	526^{+19}_{-12}	$610\substack{+15 \\ -15}$	619^{+6}_{-9}	617^{+7}_{-9}	$102.0\substack{+0.2 \\ -0.2}$	$6.1^{+0.1}_{-0.2}$	33 - 44	
Col 419	(0.0, 7.2)	$0.63\substack{+0.07 \\ -0.06}$	-37^{+118}_{-72}	$144.1{\pm}2.9$	$112.0{\pm}2.7$	583^{+12}_{-30}	661^{+21}_{-25}	752^{+3}_{-14}	742^{+7}_{-11}	$78.8_{-0.4}^{+0.2}$	$2.7^{+0.5}_{-0.3}$	24 - 39	
NGC 7160	(0.0, 17.3)	$0.10\substack{+0.01 \\ -0.01}$	$-11\substack{+128 \\ -79}$	144.0±3.0	112.0±3.0	576^{+23}_{-9}	669^{+9}_{-14}	662^{+12}_{-4}	669^{+10}_{-6}	$104.1\substack{+0.1 \\ -0.2}$	$6.3\substack{+0.1 \\ -0.1}$	9 - 11	

Table 4.31: Present-day parameters of the Guitar Pulsar and supernova position and time forpossible parent associations. Column designations are as in Table 4.2.

To achieve better constraints on the parameters, $v_r=0\pm100\,\text{km/s}$ was adopted for the Guitar Pulsar.

^aInstead of the current parallax π (as in Table 4.2) the current distance of the Guitar Pulsar is given here since no parallax was measured.

^bApparently, Cyg OB9 consists of two groups of different ages, the younger one being ≈ 4 Myr old (see Fig. 4.20), the latter ≈ 8 Myr [511].

spatial velocity distribution of pulsars [221] since the latter approach would only cover a small range of v_r (see also Tetzlaff et al. 2009 [485]). However, this results in a very large number of 70 possible birth associations. Since it is certain that the Guitar Pulsar is moving almost parallel to the plane of the sky implying a near-zero radial velocity ([81, 82]; Tetzlaff et al. 2009 [485]), those associations/clusters were removed for which pulsar radial velocities of a few hundred km/s are necessary to be possible parent associations/clusters. For ten of the remaining 16 associations/clusters⁶², the d_{min} distributions suggest that the Guitar Pulsar could have been inside the boundaries of the respective association or cluster (from equation 3.2, $\mu - \sigma < R_{crit}$; or distribution peak consistent with R_{crit} if equation 3.2 was not adaptable). In Table 4.31 the position of the supernova and the current properties of the Guitar Pulsar, if it was born in the respective association, are given.⁶³

For the last four associations/clusters listed in that table, the implied present distances to the Guitar Pulsar are considerably smaller than the minimum distance of 1 kpc [82]. They are not further considered as possible parent associations of the Guitar Pulsar. Three further associations/clusters predict a present NS distance at the 1 kpc boundary.

One runaway star was found as a former companion candidate, HIP 99580 (see also Hui, Huang, Trepl, Tetzlaff et al. 2012 [239]). The possible encounter might have occurred

⁶²These include the 12 possible parent associations/clusters already found in the earlier analysis, Tetzlaff et al. 2009 [485], as well as four additional clusters which were not part of the previous sample of associations and clusters (see Tetzlaff et al. 2010 [487]).

⁶³Note that in some cases the predicted kinematic ages differ from those obtained in the first analysis which was published in Tetzlaff et al. 2009 [485]. This is due to a stronger restriction on the present distance of the Guitar Pulsar applied in the first analysis ($\approx 1.9 \pm 0.1 \text{ kpc}$).

Figure 4.19: Distributions of minimum separations d_{min} and corresponding flight times τ for encounters between the Guitar Pulsar and HIP 99580 within the Cyg OB9 association. The solid curve drawn in the d_{min} histogram (bottom panel) represents the theoretically expected distribution (equation 3.2), adapted to the first part of the histogram, $\mu = 0$, $\sigma = 6.1 \,\mathrm{pc}$.

Table 4.32: Predicted current parameters of the Guitar Pulsar and supernova position and time if HIP 99580 was the former companion.

Predicted present-day parameters of the Guitar Pulsar								
v _r [km/s]	-9^{+117}_{-64}							
d _{NS} [pc]	884^{+42}_{-74}							
μ^*_{lpha} [mas/yr]	143.5 ± 2.9							
$\mu_{\delta}~[{\sf mas/yr}]$	112.8 ± 2.5							
<i>v_{sp}</i> [km/s]	752^{+61}_{-54}							
Predicted sup	ernova pos. and time							
<i>d</i> _{⊙,<i>SN</i>} [pc]	982^{+21}_{-22}							
<i>d</i> _{⊙,<i>today</i>} [pc]	977^{+19}_{-25}							
/ [°]	$77.4_{-0.2}^{+0.4}$							
b [°]	$2.8^{+0.2}_{-0.6}$							
au [Myr]	$0.65\substack{+0.04\\-0.04}$							

Designations are as in Table 4.1. Note that the NS distance d_{NS} is given instead of π .

within Cyg OB9, a possible parent association of the pulsar. The first part of the distribution of the separations d_{min} between the Guitar Pulsar and HIP 99580 is consistent with the hypothesis that both stars once were at the same position ≈ 0.7 Myr in the past (Fig. 4.19). The present NS parameters and place and time of the predicted supernova are given in Table 4.32. If the Guitar Pulsar and the runaway star HIP 99580 were at the same place 0.7 Myr ago in Cyg OB9, the present distance of the pulsar needs to be ≈ 0.9 kpc. Hence,

Figure 4.20: $(B - V)_0$ versus M_V diagram of Cyg OB9 (filled circles show member stars according to [182]). The solid line represents the 4 Myr isochrone from [344] (for solar metallicity; http://stev.oapd.inaf.it/cgi-bin/cmd). M_V of the Cyg OB9 member stars are taken from [182] (they adopted a distance of 1 kpc, similar to the distance used in this work, 962 pc ([48], reduced by 20% according to [110]). Their $(B - V)_0$ is calculated from the colour index E_{B-V} and B-V colour as given by [182]. M_V for HIP 99580 is obtained using its B and V magnitudes and parallactic distance (taking also into account the extinction A_V which was determined from $(B - V)_0$). The $(B - V)_0$ value of this star is taken from [444] for an O5V star.

this association, if it is true, confirms a smaller distance than the dispersion measured distance (also previously suggested by [82]).

It was claimed by [22] that HIP 99580 is a spectroscopic binary, however [118] and [507] could not confirm this.⁶⁴ According to [98], the O5 type star HIP 99580 is a rapid rotator with $v \sin i = 270 \text{ km/s}$. [405] investigated $v \sin i$ of O-type stars and found that only a small number of very massive stars show such a large $v \sin i$. Hence, it is reasonable to assume that it gained its large $v \sin i$ during the earlier evolution in a binary system. Furthermore, HIP 99580 is a blue straggler if it was ejected from Cyg OB9 (Fig. 4.20).

Assuming an association age of 4 Myr, the progenitor star of the NS must have been as massive as $49 - 87 M_{\odot}$ [models from 277, 327, 494]. For such large masses, formation of black holes is expected rather than NSs. However, due to mass transfer during binary evolution, even more massive stars ($\approx 50 - 80 M_{\odot}$) may eventually produce NSs instead of black holes [29]. Also, more massive progenitors may also produce larger speeds of the NS [68] which is consistent with the extraordinary speed of the Guitar Pulsar.

⁶⁴But note that [118] quote a different radial velocity of $v_r = -23.1 \pm 8.0$ km/s for HIP 99580 compared to -44 ± 4 km/s [272] that was used here. In this case, the star would still be a runaway star as it was identified also from its tangential velocity (section 2.3). However, only a tiny fraction of runs would then yield small separations between HIP 99580 and the Guitar Pulsar making the BSS scenario unlikely. But note that both radial velocities can be correct if the star is a spectroscopic binary, then it would be necessary to determine the systemic radial velocity.

5 Summary

During this thesis, all known young NSs with sufficient properties were studied to determine their birth sites and to obtain kinematic ages. While in the literature, individual NSs have been analysed regarding their kinematic ages [e.g. 84, 230, 380, 458, 527], such extended work has not been carried out before. 20 NSs with good parameters (see section 2.2 for the introduction of the NS sample) were investigated regarding their birth associations and possible former companion candidates (chapter 4). The final results are reviewed in Table 5.1. For further 85 NSs preliminary results are shown in appendix F. The projected past flight paths of 19 of the 20 nearby NSs with accurate parameters (PSR J1509+5531 is not shown since no birth place could be determined) and possible former companion candidates listed in Table 5.1 are drawn in Fig. 5.1.

In preparation of the investigation of young NSs a catalogue of young runaway stars was compiled (section 2.3). The selection criteria for this catalogue combine all kinds of possible methods, starting from the classical selection of a runaway star regarding its absolute peculiar spatial velocity. Moreover, runaway star candidates were identified from extraordin-

Figure 5.1: Projected past flight paths of 19 NSs and six runaway stars (best former companion candidates). The stars and open circles mark the present positions of the NSs and runaway stars, respectively. The trajectories were calculated adopting a certain set of parameters that is compatible with the results shown in chapter 4 for each case. The black solid circles and red crossed circles represent the present positions of the putative parent associations and clusters, respectively. For clarity, they are not traced back in time since their positions do not change much. Grey solid circles show the YLA, where also some NSs could originate from, see Table 5.1. The numbering code corresponds to the entry in column one of Table 5.1.

			· · ·		
No	PSR	# tormer	parent assoc./cl.	$ au_{kin}$	τ_{char}
		comp. cand.		[iviyr]	[iviyr]
1	J0034-0721	6	Solar neighbourhood (poss.	1.5 - 2.4	36.6
			Argus)		
2	J0454+5543	—	Cam OB1	0.6 - 0.7	2.28
3	J0630-2834	8	Solar neighbourhood (poss.	0.4 - 1.0	2.77
			assoc. with Antlia SNR)		
4	$J0633 + 1746^{a}$	_	Ori OB1a	0.4 - 0.7	0.34
5	J0659+1414	_	SNR 203.0+12.0 (Monogem	0.1	0.11
			Ring)		
6	RX J0720.4-3125	4	YLA	0.3 - 0.7	1.9
			Tr 10 (supported by HIP	0.7 - 1.1	
			43158)		
7	J0820-1350	-	Cas region	\gtrsim 5	9.32
8	J0826+2637	1	Stock 7 (supported by HIP	2.4 - 3.6	4.92
			13962)		
9	J0835-4510 ^b	-	Vela SNR		0.011
10	J0953+0755	9	Solar neighbourhood	0.4 - 2.5	17.5
11	J1136+1551	2	Cen OB1	2.7 - 3.1	5.04
			NGC 4609 (supported by HIP	1.8 - 2.0	
			63049)		
			outside any assoc /cl. (sup-	0.7 - 1.0	
			ported by HIP 61744)		
12	J1239+2453	—	Sgr OB1	3.0 - 3.5	22.8
			Ser OB1	1.1 - 1.3	
			NGC 6514	1.7 - 1.8	
—	J1509+5532	—	-		2.34
13	RX J1605.3+3249	1	Solar neighbourhood (poss.	0.4 - 0.6	_
			Octans, supported by HIP		
			89394)		
			Sco OB4	2.9 - 3.7	
14	RX J1856.5-3754		US	0.4 - 0.5	3.76
15	B1929+10	3	Sco-Cen	0.7 - 1.3	3.1
16	J2048-1616	-	Ser OB1	1.6 - 1.7	2.84
17	J2225+6535 ^c	1	Vul-Cyg region	0.6 - 1.3	1.12
			Cyg OB9 (supported by HIP	0.6 - 0.7	
			99580)		
18	J2313+4253	4	Ser OB1	3.7 - 4.4	49.3
			outside any assoc /cl. (sup-	1.4 - 2.7	
			ported by 4 former comp.		
			cand.)		
19	J2330-2005	5	YLA	0.4 - 1.2	5.62

Table 5.1: Summary of the results obtained in chapter 4.

^a Geminga, ^b Vela Pulsar, ^c Guitar Pulsar

ary high velocities only in one or two directions which also enabled the search for runaway stars that have no radial velocity measured yet. Since the velocities of the runaway star population obeys a Maxwellian distribution (see section 2.3; [472]), also runaway stars with relatively low absolute velocities exist. These stars were identified by comparing the direction of motion of a star with those of stars in their neighbourhood or its surrounding stellar association or cluster. In this way, runaway stars were found as they do not share the common motion of their parent stellar group and move away from their birth associations/clusters. In total, 2038 Hipparcos stars were classified as runaway stars. Furthermore, the sample of 127 young association and clusters within 3 kpc from the Sun that are possible birth places of young neutron stars, which was assembled during the preceding diploma thesis, was updated and extended to 289 young associations/clusters with complete 3D kinematic data within 5 kpc from the Sun (section 2.1, Table A.1). A list

of further 174 associations/clusters with unknown or incomplete kinematics (Table A.2) is ready to be completed in the future after further observation.

In order to test the feasibility and prospects of this project, it was tested whether the birth place of a random young nearby NS with known origin can be recovered. Therefore, a population synthesis was developed in which NSs and runaway stars are produced in their birth associations/clusters according to the lifetime of the member stars of the stellar groups (section 3.2.1). The expected success rate was estimated to be \approx 70% (section 3.2.3).

Additional outcomes of this population synthesis were spatial densities of young NSs and runaway stars that are observationally unbiased (up to a few kpc). These were used to determine the significance of encounters between NSs and runaway stars (outside associations/clusters; section 3.2.2) which was taken as a selection criterion for possible former companion candidates.

Kinematic ages of young NSs can be used to constrain NS cooling curves (see also section 1.4). In Fig. 5.2, different models for NS cooling (kindly provided by A. D. Kaminker, left panels [see also 198]; and J. Pons, right panels [see also 417, 420]) are shown together with data for 20 NSs analysed in this work for which estimates of the effective temperature are available.⁶⁵ In many cases, especially the "Magnificent Seven" NSs with high effective temperatures ($\geq 10^6$ K), the characteristic ages are too large to be compatible with NS cooling theory while kinematic ages better fit the cooling curves. Note, however, that the effective temperature $T_{eff,\infty}$ of the cooling curves represent the average NS surface temperature whereas observed $T_{eff,\infty}$ reflect the temperature of the pole in most cases because it is usually hotter. All 20 NSs shown are probably low-mass NSs, hence slow coolers (left panels). Considering magnetic fields (right panels), the "Magnificent" Seven NSs RX J1856.5–3754, RX J0720.4–3125, RX J1605.3+3249 and RX J1308.8+2127 (RBS 1223) have high magnetic fields up to $\approx 10^{15}$ G. Particularly interesting is RX J0720.4–3125 which is hotter than RX J1856.5–3754 but could be older. One reason is that the thermal emission stems

⁶⁵Effective temperatures for M7 members were taken from [204]; for the other NSs from [121, 402, 499].

Figure 5.2: NS cooling diagrams for pure hadronic matter with observational data. The left panels show cooling curves including superfluidity of neutrons and protons (NS masses from $1.1 - 1.9 M_{\odot}$, from top to bottom; magnetic field strength of $5 \cdot 10^{12}$ G) [see 198](see Fig. 1.7 for a colour version of the curves). In the right panels NS cooling curves are shown for different magnetic field strengths and a fixed NS mass of $1.32 M_{\odot}$ (magnetic field strengths from bottom to top: 10^{13} , $3 \cdot 10^{13}$, 10^{14} , $3 \cdot 10^{14}$ and 10^{15} G; solid: pure toroidal field, dashed: toroidal plus poloidal field [see 417, 420]; see Fig. 1.7 for a colour version of the curves). Data for nine NSs included in the subsample of nearby NSs with good observational data are

Data for nine NSs included in the subsample of nearby NSs with good observational data are shown in the top panels. Empty boxes mark the ranges for kinematic ages and show also the effective temperature uncertainty (effective temperatures from [121, 204, 402, 499]) whereas symbols mark characteristic ages (note that for RX J1605.3+3249 no measurement of \dot{P} exist, hence no characteristic age). Further 11 NSs are inserted in the bottom figures. These kinematic ages are uncertain and should be taken as preliminary (in some cases lower or upper limits are shown).

mainly from the hot polar spots. However, already an estimate of the magnetic field strength using equation 1.18 gives a higher value for RX J0720.4-3125 ($B \approx 2.5 \cdot 10^{13}$ G) than for RX J1856.5-3754 ($B \approx 1.5 \cdot 10^{13}$ G). The magnetic field estimated from cyclotron resonance absorption is even higher for RX J0720.4-3125, $B \approx 5.6 \cdot 10^{13}$ G. For RX J1856.5-3754, no cyclotron line is detected since the magnetic field is lower and the line is not yet detectable with current instruments [204]. Regarding cooling curves provided by Pons et al. that include different magnetic field strengths (left panel in Fig. 5.2), a higher magnetic field is predicted for RX J0720.4-3125 than for RX J1856.5-3754, in good consistency with the other estimates.

6 Conclusions and Outlook

If the observables of a NS are of sufficient accuracy, the birth place of this star can well be identified (see e.g. RX J1856.5-3754, section 4.1.1). However, in most cases, the results obtained from investigations as carried out during this thesis still depend on the uncertainties in the observed NS parameters as well as the unknown radial velocity of the NS that needs to be assumed in the Monte Carlo simulations. Although the underlying v_r distribution does not significantly affect whether or not the birth place of a NS can be recovered (N. Tetzlaff, diploma thesis [483]), the kinematic age might deviate from the true age (in most cases by less than pprox 0.5 Myr, see section 3.2.3). This is due to the correlation between the distance of a NS and its radial velocity in the Monte Carlo simulations as a larger distance might be compensated for by a larger radial velocity and vice versa. Because extraordinary small as well as high spatial NS velocities are unlikely, a Maxwellian distribution was assumed in this work [221]. It should be noted, though, that this gives priority to spatial velocities of pprox 400 - 500 km/s in the Monte Carlo simulations. This results either in a slight shift of the NS distance if the observed distance suffers from a relatively large uncertainty or of the kinematic age that is obtained (see e.g. RX J1856.5-3754, section 4.1.1). To improve the kinematic NS ages, it might be worthwhile to investigate different v_r distributions in future work. However, this only makes sense if an association between a NS and possible birth place can be considered certain, e.g. by means of further indications such as a certain association with a runaway star that is probably the former companion to the NS progenitor or an estimation of the v_r due to an observed bow shock (see again RX J1856.5-3754, section 4.1.1 or PSRJ1136+1551, section 4.4.4). For some cases, where a small v_r was considered possible, the investigation was repeated using a uniform v_r distribution. Note also that the predicted peculiar space velocities for those 17 NSs analysed in great detail for which its determination was possible, cover the whole spectrum of plausible values (see section 1.4.3 for the theoretical velocity distribution).

40 former companion candidates were proposed throughout this thesis. They merit further investigation to confirm or reject their BSS runaway status, e.g. by searching for supernova debris in their spectra or indicators of former binary evolution such as an enhanced Helium abundance and rotational velocity $v \sin i$. Former companion candidates with unknown radial velocity might already be confirmed or rejected by measuring v_r . A list of the runaway stars that should be observed in this regard is given in Table 6.1. Moreover, the present catalogue of young runaway stars is confined to the Hipparcos catalogue. This also

Table 6.1: Runaway stars proposed for further observation. The second column denotes the possibly associated NS. Columns 3 and 4 give the spectral type and other information, respectively.

HIP	poss. assoc. NS	SpT	notes
13962	PSR J0826+2637	G0la	
33774	PSR J0953+0755	G811-111	
37385	PSR J0630-2834	B8V	
39121	PSR J0630-2834	A311/111	unknown <i>v_r</i>
40326	PSR J0630-2834	K1 -	spectroscopic binary
40929	PSR J0953+0755	A6/A7II/III	unknown <i>v_r</i>
43158	RX J0720.4-3125	B011/11	spectra were taken in spring/summer 2011 at
			SMARTS/CTIO 1.5 m (courtesy F. Walter). The data
			is currently being analysed (R. Errmann, M. Seeliger
			et al.).
			$v \sin i = 96 \pm 15 \mathrm{km/s}$ [405]
			a proposal to VLT/UVES to detect α elements as su-
			pernova debris was approved in December 2012
47018	PSR J0630-2834	A211/111	λ Bootes star
47155	PSR J0630-2834	A6lİw	λ Bootes star, unknown v_r
47904	PSR J0953+0755	F2lb	δ Scuti variable
48745	PSR J0630-2834	B3II	
50901	PSR J0630-2834	A411	unknown <i>v_r</i>
52093	PSR J0034-0721	B8	unknown <i>v_r</i>
53557	PSR J0953+0755	F911/111	astrometric binary, unknown <i>v</i> r
53759	PSR J0630-2834	A2/A311/111	unknown v _r
60134	RX J0720.4-3125,	A411	λ Bootes star, unknown v_r
	PSR J0953+0755		
61766	PSR J1136+1551	K0II/III	unknown <i>v_r</i>
63049	PSR J1136+1551	Be	uncertain distance, $v \sin i = 445 \mathrm{km/s} [19]$
66057	PSR J0953+0755	F511/111	in binary system, unknown v _r
70574	PSR J2313+4253	B2IV	δ Cephei variable
70586	PSR J2313+4253	M2II:	unknown <i>v_r</i>
75769	PSR J0953+0755	K0	double or multiple system, PMS
77471	PSRB1929+10	A5+F5	eclipsing binary of Algol type
78131	PSR J2330—2005	B6V	in binary sytem
78171	PSRB1929+10	K0II/III	binary, unknown <i>v</i> r
81007	PSR J2330—2005	B9.5III	HgMn star, v sin $i=14\pm1{ m km/s}$ [3]
84345	RX J0720.4-3125	M5Iab	at least one companion
85015	PSRB1929+10	A311/111	unknown <i>v_r</i>
88981	PSR J2313+4253	K1II	
89394	RX J1605.3+3249	Am	unknown v_r ; a proposal to VLT/UVES to detect $lpha$ ele-
			ments as supernova debris was approved in December
			2012
89828	PSR J2330—2005	F5II	$v \sin i = 70.1 \pm 7.0 \mathrm{km/s} [124]$
93051	PSR J2313+4253	B8IIIe	Hg star, v sin $i=182\pm12{ m km/s}$ [169]
94391	PSR J2330—2005	A0	double or multiple system
94899	PSR J0953+0755	B2V	
97198	PSR J0034–0721	K0II-III	unknown v _r
99580	Guitar Pulsar	05	$v \sin i = 270 \mathrm{km/s} [98]$
101608	PSR J2330-2005	A511/111	$v \sin i = 93 \mathrm{km/s} [7, 434]$
101938	PSR J0034-0721	B8	unknown v _r
115263	PSR J0034-0721	A511	
115755	PSR J0034–0721	B9III	$lpha^2$ CVn variable

gives a limit on the distance such that the catalogue is incomplete for larger distances. In future work, the runaway star catalogue will be extended to non-Hipparcos stars.

In addition, also positional and kinematic parameters of many associations and clusters are uncertain or even unknown (Table A.2). These stellar groups should be re-visited regarding distances and stellar content, hence their kinematic properties.

During this thesis, a population synthesis was developed that was used to evaluate the significance of NS-runaway star encounters and the feasibility of finding (nearby) NS origins. It includes (contemporaneous) star formation according to the IMF and (binary) pairing of stars. It already provides plausible supernova rates and binary fraction. Not yet incorporated are binary evolution and dynamical ejection of member stars. To improve the study of runaway stars, this will be inserted in the future. Another issue is the incompleteness of simulated supernova events beyond a few kpc due to the incomplete sample of stellar groups. This might be handled by including ISM simulations to form stars in stellar groups instead of using observed associations and clusters. However, this is not necessary for the present study since the observed parameters of distant NSs still suffer from large uncertainties making it difficult to evaluate their birth places in general.

Another important future goal is the identification of the NS (if it exists) that was born in the supernova from which ⁶⁰Fe was ejected that was found in terrestrial and lunar crusts ([100, 162, 163, 275], see section 1.2). Several candidates for an origin in the Solar neighbourhood were found in this work, however none of them at the desired time of ≈ 2 Myr in the past. A next step would be to analyse those NSs in more detail for which parallactic distances larger than 500 pc were measured (approximately 20 further NSs). It remains puzzling why for RX J1856.5–3754 no former companion candidate was found although the birth place could be certainly identified. Since the predicted progenitor mass is in the range where NSs can only form in a supernova in a binary system ($M_{prog} \approx 50-80 \, M_{\odot}$, [e.g. 29, 171]), a former companion to the progenitor star should exist. Possibly, this star was no Hipparcos source and can be identified in the future after non-Hipparcos runaway stars were investigated.

In many cases, it was tried to estimate the NS progenitor mass from the mass of ²⁶Al that got ejected during the supernova. This was done by measuring the integrated 1.8 MeV γ flux observed within a circle of the (calculated) size of the SNR at the predicted supernova position and converting it into a mass of ejected ²⁶Al (appendix D.1). If the predicted supernova distance was very close to Earth ($\leq 100 \, \text{pc}$), the SNR covers several tens of degrees on the sky making it impossible to evaluate the γ flux emitted from the SNR. However, at intermediate distances ($\approx 150 - 400 \, \text{pc}$, see e.g. sections 4.1.1, 4.2.1, 4.2.2), it is well possible to estimate the progenitor mass using the ²⁶Al method as long as the predicted supernova position is not too close to the Galactic plane.

Bibliography

- H. V. Abrahamyan. First byurakan survey late type stars catalog (abrahamyan, 2007). <u>VizieR Online Data Catalog</u>, 3246:0-+, April 2007.
- [2] H. A. Abt, A. E. Gomez, and S. G. Levy. The frequency and formation mechanism of b2-b5 main-sequence binaries. <u>ApJS</u>, 74:551-573, October 1990.
- [3] H. A. Abt, H. Levato, and M. Grosso. Rotational velocities of b stars. $\underline{\rm ApJ}$, 573:359–365, July 2002.
- [4] H. A. Abt and S. G. Levy. Multiplicity among solar-type stars. ApJS, 30:273–306, March 1976.
- [5] A. G. Agaev, O. K. Guseinov, and K. I. Novruzova. Catalogue of white dwarfs. <u>Ap&SS</u>, 81:5-84, January 1982.
- [6] F. Aharonian, A. Akhperjanian, M. Beilicke, and et al. Observations of 14 young open star clusters with the hegra system of cherenkov telescopes. <u>A&A</u>, 454:775-779, August 2006.
- [7] M. Ammler-von Eiff and A. Reiners. New measurements of rotation and differential rotation in a-f stars: are there two populations of differentially rotating stars? A&A, 542:A116, June 2012.
- [8] A. Ankay. <u>Disruption due to Supernova Explosion and Singleness</u> of <u>Neutron Stars</u>; <u>Pulsars</u>, <u>Supernova Remnants</u>, <u>Runaways and</u> <u>Genetic Connection Between Them</u>. PhD thesis, Middle East Technical University, Turkey, 2002.
- [9] Z. Arzoumanian, D. F. Chernoff, and J. M. Cordes. The velocity distribution of isolated radio pulsars. <u>AJ</u>, 568:289–301, March 2002.
- [10] Z. Arzoumanian, D. J. Nice, J. H. Taylor, and S. E. Thorsett. Timing behavior of 96 radio pulsars. <u>ApJ</u>, 422:671–680, February 1994.
- [11] B. Aschenbach, R. Egger, and J. Trümper. Discovery of explosion fragments outside the vela supernova remnant shock-wave boundary. <u>Nature</u>, 373:587-590, February 1995.
- [12] R. Asiain, F. Figueras, and J. Torra. On the evolution of moving groups: an application to the pleiades moving group. <u>A&A</u>, 350:434-446, October 1999.
- [13] M. Aumer and J. J. Binney. Kinematics and history of the solar neighbourhood revisited. <u>MNRAS</u>, 397:1286-1301, August 2009.
- [14] W. Baade and F. Zwicky. Cosmic rays from super-novae. <u>Proceedings of the National Academy of Science</u>, 20:259–263, May 1934.
- [15] W. Baade and F. Zwicky. On super-novae. <u>Proceedings of the</u> National Academy of Science, 20:254-+, 1934.
- [16] M. Bailes, R. N. Manchester, M. J. Kesteven, R. P. Norris, and J. Reynolds. The proper motion of the vela pulsar. <u>ApJ</u>, 343:L53– L55, August 1989.
- [17] M. Bailes, R. N. Manchester, M. J. Kesteven, R. P. Norris, and J. E. Reynolds. The parallax and proper motion of psr1451-68. <u>Nature</u>, 343:240-+, January 1990.

- [18] M. Bailes, R. N. Manchester, M. J. Kesteven, R. P. Norris, and J. E. Reynolds. The proper-motion of six southern radio pulsars. <u>MNRAS</u>, 247:322-+, November 1990.
- [19] L. A. Balona. Equivalent widths and rotational velocities of southern early-type stars. MmRAS, 78:51-72, 1975.
- [20] L. A. Balona and C. D. Laney. Ccd stromgren photometry of ngc6231. <u>MNRAS</u>, 276:627-+, September 1995.
- [21] I. Baraffe, G. Chabrier, F. Allard, and P. H. Hauschildt. Evolutionary models for solar metallicity low-mass stars: mass-magnitude relationships and color-magnitude diagrams. <u>A&A</u>, 337:403-412, September 1998.
- [22] A. A. Barannikov. Periodic variation of the radial velocities and brightness of the runaway 05 vnfp star hd 192281. <u>Astronomy</u> <u>Letters</u>, 19:420-424, November 1993.
- [23] M. Barbier-Brossat and P. Figon. Catalogue général de vitesses radiales moyennes pour les étoiles galactiques. mean radial velocities catalog of galactic stars. <u>A&AS</u>, 142:217–223, March 2000.
- [24] D. Barrado Y Navascués. On the age of the tw hydrae association and 2m1207334-393254. <u>A&A</u>, 459:511-518, November 2006.
- [25] D. Barrado y Navascues, E. de Castro, M. J. Fernandez-Figueroa, M. Cornide, and R. J. Garcia Lopez. The age-mass relation for chromospherically active binaries. iii. lithium depletion in giant components. <u>A&A</u>, 337:739–753, September 1998.
- [27] W. Becker and J. Truemper. The x-ray luminosity of rotationpowered neutron stars. <u>A&A</u>, 326:682-691, October 1997.
- [28] J. D. Bekenstein and R. L. Bowers. Do ob runaways have collapsed companions? <u>ApJ</u>, 190:653-659, June 1974.
- [29] K. Belczynski and R. E. Taam. The most massive progenitors of neutron stars: Cxo j164710.2-455216. <u>ApJ</u>, 685:400-405, September 2008.
- [30] J. Bergeat and A. Knapik. The barium stars in the hertzsprungrussel diagram. <u>A&A</u>, 321:L9-L1997, May 1997.
- [31] T. W. Berghöfer and D. Breitschwerdt. The origin of the young stellar population in the solar neighborhood – a link to the formation of the local bubble? <u>A&A</u>, 390:299–306, July 2002.
- [32] P. A. Bernasconi. Grids of pre-main sequence stellar models. the accretion scenario at z=0.001 and z=0.020. <u>A&AS</u>, 120:57-61, November 1996.
- [33] G. Bertelli, L. Girardi, P. Marigo, and E. Nasi. Scaled solar tracks and isochrones in a large region of the z-y plane. i. from the zams to the tp-agb end for 0.15-2.5 m_☉ stars. <u>A&A</u>, 484:815–830, June 2008.
- [34] G. Bertelli, E. Nasi, L. Girardi, and P. Marigo. Scaled solar tracks and isochrones in a large region of the z-y plane. ii. from 2.5 to 20 m_☉ stars. <u>A&A</u>, 508:355–369, December 2009.
- [35] C. Bertout, N. Robichon, and F. Arenou. Revisiting hipparcos data for pre-main sequence stars. <u>A&A</u>, 352:574–586, December 1999.

- [36] G. V. Beshenov and A. V. Loktin. Proper motions of open star clusters from tycho-2 catalogue data. <u>Astronomical and</u> <u>Astrophysical Transactions</u>, 23:103-115, February 2004.
- [37] B. Bhavya, B. Mathew, and A. Subramaniam. Pre-main sequence stars, emission stars and recent star formation in the cygnus region. Bulletin of the Astronomical Society of India, 35:383-411, 2007.
- [38] A. Bianchini, M. della Valle, and M. Orio, editors. <u>Cataclysmic</u> <u>variables</u>, volume 205 of <u>Astrophysics and Space Science Library</u>, 1995.
- [39] W. P. Bidelman and P. C. Keenan. The ba ii stars. <u>ApJ</u>, 114:473, November 1951.
- [40] G. F. Bignami, P. A. Caraveo, and S. Mereghetti. The proper motion of geminga's optical counterpart. <u>Nature</u>, 361:704-706, February 1993.
- [41] J. Binney and S. Tremaine. <u>Galactic dynamics</u>. Princeton, NJ, Princeton University Press, 1987, 747 p., 1987.
- [42] A. Blaauw. On the luminosities, motions, and space distribution of the nearer northern o-b5 stars. <u>ApJ</u>, 123:408, May 1956.
- [43] A. Blaauw. On the origin of the o- and b-type stars with high velocities (the "run-away" stars), and some related problems. <u>Bull. Astron. Inst. Netherlands</u>, 15:265-+, May 1961.
- [44] A. Blaauw. The o associations in the solar neighborhood. <u>ARA&A</u>, 2:213-+, 1964.
- [45] A. Blaauw. Internal Motions and Age of the Sub-Association Upper Scorpio, pages 101-+. 1978.
- [46] A. Blaauw. Ob associations and the fossil record of star formation. In C. J. Lada and N. D. Kylafis, editors, <u>NATO ASIC Proc. 342</u>: <u>The Physics of Star Formation and Early Stellar Evolution</u>, pages 125-+, 1991.
- [47] A. Blaauw. Massive runaway stars. In J. P. Cassinelli & E. B. Churchwell, editor, <u>Massive Stars: Their Lives in the</u> <u>Interstellar Medium</u>, volume 35 of <u>Astronomical Society of the</u> <u>Pacific Conference Series</u>, pages 207-+, January 1993.
- [48] C. Blaha and R. M. Humphreys. A comparison of the luminosity functions in u, b, and v and their relationship to the initial mass function for the galaxy and the magellanic clouds. <u>AJ</u>, 98:1598– 1608, November 1989.
- [49] R. D. Blandford and R. W. Romani. On the interpretation of pulsar braking indices. <u>MNRAS</u>, 234:57P-60P, October 1988.
- [50] J. M. Blondin and A. Mezzacappa. Pulsar spins from an instability in the accretion shock of supernovae. <u>Nature</u>, 445:58-60, January 2007.
- [51] V. V. Bobylev. Open clusters ic 4665 and cr 359 and a probable birthplace of the pulsar psr b1929+10. <u>Astronomy Letters</u>, 34:686– 698, October 2008.
- [52] V. V. Bobylev and A. T. Bajkova. Open cluster ascc21 as a probable birthplace of the neutron star geminga. <u>Astronomy Letters</u>, 35:396-405, June 2009.
- [53] V. V. Bobylev, G. A. Goncharov, and A. T. Bajkova. The osaca database and a kinematic analysis of stars in the solar neighborhood. <u>Astronomy Reports</u>, 50:733-747, September 2006.
- [54] F. Bocchino, A. Maggio, and S. Sciortino. Rosat pspc observation of the ne region of the vela supernova remnant. iii. the twocomponent nature of the x-ray emission and its implications on the ism. A&A, 342:839-853, February 1999.
- [55] E. Böhm-Vitense, J. Nemec, and C. Proffitt. The problem of the barium stars. <u>ApJ</u>, 278:726-738, March 1984.
- [56] W. Brandner, J. S. Clark, A. Stolte, R. Waters, I. Negueruela, and S. P. Goodwin. Intermediate to low-mass stellar content of westerlund 1. <u>A&A</u>, 478:137–149, January 2008.

- [57] W. F. Brisken, J. M. Benson, W. M. Goss, and S. E. Thorsett. Very long baseline array measurement of nine pulsar parallaxes. <u>ApJ</u>, 571:906-917, June 2002.
- [58] W. F. Brisken, M. Carrillo-Barragán, S. Kurtz, and J. P. Finley. Proper motion of pulsar b1800-21. <u>ApJ</u>, 652:554-558, November 2006.
- [59] W. F. Brisken, A. S. Fruchter, W. M. Goss, R. M. Herrnstein, and S. E. Thorsett. Proper-motion measurements with the vla. ii. observations of 28 pulsars. <u>AJ</u>, 126:3090-3098, December 2003.
- [60] W. F. Brisken, S. E. Thorsett, A. Golden, and W. M. Goss. The distance and radius of the neutron star psr b0656+14. <u>ApJ</u>, 593:L89-L92, August 2003.
- [61] A. G. A. Brown, A. Blaauw, R. Hoogerwerf, J. H. J. de Bruijne, and P. T. de Zeeuw. Ob associations. In C. J. Lada and N. D. Kylafis, editors, <u>NATO ASIC Proc. 540: The Origin of Stars and</u> <u>Planetary Systems</u>, pages 411-+, 1999.
- [62] A. G. A. Brown, E. J. de Geus, and P. T. de Zeeuw. The orion ob1 association. 1: Stellar content. <u>A&A</u>, 289:101-120, September 1994.
- [63] E. Budding, A. Erdem, C. Çiçek, I. Bulut, F. Soydugan, E. Soydugan, V. Bakiş, and O. Demircan. Catalogue of algol type binary stars. <u>A&A</u>, 417:263–268, April 2004.
- [64] Ł. Bukowiecki, G. Maciejewski, P. Konorski, and A. Strobel. Open clusters in 2mass photometry. i. structural and basic astrophysical parameters. <u>Acta Astronomica</u>, 61:231-246, September 2011.
- [65] A. N. Bunner, P. L. Coleman, W. L. Kraushaar, and D. McCammon. Low-energy diffuse x-rays. <u>ApJ</u>, 167:L3+, July 1971.
- [66] M. Burgay, N. D'Amico, A. Possenti, R. N. Manchester, A. G. Lyne, B. C. Joshi, M. A. McLaughlin, M. Kramer, J. M. Sarkissian, F. Camilo, V. Kalogera, C. Kim, and D. R. Lorimer. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. <u>Nature</u>, 426:531-533, December 2003.
- [67] A. Burrows and J. Hayes. Pulsar recoil and gravitational radiation due to asymmetrical stellar collapse and explosion. <u>Physical Review</u> <u>Letters</u>, 76:352-355, January 1996.
- [68] A. Burrows and T. Young. Neutrinos and supernova theory. Phys. Rep., 333:63-75, August 2000.
- [69] W. Buscombe and B. E. Foster. <u>MK spectral classifications.</u> <u>Fourteenth general catalogue, epoch 2000, including UBV</u> <u>photometry.</u> 1999.
- [70] F. Camilo, I. Cognard, S. M. Ransom, J. P. Halpern, J. Reynolds, N. Zimmerman, E. V. Gotthelf, D. J. Helfand, P. Demorest, G. Theureau, and D. C. Backer. The magnetar xte j1810-197: Variations in torque, radio flux density, and pulse profile morphology. <u>ApJ</u>, 663:497-504, July 2007.
- [71] R. M. Campbell. <u>Astronomical Distances Through VIbi: Pulsars</u> and Gravitational Lenses. PhD thesis, HARVARD UNIVERSITY., 1995.
- [72] P. A. Caraveo and G. F. Bignami. Is the vela pulsar associated with the vela snr? Space Sci. Rev., 49:41-47, 1988.
- [73] P. A. Caraveo, G. F. Bignami, A. De Luca, S. Mereghetti, A. Pellizzoni, R. Mignani, A. Tur, and W. Becker. Geminga's tails: A pulsar bow shock probing the interstellar medium. <u>Science</u>, 301:1345-1348, September 2003.
- [75] P. A. Caraveo, M. G. Lattanzi, G. Massone, R. P. Mignani, V. V. Makarov, M. A. C. Perryman, and G. F. Bignami. Hipparcos positioning of geminga: how and why. <u>A&A</u>, 329:L1–L4, January 1998.

- [76] J. M. Carpenter and K. W. Hodapp. <u>The Monoceros R2 Molecular</u> <u>Cloud</u>, pages 899-+. December 2008.
- [77] G. Carraro, B. Chaboyer, and J. Perencevich. The young open cluster ngc 2129. <u>MNRAS</u>, 365:867–873, January 2006.
- [78] A. N. Cha, K. R. Sembach, and A. C. Danks. The distance to the vela supernova remnant. <u>ApJ</u>, 515:L25-L28, April 1999.
- [79] J. Chadwick. The existence of a neutron. <u>Royal Society of London</u> Proceedings Series A, 136:692–708, June 1932.
- [80] S. Chatterjee, W. F. Brisken, W. H. T. Vlemmings, W. M. Goss, T. J. W. Lazio, J. M. Cordes, S. E. Thorsett, E. B. Fomalont, A. G. Lyne, and M. Kramer. Precision astrometry with the very long baseline array: Parallaxes and proper motions for 14 pulsars. <u>ApJ</u>, 698:250-265, June 2009.
- [81] S. Chatterjee and J. M. Cordes. Bow shocks from neutron stars: Scaling laws and hubble space telescope observations of the guitar nebula. <u>ApJ</u>, 575:407-418, August 2002.
- [82] S. Chatterjee and J. M. Cordes. Smashing the guitar: An evolving neutron star bow shock. <u>Astrophysical Journal, Letters</u>, 600:L51– L54, January 2004.
- [83] S. Chatterjee, J. M. Cordes, T. J. W. Lazio, W. M. Goss, E. B. Fomalont, and J. M. Benson. Parallax and kinematics of psr b0919+06 from vlba astrometry and interstellar scintillometry. <u>ApJ</u>, 550:287-296, March 2001.
- [84] S. Chatterjee, J. M. Cordes, W. H. T. Vlemmings, Z. Arzoumanian, W. M. Goss, and T. J. W. Lazio. Pulsar parallaxes at 5 ghz with the very long baseline array. <u>The Astrophysical Journal</u>, 604:339–345, March 2004.
- [85] S. Chatterjee, W. H. T. Vlemmings, W. F. Brisken, T. J. W. Lazio, J. M. Cordes, W. M. Goss, S. E. Thorsett, E. B. Fomalont, A. G. Lyne, and M. Kramer. Getting its kicks: A vlba parallax for the hyperfast pulsar b1508+55. <u>ApJ</u>, 630:L61-L64, September 2005.
- [86] G. Chauvin, A.-M. Lagrange, M. Bonavita, B. Zuckerman, C. Dumas, M. S. Bessell, J.-L. Beuzit, M. Bonnefoy, S. Desidera, J. Farihi, P. Lowrance, D. Mouillet, and I. Song. Deep imaging survey of young, nearby austral stars. vlt/naco near-infrared lyotcoronographic observations. <u>A&A</u>, 509:A52+, January 2010.
- [87] E. G. Chmyreva, G. M. Beskin, and A. V. Biryukov. Search for pairs of isolated radio pulsars - components in disrupted binary systems. <u>Astronomy Letters</u>, 36:116-133, February 2010.
- [89] J. J. Clariá. A study of the stellar association can is major ob 1. A&A, 37:229-236, December 1974.
- [90] D. H. Clark and J. L. Caswell. A study of galactic supernova remnants, based on molonglo-parkes observational data. <u>MNRAS</u>, 174:267-305, February 1976.
- [91] P. C. Clark, I. A. Bonnell, H. Zinnecker, and M. R. Bate. Star formation in unbound giant molecular clouds: the origin of ob associations? MNRAS, 359:809-818, May 2005.
- [92] C. J. Clarke and R. F. Carswell. <u>Principles of Astrophysical Fluid</u> <u>Dynamics</u>. 2007.
- [93] T. R. Clifton and A. G. Lyne. High-radio-frequency survey for young and millisecond pulsars. <u>Nature</u>, 320:43-45, March 1986.
- [94] I. Cognard and J.-F. Lestrade. Dispersion measure variations observed in the direction of the millisecond pulsar psr b1821-24. <u>A&A</u>, 323:211-216, July 1997.
- [95] T. W. Cole and J. D. H. Pilkington. Search for pulsating radio sources in the declination range + 44 deg < δ < + 90 deg. <u>Nature</u>, 219:574–576, August 1968.

- [96] P. Collinder. On structured properties of open galactic clusters and their spatial distribution. <u>Annals of the Observatory of Lund</u>, 2:1, 1931.
- [97] E. S. Conlon, P. L. Dufton, F. P. Keenan, and P. J. T. Leonard. The runaway nature of distant early-type stars in the galactic halo. <u>A&A</u>, 236:357-361, September 1990.
- [98] P. S. Conti and D. Ebbets. Spectroscopic studies of o-type stars. vii. rotational velocities v sin i and evidence for macroturbulent motions. <u>ApJ</u>, 213:438-447, April 1977.
- [99] M. E. Contreras, A. Sicilia-Aguilar, J. Muzerolle, N. Calvet, P. Berlind, and L. Hartmann. A study of intermediate-mass stars in trumpler 37. <u>AJ</u>, 124:1585-1592, September 2002.
- [100] D. L. Cook, E. Berger, T. Faestermann, G. F. Herzog, K. Knie, G. Korschinek, M. Poutivtsev, G. Rugel, and F. Serefiddin. 60fe, 10be, and 26al in lunar cores 12025/8 and 60006/7: Search for a nearby supernova. In Lunar and Planetary Institute Science Conference Abstracts, volume 40 of Lunar and Planetary Inst. Technical Report, page 1129, March 2009.
- [101] J. M. Cordes and D. F. Chernoff. Neutron star population dynamics. ii. three-dimensional space velocities of young pulsars. <u>ApJ</u>, 505:315-338, September 1998.
- [102] E. Covino, J. M. Alcala, S. Allain, J. Bouvier, L. Terranegra, and J. Krautter. A study of the chamaeleon star-forming region from the rosat all-sky survey. iii. high resolution spectroscopic study. <u>A&A</u>, 328:187-202, December 1997.
- [103] H. D. Craft, R. V. E. Lovelace, and J. M. Sutton. New pulsar. <u>IAU Circ.</u>, 2100:1-+, 1968.
- [104] M. Creze, E. Chereul, O. Bienayme, and C. Pichon. The distribution of nearby stars in phase space mapped by hipparcos. i. the potential well and local dynamical mass. <u>A&A</u>, 329:920-936, January 1998.
- [105] C. Cruz-González, E. Recillas-Cruz, R. Costero, M. Peimbert, and S. Torres-Peimbert. A catalogue of galactic o stars and the ionization of the low density interstellar medium by runaway stars. <u>Revista</u> <u>Mexicana de Astronomia y Astrofísica</u>, 1:211–259, November 1974.
- [106] G. Cutispoto, L. Pastori, L. Pasquini, J. R. de Medeiros, G. Tagliaferri, and J. Andersen. Fast-rotating nearby solar-type stars, li abundances and x-ray luminosities. i. spectral classification, v sin i, li abundances and x-ray luminosities. <u>A&A</u>, 384:491–503, March 2002.
- [107] R. M. Cutri, M. F. Skrutskie, S. van Dyk, C. A. Beichman, J. M. Carpenter, T. Chester, L. Cambresy, T. Evans, J. Fowler, J. Gizis, E. Howard, J. Huchra, T. Jarrett, E. L. Kopan, J. D. Kirkpatrick, R. M. Light, K. A. Marsh, H. McCallon, S. Schneider, R. Stiening, M. Sykes, M. Weinberg, W. A. Wheaton, S. Wheelock, and N. Zacarias. 2mass all-sky catalog of point sources (cutri+ 2003). VizieR Online Data Catalog, 2246:0, March 2003.
- [108] M. Damashek, P. R. Backus, J. H. Taylor, and R. K. Burkhardt. Northern hemisphere pulsar survey - a third radio pulsar in a binary system. <u>ApJ</u>, 253:L57-L60, February 1982.
- [109] M. Damashek, J. H. Taylor, and R. A. Hulse. Parameters of 17 newly discovered pulsars in the northern sky. <u>ApJ</u>, 225:L31–L33, October 1978.
- [110] A. K. Dambis, A. M. Mel'Nik, and A. S. Rastorguev. Trigonometric parallaxes and a kinematically adjusted distance scale for ob associations. <u>Astronomy Letters</u>, 27:58-64, January 2001.
- [111] N. D'Amico, B. W. Stappers, M. Bailes, C. E. Martin, J. F. Bell, A. G. Lyne, and R. N. Manchester. The parkes southern pulsar survey - iii. timing of long-period pulsars. <u>MNRAS</u>, 297:28-40, June 1998.
- [112] F. D'Antona and I. Mazzitelli. New pre-main-sequence tracks for m less than or equal to 2.5 solar mass as tests of opacities and convection model. <u>ApJS</u>, 90:467–500, January 1994.
- [113] F. D'Antona and I. Mazzitelli. Evolution of low mass stars. <u>Memorie</u> <u>della Societa Astronomica Italiana</u>, 68:807-+, 1997.

Bibliography

- [114] J. G. Davies and M. I. Large. A single-pulse search for pulsars. <u>MNRAS</u>, 149:301, 1970.
- [115] J. G. Davies, M. I. Large, and A. C. Pickwick. Five new pulsars. <u>Nature</u>, 227:1123-1124, September 1970.
- [116] J. G. Davies, A. G. Lyne, and J. H. Seiradakis. Pulsar associated with the supernova remnant ic 443. <u>Nature</u>, 240:229-230, November 1972.
- [117] J. G. Davies, A. G. Lyne, and J. H. Seiradakis. Pulsars-thirteen new ones discovered. <u>Nature</u>, 244:84-+, August 1973.
- [118] M. De Becker and G. Rauw. Line profile variability in the spectra of oef stars. ii. hd 192281, hd 14442 and hd 14434. <u>A&A</u>, 427:995-1008, December 2004.
- [119] E. J. de Geus, P. T. de Zeeuw, and J. Lub. Physical parameters of stars in the scorpio-centaurus ob association. <u>A&A</u>, 216:44-61, June 1989.
- [120] R. de la Reza, E. Jilinski, and V. G. Ortega. Dynamical evolution of the tw hydrae association. <u>AJ</u>, 131:2609-2614, May 2006.
- [121] A. De Luca, P. A. Caraveo, S. Mereghetti, M. Negroni, and G. F. Bignami. On the polar caps of the three musketeers. <u>ApJ</u>, 623:1051-1069, April 2005.
- [122] M. de Luca, T. Giannini, D. Lorenzetti, B. Nisini, F. Massi, D. Elia, and H. A. Smith. Sailing across the southern sky: A vela picture in the mm-light. In <u>Protostars and Planets V</u>, page 8060, 2005.
- [123] J. R. De Medeiros, J. D. do Nascimento, Jr., S. Sankarankutty, J. M. Costa, and M. R. G. Maia. Rotation and lithium in single giant stars. <u>A&A</u>, 363:239-243, November 2000.
- [124] J. R. de Medeiros and M. Mayor. A catalog of rotational and radial velocities for evolved stars. <u>A&AS</u>, 139:433-460, November 1999.
- [125] W. J. de Wit, L. Testi, F. Palla, and H. Zinnecker. The origin of massive o-type field stars: li. field o stars as runaways. <u>A&A</u>, 437:247-255, July 2005.
- [126] P. T. de Zeeuw, R. Hoogerwerf, J. H. J. de Bruijne, A. G. A. Brown, and A. Blaauw. A hipparcos census of the nearby ob associations. <u>AJ</u>, 117:354-399, January 1999.
- [127] W. Dehnen and J. J. Binney. Local stellar kinematics from hipparcos data. MNRAS, 298:387-394, August 1998.
- [128] J. Delhaye. Solar motion and velocity distribution of common stars. In A. Blaauw & M. Schmidt, editor, <u>Galactic Structure</u>, pages 61– +, January 1965.
- [129] A. T. Deller, M. Bailes, and S. J. Tingay. Implications of a vlbi distance to the double pulsar j0737-3039a/b. <u>Science</u>, 323:1327-, March 2009.
- [130] A. T. Deller, S. J. Tingay, M. Bailes, and J. E. Reynolds. Precision southern hemisphere vlbi pulsar astrometry. ii. measurement of seven parallaxes. <u>ApJ</u>, 701:1243-1257, August 2009.
- [131] R. J. Dewey, J. H. Taylor, J. M. Weisberg, and G. H. Stokes. A search for low-luminosity pulsars. <u>ApJ</u>, 294:L25-L29, July 1985.
- [132] W. S. Dias, B. S. Alessi, A. Moitinho, and J. R. D. Lépine. New catalogue of optically visible open clusters and candidates. <u>A&A</u>, 389:871-873, July 2002.
- [133] W. S. Dias, J. R. D. Lépine, and B. S. Alessi. Proper motions of open clusters based on the tycho2 catalogue. ii. clusters farther than 1 kpc. <u>A&A</u>, 388:168-171, June 2002.
- [134] R. Diehl, H. Halloin, K. Kretschmer, G. G. Lichti, V. Schönfelder, A. W. Strong, A. von Kienlin, W. Wang, P. Jean, J. Knödlseder, J.-P. Roques, G. Weidenspointner, S. Schanne, D. H. Hartmann, C. Winkler, and C. Wunderer. Radioactive ²⁶al from massive stars in the galaxy. <u>Nature</u>, 439:45-47, January 2006.

- [135] R. Diehl, D. H. Hartmann, and N. Prantzos, editors. <u>Astronomy</u> with Radioactivities, volume 812 of <u>Lecture Notes in Physics, Berlin</u> <u>Springer Verlag</u>, 2011.
- [136] R. Diehl, M. G. Lang, P. Martin, H. Ohlendorf, T. Preibisch, R. Voss, P. Jean, J.-P. Roques, P. von Ballmoos, and W. Wang. Radioactive ²⁶al from the scorpius-centaurus association. <u>A&A</u>, 522:A51+, November 2010.
- [137] H. Dimmelmeier, C. D. Ott, A. Marek, and H.-T. Janka. Gravitational wave burst signal from core collapse of rotating stars. <u>Phys. Rev. D</u>, 78(6):064056-+, September 2008.
- [138] R. Dodson, D. Legge, J. E. Reynolds, and P. M. McCulloch. The vela pulsar's proper motion and parallax derived from vlbi observations. ApJ, 596:1137-1141, October 2003.
- [139] R. G. Dodson, P. M. McCulloch, and D. R. Lewis. High time resolution observations of the january 2000 glitch in the vela pulsar. <u>ApJ</u>, 564:L85-L88, January 2002.
- [140] C. J. Dolan and R. D. Mathieu. The spatial distribution of the λ orionis pre-main-sequence population. <u>AJ</u>, 121:2124–2147, April 2001.
- [141] J. L. E. Dreyer. A new general catalogue of nebulae and clusters of stars, being the catalogue of the late sir john f.w. herschel, bart., revised, corrected, and enlarged. <u>MmRAS</u>, 49:1–237, 1888.
- [142] J. L. E. Dreyer. Index catalogue of nebulae found in the years 1888 to 1894, with notes and corrections to the new general catalogue. <u>MmRAS</u>, 51:185–228, 1895.
- [143] C. Ducourant, R. Teixeira, J. P. Périé, J. F. Lecampion, J. Guibert, and M. J. Sartori. Pre-main sequence star proper motion catalogue. <u>A&A</u>, 438:769-778, August 2005.
- [144] R. C. Duncan and C. Thompson. Magnetars. In R. E. Rothschild & R. E. Lingenfelter, editor, High Velocity Neutron Stars, volume 366 of <u>American Institute of Physics Conference Series</u>, pages 111–117, April 1996.
- [145] A. Duquennoy and M. Mayor. Multiplicity among solar-type stars in the solar neighbourhood. ii - distribution of the orbital elements in an unbiased sample. <u>A&A</u>, 248:485-524, August 1991.
- [146] O. J. Eggen. Evolved gk stars near the sun. i the old disk population. <u>AJ</u>, 106:80-132, July 1993.
- [147] P. P. Eggleton and A. A. Tokovinin. A catalogue of multiplicity among bright stellar systems. <u>MNRAS</u>, 389:869-879, September 2008.
- [148] D. Egret, P. Didelon, B. J. McLean, J. L. Russell, and C. Turon. Tycho input catalogue, revised version (egret+ 1992). <u>VizieR Online</u> <u>Data Catalog</u>, 1197:0-+, November 1994.
- [149] T. Eisenbeiss. Die hercules-lyra assoziation: Visuelle doppelsterne und photometrische altersbestimmung. Diploma thesis, AlU, Friedrich-Schiller-Universität Jena, Germany, 2007.
- [150] T. Eisenbeiss. <u>Optische Beobachtungen naher isolierter</u> <u>Neutronensterne</u>. PhD thesis, AIU, Friedrich-Schiller-Universität Jena, Germany, 2011.
- [151] ESA. The hipparcos and tycho catalogues (esa 1997). <u>VizieR Online</u> <u>Data Catalog</u>, 1239:0-+, February 1997.
- [152] C. M. Espinoza, A. G. Lyne, M. Kramer, R. N. Manchester, and V. M. Kaspi. The braking index of psr j1734-3333 and the magnetar population. <u>ApJ</u>, 741:L13, November 2011.
- [153] D. S. Evans. The revision of the general catalogue of radial velocities. In A. H. Batten & J. F. Heard, editor, <u>Determination of Radial</u> <u>Velocities and their Applications</u>, volume 30 of <u>IAU Symposium</u>, pages 57-+, 1967.
- [154] C. Fabricius and V. V. Makarov. Two-colour photometry for 9473 components of close hipparcos double and multiple stars. <u>A&A</u>, 356:141-145, April 2000.
- [155] S. R. Facondi, C. J. Salter, and J. M. Sutton. <u>å</u>, 27:67, 1973.

- [156] J. Faherty, F. M. Walter, and J. Anderson. The trigonometric parallax of the neutron star geminga. <u>Ap&SS</u>, 308:225-230, April 2007.
- [157] F. Favata, G. Micela, and S. Sciortino. On the widespread weakline t-tauri population detected in the rosat all-sky survey. <u>A&A</u>, 326:647–654, October 1997.
- [158] J. Feige. The connection between the local bubble and the ⁶⁰fe anomaly in the deep sea hydrogenetic ferromanganese crust. Master's thesis, Universität Wien, Austria, 2010.
- [160] D. Fernández, F. Figueras, and J. Torra. On the kinematic evolution of young local associations and the scorpius-centaurus complex. A&A, 480:735-751, March 2008.
- [161] J. D. Fernie. The period-luminosity relation for w virginis stars. <u>AJ</u>, 69:258-261, 1964.
- [162] L. Fimiani, D. L. Cook, T. Faestermann, J. M. Gomez Guzman, K. Hain, G. F. Herzog, G. Korschinek, B. Ligon, P. Ludwig, J. Park, R. C. Reedy, and G. Rugel. Sources of live ^6^0fe, ^1^0be, and ^2^6al in lunar core 12025, core 15008, skim sample 69921, scoop sample 69941, and under-boulder sample 69961. In <u>Lunar and Planetary Institute Science Conference Abstracts</u>, volume 43 of <u>Lunar and Planetary Inst. Technical Report</u>, page 1279, March 2012.
- [163] C. Fitoussi, G. M. Raisbeck, K. Knie, and et al. Search for supernova-produced fe60 in a marine sediment. <u>Physical Review</u> <u>Letters</u>, 101(12):121101-+, September 2008.
- [164] E. B. Fomalont, W. M. Goss, A. J. Beasley, and S. Chatterjee. Sub-milliarcsecond precision of pulsar motions: Using in-beam calibrators with the vlba. <u>AJ</u>, 117:3025-3030, June 1999.
- [165] E. B. Fomalont, W. M. Goss, R. N. Manchester, and A. G. Lyne. Improved proper motions for pulsars from vla observations. <u>MNRAS</u>, 286:81–84, March 1997.
- [166] R. S. Foster, B. J. Cadwell, A. Wolszczan, and S. B. Anderson. A high galactic latitude pulsar survey of the arecibo sky. <u>ApJ</u>, 454:826-+, December 1995.
- [167] C. Francis and E. Anderson. Calculation of the local standard of rest from 20 574 local stars in the new hipparcos reduction with known radial velocities. <u>New Astronomy</u>, 14:615–629, October 2009.
- [168] A. Frankowski, S. Jancart, and A. Jorissen. Proper-motion binaries in the hipparcos catalogue. comparison with radial velocity data. <u>A&A</u>, 464:377-392, March 2007.
- [169] Y. Frémat, J. Zorec, A.-M. Hubert, and M. Floquet. Effects of gravitational darkening on the determination of fundamental parameters in fast-rotating b-type stars. <u>A&A</u>, 440:305-320, September 2005.
- [170] C. L. Fryer. Mass limits for black hole formation. $\underline{\rm ApJ}$, 522:413–418, September 1999.
- [171] C. L. Fryer, A. Heger, N. Langer, and S. Wellstein. The limiting stellar initial mass for black hole formation in close binary systems. <u>ApJ</u>, 578:335–347, October 2002.
- [172] B. Fuchs, D. Breitschwerdt, M. A. de Avillez, C. Dettbarn, and C. Flynn. The search for the origin of the local bubble redivivus. <u>MNRAS</u>, 373:993-1003, December 2006.
- [173] K. Fuhrmann. Nearby stars of the galactic disk and halo. iii. <u>Astronomische Nachrichten</u>, 325:3-80, January 2004.
- [174] B. M. Gaensler and D. A. Frail. A large age for the pulsar b1757-24 from an upper limit on its proper motion. <u>Nature</u>, 406:158–160, July 2000.

- [175] E. J. Gaidos. Nearby young solar analogs. i. catalog and stellar characteristics. <u>PASP</u>, 110:1259-1276, November 1998.
- [176] E. J. Gaidos, G. W. Henry, and S. M. Henry. Spectroscopy and photometry of nearby young solar analogs. <u>AJ</u>, 120:1006–1013, August 2000.
- [178] B. García and J. C. Mermilliod. High-mass binaries in the very young open cluster ngc 6231. implication for cluster and star formation. <u>A&A</u>, 368:122-136, March 2001.
- [179] D. Garcia Alvarez. Modelling of flares on late-type stars. <u>Irish</u> <u>Astronomical Journal</u>, 27:117-136, July 2000.
- [180] C. D. Garmany, P. S. Conti, and C. Chiosi. The initial mass function for massive stars. <u>ApJ</u>, 263:777-790, December 1982.
- [181] C. D. Garmany, P. S. Conti, and P. Massey. Spectroscopic studies of o type stars. ix - binary frequency. <u>ApJ</u>, 242:1063–1076, December 1980.
- [182] C. D. Garmany and R. E. Stencel. Galactic ob associations in the northern milky way galaxy. i - longitudes 55 deg to 150 deg. <u>A&AS</u>, 94:211-244, August 1992.
- [183] R. F. Garrison and W. A. Hiltner. Cpd -31 1701, an extremely helium-rich subluminous, o-type star. <u>ApJ</u>, 179:L117+, February 1973.
- [184] R. F. Garrison, W. A. Hiltner, and R. E. Schild. Mk spectral classifications for southern ob stars. <u>ApJS</u>, 35:111-126, September 1977.
- [185] D. R. Gies and C. T. Bolton. The binary frequency and origin of the ob runaway stars. <u>ApJS</u>, 61:419-454, June 1986.
- [186] L. Girardi, G. Bertelli, A. Bressan, C. Chiosi, M. A. T. Groenewegen, P. Marigo, B. Salasnich, and A. Weiss. Theoretical isochrones in several photometric systems. i. johnson-cousins-glass, hst/wfpc2, hst/nicmos, washington, and eso imaging survey filter sets. <u>A&A</u>, 391:195-212, August 2002.
- [187] J. E. Gizis. Brown dwarfs and the tw hydrae association. $\underline{\rm ApJ},$ 575:484–492, August 2002.
- [188] G. A. Gontcharov. Pulkovo compilation of radial velocities for 35495 stars in a common system. <u>Astronomy Letters</u>, 32:759-771, November 2006.
- [189] E. V. Gotthelf and J. P. Halpern. Discovery of a 112 ms x-ray pulsar in puppis a: Further evidence of neutron stars weakly magnetized at birth. <u>ApJ</u>, 695:L35-L39, April 2009.
- [190] J. A. Graham. The distances of two faint ob star groups in monoceros. AJ, 76:1079-+, December 1971.
- [191] R. O. Gray and C. J. Corbally. A search for lambda bootis stars in ob associations. <u>AJ</u>, 106:632–636, August 1993.
- [192] D. A. Green. A revised galactic supernova remnant catalogue. <u>Bulletin of the Astronomical Society of India</u>, 37:45-61, March 2009.
- [193] J. Gregorio-Hetem. <u>The Canis Major Star Forming Region</u>, pages 1-+. December 2008.
- [194] J. Gregorio-Hetem, J. R. D. Lepine, G. R. Quast, C. A. O. Torres, and R. de La Reza. A search for t tauri stars based on the iras point source catalog. <u>AJ</u>, 103:549–563, February 1992.
- [195] I. A. Grenier. Gamma-ray sources as relics of recent supernovae in the nearby gould belt. <u>A&A</u>, 364:L93–L96, December 2000.
- [196] S. Grenier, M.-O. Baylac, L. Rolland, R. Burnage, F. Arenou, D. Briot, F. Delmas, M. Duflot, V. Genty, A. E. Gómez, J.-L. Halbwachs, M. Marouard, E. Oblak, and A. Sellier. Radial velocities. measurements of 2800 b2-f5 stars for hipparcos. <u>A&AS</u>, 137:451-456, June 1999.

- [197] E. W. Guenther, M. Esposito, R. Mundt, E. Covino, J. M. Alcalá, F. Cusano, and B. Stecklum. Pre-main sequence spectroscopic binaries suitable for vlti observations. <u>A&A</u>, 467:1147-1155, June 2007.
- [198] M. E. Gusakov, A. D. Kaminker, D. G. Yakovlev, and O. Y. Gnedin. The cooling of akmal-pandharipande-ravenhall neutron star models. <u>MNRAS</u>, 363:555-562, October 2005.
- [199] V. V. Gvaramadze. Separated before birth: pulsars b2020+28 and b2021+51 as the remnants of runaway stars. <u>A&A</u>, 470:L9–L12, August 2007.
- [200] V. V. Gvaramadze. Hd271791: dynamical versus binary-supernova ejection scenario. <u>MNRAS</u>, 395:L85-L89, May 2009.
- [201] V. V. Gvaramadze and D. J. Bomans. Search for ob stars running away from young star clusters. i. ngc 6611. <u>A&A</u>, 490:1071-1077, November 2008.
- [202] V. V. Gvaramadze, A. Gualandris, and S. Portegies Zwart. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters. <u>MNRAS</u>, 385:929–938, April 2008.
- [203] C. R. Gwinn, J. H. Taylor, J. M. Weisberg, and L. A. Rawley. Measurement of pulsar parallaxes by vlbi. <u>AJ</u>, 91:338-342, February 1986.
- [204] F. Haberl. The magnificent seven: magnetic fields and surface temperature distributions. <u>Ap&SS</u>, 308:181-190, April 2007.
- [205] F. Haberl, C. Motch, D. A. H. Buckley, F.-J. Zickgraf, and W. Pietsch. Rxj0720.4-3125: strong evidence for an isolated pulsating neutron star. <u>A&A</u>, 326:662-668, October 1997.
- [206] R. Haefner and H. Drechsel. Further evidence for the binary nature of hr 3084. Ap&SS, 121:205-212, April 1986.
- [207] J. P. Halpern and S. S. Holt. Discovery of soft x-ray pulsations from the gamma-ray source geminga. <u>Nature</u>, 357:222-224, May 1992.
- [208] V. Hambaryan, G. Hasinger, A. D. Schwope, and N. S. Schulz. Discovery of 5.16 s pulsations from the isolated neutron star rbs 1223. <u>A&A</u>, 381:98-104, January 2002.
- [209] N. J. Hammer, H.-T. Janka, and E. Müller. Three-dimensional simulations of mixing instabilities in supernova explosions. <u>ApJ</u>, 714:1371-1385, May 2010.
- [210] B. M. S. Hansen and E. S. Phinney. The pulsar kick velocity distribution. <u>MNRAS</u>, 291:569-+, November 1997.
- [211] P. A. Harrison, A. G. Lyne, and B. Anderson. New determinations of the proper motions of 44 pulsars. <u>MNRAS</u>, 261:113-124, March 1993.
- [212] R. J. Havlen. Ob stars distribution in puppis. <u>A&A</u>, 17:413-+, March 1972.
- [213] U. Heber. Subluminous o stars origin and evolutionary links. In A. Werner and T. Rauch, editors, <u>Hydrogen-Deficient Stars</u>, volume 391 of <u>Astronomical Society of the Pacific Conference Series</u>, page 245, July 2008.
- [214] A. Heger, C. L. Fryer, S. E. Woosley, N. Langer, and D. H. Hartmann. How massive single stars end their life. <u>ApJ</u>, 591:288–300, July 2003.
- [215] D. J. Helfand, S. Chatterjee, W. F. Brisken, F. Camilo, J. Reynolds, M. H. van Kerkwijk, J. P. Halpern, and S. M. Ransom. Vlba measurement of the transverse velocity of the magnetar xte j1810-197. <u>ApJ</u>, 662:1198-1203, June 2007.
- [216] D. J. Helfand, E. V. Gotthelf, and J. P. Halpern. Vela pulsar and its synchrotron nebula. <u>ApJ</u>, 556:380-391, July 2001.
- [217] W. Herbst and R. Racine. R-associations. v. monoceros r2. <u>AJ</u>, 81:840-844, October 1976.

- [218] J. Hernández, N. Calvet, L. Hartmann, C. Briceño, A. Sicilia-Aguilar, and P. Berlind. Herbig ae/be stars in nearby ob associations. <u>AJ</u>, 129:856-871, February 2005.
- [219] A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, and R. A. Collins. Observation of a rapidly pulsating radio source. <u>Nature</u>, 217:709-713, February 1968.
- [220] J. G. Hills. Hyper-velocity and tidal stars from binaries disrupted by a massive galactic black hole. <u>Nature</u>, 331:687-689, February 1988.
- [221] G. Hobbs, D. R. Lorimer, A. G. Lyne, and M. Kramer. A statistical study of 233 pulsar proper motions. <u>MNRAS</u>, 360:974–992, July 2005.
- [222] G. Hobbs, A. G. Lyne, M. Kramer, C. E. Martin, and C. Jordan. Long-term timing observations of 374 pulsars. <u>MNRAS</u>, 353:1311-1344, October 2004.
- [223] D. Hoffleit and W. H. Warren, Jr. Bright star catalogue, 5th revised ed. (hoffleit+, 1991). <u>VizieR Online Data Catalog</u>, 5050:0, November 1995.
- [224] H. J. Hofmann, J. Beer, G. Bonani, H. R. von Gunten, S. Raman, M. Suter, R. L. Walker, W. Wölfli, and D. Zimmermann. ¹⁰be: Half-life and ams-standards. <u>Nuclear Instruments and Methods in</u> <u>Physics Research B</u>, 29:32–36, November 1987.
- [225] M. M. Hohle. Populationssynthese zur absch Master's thesis, Friedrich-Schiller-Universität Jena, Deutschland.
- [226] M. M. Hohle, F. Haberl, J. Vink, C. P. de Vries, and R. Neuhäuser. Narrow absorption features in the co-added xmm-newton rgs spectra of isolated neutron stars. <u>MNRAS</u>, 419:1525–1536, January 2012.
- [227] M. M. Hohle, F. Haberl, J. Vink, R. Turolla, S. Zane, C. P. de Vries, and M. Méndez. Updated phase coherent timing solution of the isolated neutron star rx j0720.4-3125 using recent xmm-newton and chandra observations. <u>A&A</u>, 521:A11+, October 2010.
- [228] M. M. Hohle, R. Neuhäuser, and B. F. Schutz. Masses and luminosities of o- and b-type stars and red supergiants. <u>Astronomische</u> <u>Nachrichten</u>, 331:349-+, 2010.
- [229] J. Holmberg, B. Nordström, and J. Andersen. The genevacopenhagen survey of the solar neighbourhood. iii. improved distances, ages, and kinematics. <u>A&A</u>, 501:941–947, July 2009.
- [230] R. Hoogerwerf, J. H. J. de Bruijne, and P. T. de Zeeuw. On the origin of the o and b-type stars with high velocities. ii. runaway stars and pulsars ejected from the nearby young stellar groups. <u>A&A</u>, 365:49-77, January 2001.
- [231] N. Houk. <u>Michigan Catalogue of Two-dimensional Spectral Types</u> for the HD stars. Volume 3. 1982.
- [232] N. Houk and A. P. Cowley. University of Michigan Catalogue of two-dimensional spectral types for the HD stars. Volume 1, 1975.
- [233] D. Hube and W. Finlay. Deep-sky contemplations: The great rift and the coal sack. JRASC, 101:68-+, April 2007.
- [234] S. Hubrig, J. F. Gonzalez, I. Ilyin, H. Korhonen, M. Schoeller, I. Savanov, R. Arlt, F. Castelli, G. Lo Curto, M. Briquet, and T. H. Dall. Magnetic fields of hgmn stars. <u>ArXiv e-prints</u>, August 2012.
- [235] G. R. Huguenin and J. H. Taylor. Psr 0904+77. <u>IAU Circ.</u>, 2128:1-+, 1969.
- [236] G. R. Huguenin, J. H. Taylor, L. E. Goad, A. Hartai, G. S. F. Orsten, and A. K. Rodman. New pulsating radio source. <u>Nature</u>, 219:576-577, August 1968.
- [237] C. Y. Hui and W. Becker. Probing the proper motion of the central compact object in puppis-a with the chandra high resolution camera. <u>A&A</u>, 457:L33-L36, October 2006.

- [238] C. Y. Hui and W. Becker. Resolving the bow-shock nebula around the old pulsar psr b1929+10 with multi-epoch chandra observations. <u>A&A</u>, 486:485-491, August 2008.
- [239] C. Y. Hui, R. H. H. Huang, L. Trepl, N. Tetzlaff, J. Takata, E. M. H. Wu, and K. S. Cheng. Xmm-newton observation of psr b2224+65 and its jet. <u>ApJ</u>, 747:74, March 2012.
- [240] R. A. Hulse and J. H. Taylor. Discovery of a pulsar in a binary system. <u>ApJ</u>, 195:L51-L53, January 1975.
- [241] R. M. Humphreys. Studies of luminous stars in nearby galaxies. i. supergiants and o stars in the milky way. <u>ApJS</u>, 38:309–350, December 1978.
- [242] A. I. Ibrahim, C. B. Markwardt, J. H. Swank, S. Ransom, M. Roberts, V. Kaspi, P. M. Woods, S. Safi-Harb, S. Balman, W. C. Parke, C. Kouveliotou, K. Hurley, and T. Cline. Discovery of a transient magnetar: Xte j1810-197. <u>ApJ</u>, 609:L21–L24, July 2004.
- [243] M. S. Jackson and J. P. Halpern. A refined ephemeris and phaseresolved x-ray spectroscopy of the geminga pulsar. <u>ApJ</u>, 633:1114– 1125, November 2005.
- [244] S. Jancart, A. Jorissen, C. Babusiaux, and D. Pourbaix. Astrometric orbits of s_B9 stars. <u>A&A</u>, 442:365–380, October 2005.
- [245] K. A. Janes, C. Tilley, and G. Lynga. Properties of the open cluster system. <u>AJ</u>, 95:771-784, March 1988.
- [246] H.-T. Janka, A. Marek, B. Müller, and L. Scheck. Supernova explosions and the birth of neutron stars. In A. Cumming & V. M. Kaspi C. Bassa, Z. Wang, editor, <u>40 Years of Pulsars: Millisecond Pulsars,</u> <u>Magnetars and More</u>, volume 983 of <u>American Institute of Physics</u> <u>Conference Series</u>, pages 369–378, February 2008.
- [247] H.-T. Janka and E. Mueller. Neutrino heating, convection, and the mechanism of type-ii supernova explosions. <u>A&A</u>, 306:167-+, February 1996.
- [248] H.-T. Janka, L. Scheck, K. Kifonidis, E. Müller, and T. Plewa. Supernova asymmetries and pulsar kicks — views on controversial issues. In R. Humphreys and K. Stanek, editors, <u>The Fate of the</u> <u>Most Massive Stars</u>, volume 332 of <u>Astronomical Society of the</u> <u>Pacific Conference Series</u>, pages 363-+, September 2005.
- [249] R. D. Jeffries. The kinematics of lithium-rich, active late-type stars: evidence for a low-mass local association. <u>MNRAS</u>, 273:559–572, April 1995.
- [250] E. Jilinski, V. G. Ortega, and R. de la Reza. On the origin of the very young groups η and ϵ chamaeleontis. <u>ApJ</u>, 619:945–947, February 2005.
- [251] E. Jilinski, V. G. Ortega, N. A. Drake, and R. de la Reza. A dynamical study of suspected runaway stars as traces of past supernova explosions in the region of the scorpius-centaurus ob association. <u>ApJ</u>, 721:469-477, September 2010.
- [252] D. R. H. Johnson and D. R. Soderblom. Calculating galactic space velocities and their uncertainties, with an application to the ursa major group. <u>AJ</u>, 93:864-867, April 1987.
- [253] A. Jorissen and G. R. Knapp. Circumstellar shells and mass loss rates: Clues to the evolution of s stars. <u>A&AS</u>, 129:363-398, April 1998.
- [254] A. Jorissen and M. Mayor. Radial velocity monitoring of a sample of barium and s stars using coravel - towards an evolutionary link between barium and s stars? <u>A&A</u>, 198:187–199, June 1988.
- [255] A. Jorissen, L. Začs, S. Udry, H. Lindgren, and F. A. Musaev. On metal-deficient barium stars and their link with yellow symbiotic stars. <u>A&A</u>, 441:1135–1148, October 2005.
- [256] S. Justham, P. Podsiadlowski, and Z. Han. On the formation of single and binary helium-rich subdwarf o stars. <u>MNRAS</u>, 410:984– 993, January 2011.

- [257] F. D. Kahn. The temperature in very old supernova remnants. <u>A&A</u>, 50:145-148, July 1976.
- [258] N. Kaltcheva and V. Makarov. The structure and the distance of collinder 121 from hipparcos and photometry: Resolving the discrepancy. <u>ApJ</u>, 667:L155-L157, October 2007.
- [259] N. T. Kaltcheva and L. N. Georgiev. Stromgren and h-beta photometry of associations and open clusters - part three - centaurus-ob1 and crux-ob1. <u>MNRAS</u>, 269:289-+, July 1994.
- [260] D. Kaplan. Optical observations of isolated neutron stars. In <u>Physics</u> and Astrophysics of Neutron Stars, July 28- August 1 2003, Santa Fe, New Mexico., 2003.
- [261] D. L. Kaplan, S. R. Kulkarni, and M. H. van Kerkwijk. A probable optical counterpart to the isolated neutron star rx j1308.6+2127. ApJ, 579:L29-L32, November 2002.
- [262] D. L. Kaplan, S. R. Kulkarni, and M. H. van Kerkwijk. The optical counterpart of the isolated neutron star rx j1605.3+3249. <u>ApJ</u>, 588:L33-L36, May 2003.
- [263] D. L. Kaplan and M. H. van Kerkwijk. A coherent timing solution for the nearby isolated neutron star rx j1308.6+2127/rbs 1223. ApJ, 635:L65-L68, December 2005.
- [264] D. L. Kaplan, M. H. van Kerkwijk, and J. Anderson. The distance to the isolated neutron star rx j0720.4-3125. <u>The Astrophysical</u> <u>Journal</u>, 660:1428-1443, May 2007.
- [265] Y. Karatas, S. Bilir, Z. Eker, and O. Demircan. Chromospherically active binaries (karatas+, 2004). <u>VizieR Online Data Catalog</u>, 734:91069-+, May 2004.
- [266] P. C. Keenan. Classification of the s-type stars. $\underline{ApJ},$ 120:484, November 1954.
- [267] S. J. Kenyon and L. Hartmann. Pre-main-sequence evolution in the taurus-auriga molecular cloud. <u>ApJS</u>, 101:117-+, November 1995.
- [268] N. V. Kharchenko, A. E. Piskunov, S. Röser, E. Schilbach, and R.-D. Scholz. 109 new galactic open clusters. <u>A&A</u>, 440:403–408, September 2005.
- [269] N. V. Kharchenko, A. E. Piskunov, S. Röser, E. Schilbach, and R.-D. Scholz. Astrophysical parameters of galactic open clusters. <u>A&A</u>, 438:1163-1173, August 2005.
- [270] N. V. Kharchenko, A. E. Piskunov, and R.-D. Scholz. Astrophysical supplements to the ascc-2.5. i. radial velocity data. <u>Astronomische</u> <u>Nachrichten</u>, 325:439-444, June 2004.
- [271] N. V. Kharchenko and S. Roeser. All-sky compiled catalogue of 2.5 million stars (kharchenko+ 2009). <u>VizieR Online Data Catalog</u>, 1280:0-+, September 2009.
- [272] N. V. Kharchenko, R.-D. Scholz, A. E. Piskunov, S. Röser, and E. Schilbach. Astrophysical supplements to the ascc-2.5: la. radial velocities of ~55000 stars and mean radial velocities of 516 galactic open clusters and associations. <u>Astronomische</u> <u>Nachrichten</u>, 328:889-+, 2007.
- [273] D. Kilkenny, P. W. Hill, and T. Schmidt-Kaler. H-beta photometry of southern early-type stars and galactic structure away from the plane. <u>MNRAS</u>, 171:353-374, May 1975.
- [274] L. S. Kisslinger, E. M. Henley, and M. B. Johnson. Large mixing angle sterile neutrinos and pulsar velocities. <u>ArXiv e-prints</u>, June 2009.
- [275] K. Knie, G. Korschinek, T. Faestermann, E. A. Dorfi, G. Rugel, and A. Wallner. ⁶⁰fe anomaly in a deep-sea manganese crust and implications for a nearby supernova source. <u>Physical Review Letters</u>, 93(17):171103-+, October 2004.
- [276] H. A. Kobulnicky and C. L. Fryer. A new look at the binary characteristics of massive stars. <u>ApJ</u>, 670:747-765, November 2007.
- [277] T. Kodama. PhD thesis, Institute of Astronomy, Univ. Tokyo, 1997.

- [278] R. Köhler, M. Kunkel, C. Leinert, and H. Zinnecker. Multiplicity of x-ray selected t tauri stars in the scorpius-centaurus ob association. <u>A&A</u>, 356:541-558, April 2000.
- [279] M. M. Komesaroff, J. G. Ables, D. J. Cooke, P. A. Hamilton, and P. M. McCulloch. Results and implications of a recent search for high-dispersion pulsars. <u>Astrophys. Lett.</u>, 15:169-+, December 1973.
- [280] B. König. Flare stars in the solar vicinity a search for young stars. Diploma thesis, LMU München & MPE Garching, Germany, 2003.
- [281] G. Korschinek, A. Bergmaier, I. Dillmann, T. Faestermann, U. Gerstmann, K. Knie, C. Lierse von Gostomski, M. Maiti, M. Poutivtsev, A. Remmert, G. Rugel, and A. Wallner. Determination of the ¹⁰be half-life by hi-erd and liquid scintillation counting. <u>Geochimica et Cosmochimica Acta Supplement</u>, 73:685, June 2009.
- [282] M. Kramer, A. G. Lyne, G. Hobbs, O. Löhmer, P. Carr, C. Jordan, and A. Wolszczan. The proper motion, age, and initial spin period of psr j0538+2817 in s147. <u>ApJ</u>, 593:L31-L34, August 2003.
- [283] M. Kramer, I. H. Stairs, R. N. Manchester, M. A. McLaughlin, A. G. Lyne, R. D. Ferdman, M. Burgay, D. R. Lorimer, A. Possenti, N. D'Amico, J. M. Sarkissian, G. B. Hobbs, J. E. Reynolds, P. C. C. Freire, and F. Camilo. Tests of general relativity from timing the double pulsar. <u>Science</u>, 314:97-102, October 2006.
- [284] P. Kroupa and C. Weidner. Variations of the imf. In E. Corbelli, F. Palla, and H. Zinnecker, editors, <u>The Initial Mass Function 50</u> <u>Years Later</u>, volume 327 of <u>Astrophysics and Space Science Library</u>, pages 175-+, January 2005.
- [285] S. R. Kulkarni, T. C. Clifton, D. C. Backer, R. S. Foster, and A. S. Fruchter. A fast pulsar in radio nebula ctb80. <u>Nature</u>, 331:50-53, January 1988.
- [286] C. J. Lada and E. A. Lada. Embedded clusters in molecular clouds. ARA&A, 41:57-115, 2003.
- $\label{eq:constraint} \begin{array}{ll} \mbox{[287]} & \mbox{K. R. Lang. Periodic variations in pulsar radiation intensity.} & \underline{\rm ApJ}, \\ & \mbox{158:L175+, December 1969.} \end{array}$
- [288] M. I. Large, A. E. Vaughan, and B. Y. Mills. A pulsar supernova association? <u>Nature</u>, 220:340-341, October 1968.
- [289] M. I. Large, A. E. Vaughan, and R. Wielebinski. Pulsar search at the molonglo radio observatory. <u>Nature</u>, 220:753-756, November 1968.
- [290] M. I. Large, A. E. Vaughan, and R. Wielebinski. Highly dispersed pulsar and three others. <u>Nature</u>, 223:1249–1250, September 1969.
- [291] M. I. Large, A. E. Vaughan, and R. Wielebinski. Some further pulsar observations at the molonglo radio observatory. <u>Astrophys. Lett.</u>, 3:123-+, 1969.
- [292] J. M. Lattimer and M. Prakash. The physics of neutron stars. <u>Science</u>, 304:536-542, April 2004.
- [293] J. M. Lattimer, M. Prakash, C. J. Pethick, and P. Haensel. Direct urca process in neutron stars. <u>Physical Review Letters</u>, 66:2701-2704, May 1991.
- [294] W. A. Lawson, L. A. Crause, E. E. Mamajek, and E. D. Feigelson. The η chamaeleontis cluster: photometric study of the rosatdetected weak-lined t tauri stars. <u>MNRAS</u>, 321:57-66, February 2001.
- [295] W. A. Lawson, L. A. Crause, E. E. Mamajek, and E. D. Feigelson. Echa j0843.3-7905: Discovery of an 'old' classical t tauri star in the η chamaeleontis cluster. MNRAS, 329:L29–L33, January 2002.
- [296] F. Leblanc. <u>An Introduction to Stellar Astrophysics</u>. 2010.
- [297] A. Lèbre, P. de Laverny, J. D. Do Nascimento, Jr., and J. R. de Medeiros. Lithium abundances and rotational behavior for bright giant stars. <u>A&A</u>, 450:1173-1179, May 2006.

- [298] P. J. T. Leonard and M. J. Duncan. Runaway stars from young star clusters containing initial binaries. ii - a mass spectrum and a binary energy spectrum. <u>AJ</u>, 99:608-616, February 1990.
- [299] S. Lépine and B. Bongiorno. New distant companions to known nearby stars. ii. faint companions of hipparcos stars and the frequency of wide binary systems. <u>AJ</u>, 133:889–905, March 2007.
- [300] J. Z. Li, J. Y. Hu, and W. P. Chen. New discovery of weakline t tauri stars in high-galactic latitude molecular clouds. <u>A&A</u>, 356:157-162, April 2000.
- [301] M. Limongi and A. Chieffi. ²⁶al and ⁶⁰fe from massive stars. <u>Nuclear</u> Physics A, 758:11-14, July 2005.
- [302] B. Lindblad. Galactic dynamics. Handbuch der Physik, 53:21, 1959.
- [303] N. Lodieu, J. Bouvier, D. J. James, W. J. de Wit, F. Palla, M. J. McCaughrean, and J.-C. Cuillandre. A deep wide-field optical survey in the young open cluster collinder 359. <u>A&A</u>, 450:147–158, April 2006.
- [304] A. V. Loktin and G. V. Beshenov. Hipparcos trigonometric parallaxes and the distance scale for open star clusters. <u>Astronomy</u> Letters, 27:386-390, June 2001.
- [305] A. V. Loktin and G. V. Beshenov. Proper motions of open star clusters and the rotation rate of the galaxy. <u>Astronomy Reports</u>, 47:6-10, January 2003.
- [306] J. López-Santiago, D. Montes, I. Crespo-Chacón, and M. J. Fernández-Figueroa. The nearest young moving groups. <u>ApJ</u>, 643:1160-1165, June 2006.
- [307] J. López-Santiago, D. Montes, M. C. Gálvez-Ortiz, I. Crespo-Chacón, R. M. Martínez-Arnáiz, M. J. Fernández-Figueroa, E. de Castro, and M. Cornide. A high-resolution spectroscopic survey of late-type stars: chromospheric activity, rotation, kinematics, and age. <u>A&A</u>, 514:A97+, May 2010.
- [308] D. R. Lorimer, M. Bailes, and P. A. Harrison. Pulsar statistics iv. pulsar velocities. MNRAS, 289:592-604, August 1997.
- [309] T. A. Lozinskaia, T. G. Sitnik, and A. I. Lomovskii. Nebular complex in the region of cas ob2 association - ring nebula sh157. <u>Ap&SS</u>, 121:357-385, April 1986.
- [310] T. A. Lozinskaya. Supernovae and stellar wind in the interstellar medium. <u>Ap&SS</u>, 252:199-211, 1997.
- [311] M. Lugaro and A. Chieffi. Radioactivites in low- and intermediatemass stars. In & N. Prantzos R. Diehl, D. H. Hartmann, editor, <u>Lecture Notes in Physics, Berlin Springer Verlag</u>, volume 812 of <u>Lecture Notes in Physics, Berlin Springer Verlag</u>, pages 83–152, 2011.
- [312] K. L. Luhman. Chamaeleon, pages 169-+. December 2008.
- [313] K. L. Luhman, L. E. Allen, P. R. Allen, R. A. Gutermuth, L. Hartmann, E. E. Mamajek, S. T. Megeath, P. C. Myers, and G. G. Fazio. The disk population of the chamaeleon i star-forming region. <u>ApJ</u>, 675:1375-1406, March 2008.
- [314] K. L. Luhman and D. Steeghs. Spectroscopy of candidate members of the η chamaeleontis and mbm 12 young associations. <u>ApJ</u>, 609:917-924, July 2004.
- [315] A. G. Lyne, B. Anderson, and M. J. Salter. The proper motions of 26 pulsars. <u>MNRAS</u>, 201:503-520, November 1982.
- [316] A. G. Lyne, A. Brinklow, J. Middleditch, S. R. Kulkarni, and D. C. Backer. The discovery of a millisecond pulsar in the globular cluster m28. <u>Nature</u>, 328:399-401, July 1987.
- [317] A. G. Lyne and M. I. Large. Unpublished work, 1976.
- [318] A. G. Lyne and D. R. Lorimer. High birth velocities of radio pulsars. <u>Nature</u>, 369:127-129, May 1994.
- [319] A. G. Lyne, R. S. Pritchard, and F. Graham-Smith. Twenty-three years of crab pulsar rotational history. <u>MNRAS</u>, 265:1003-+, December 1993.

- [320] A. G. Lyne, R. S. Pritchard, F. Graham-Smith, and F. Camilo. Very low braking index for the vela pulsar. <u>Nature</u>, 381:497-498, June 1996.
- [321] L. S. Lyubimkov, D. L. Lambert, S. I. Rostopchin, T. M. Rachkovskaya, and D. B. Poklad. Accurate fundamental parameters for a-, f- and g-type supergiants in the solar neighbourhood. <u>MNRAS</u>, 402:1369-1379, February 2010.
- [322] L. S. Lyubimkov, S. I. Rostopchin, and D. L. Lambert. Surface abundances of light elements for a large sample of early b-type stars - iii. an analysis of helium lines in spectra of 102 stars. <u>MNRAS</u>, 351:745-767, June 2004.
- [323] D. J. MacConnell. A study of the cepheus iv association. <u>ApJS</u>, 16:275-+, October 1968.
- [324] S. Madsen, D. Dravins, and L. Lindegren. Astrometric radial velocities. iii. hipparcos measurements of nearby star clusters and associations. <u>A&A</u>, 381:446-463, January 2002.
- [325] A. Maeder. Evidences for a bifurcation in massive star evolution. the on-blue stragglers. <u>A&A</u>, 178:159–169, May 1987.
- [326] A. Maeder and R. Behrend. Formation and pre-ms evolution of massive stars with growing accretion. In P. Crowther, editor, <u>Hot</u> <u>Star Workshop III: The Earliest Phases of Massive Star Birth,</u> volume 267 of <u>Astronomical Society of the Pacific Conference</u> <u>Series</u>, pages 179-+, October 2002.
- [327] A. Maeder and G. Meynet. Grids of evolutionary models from 0.85 to 120 solar masses - observational tests and the mass limits. <u>A&A</u>, 210:155-173, February 1989.
- [328] J. Maíz-Apellániz. The origin of the local bubble. <u>Astrophysical</u> <u>Journal, Letters</u>, 560:L83–L86, October 2001.
- [329] J. Maíz-Apellániz, N. R. Walborn, H. A. Galué, and L. H. Wei. A galactic o star catalog. <u>ApJS</u>, 151:103-148, March 2004.
- [330] V. V. Makarov. Unraveling the origins of nearby young stars. <u>ApJS</u>, 169:105-119, March 2007.
- [331] V. V. Makarov and G. H. Kaplan. Statistical constraints for astrometric binaries with nonlinear motion. <u>AJ</u>, 129:2420-2427, May 2005.
- [332] V. V. Makarov and S. Urban. A moving group of young stars in carina-vela. <u>MNRAS</u>, 317:289-298, September 2000.
- [333] S. Malaroda, H. Levato, and S. Galliani. Stellar radial velocities bibliographic catalog (malaroda+, 2006). <u>VizieR Online Data Catalog</u>, 3249:0-+, August 2006.
- [334] E. E. Mamajek and L. A. Hillenbrand. Improved age estimation for solar-type dwarfs using activity-rotation diagnostics. <u>ApJ</u>, 687:1264-1293, November 2008.
- [335] E. E. Mamajek, W. A. Lawson, and E. D. Feigelson. The eta chamaeleontis cluster: A remarkable new nearby young open cluster. <u>ApJ</u>, 516:L77-L80, May 1999.
- [336] E. E. Mamajek, W. A. Lawson, and E. D. Feigelson. The η chamaeleontis cluster: Origin in the sco-cen ob association. <u>ApJ</u>, 544:356-374, November 2000.
- [337] R. N. Manchester, N. Damico, and I. R. Tuohy. A search for shortperiod pulsars. <u>MNRAS</u>, 212:975-986, February 1985.
- [338] R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs. The australia telescope national facility pulsar catalogue. <u>AJ</u>, 129:1993– 2006, April 2005.
- [339] R. N. Manchester, A. G. Lyne, N. D'Amico, M. Bailes, S. Johnston, D. R. Lorimer, P. A. Harrison, L. Nicastro, and J. F. Bell. The parkes southern pulsar survey. i. observing and data analysis systems and initial results. <u>MNRAS</u>, 279:1235–1250, April 1996.

- [340] R. N. Manchester, A. G. Lyne, J. H. Taylor, J. M. Durdin, M. I. Large, and A. G. Little. The second molonglo pulsar survey - discovery of 155 pulsars. <u>MNRAS</u>, 185:409-421, November 1978.
- [341] R. N. Manchester and J. H. Taylor. Pulsars. 1977.
- [342] R. N. Manchester, J. H. Taylor, and G. R. Huguenin. New and improved parameters for twenty-two pulsars. <u>Nature Phys. Sci.</u>, 240:74, 1972.
- [343] G. W. Marcy and G. H. Chen. The rotation of m dwarfs. <u>ApJ</u>, 390:550–559, May 1992.
- P. Marigo, L. Girardi, A. Bressan, M. A. T. Groenewegen, L. Silva, and G. L. Granato. Evolution of asymptotic giant branch stars.
 ii. optical to far-infrared isochrones with improved tp-agb models. <u>A&A</u>, 482:883-905, May 2008.
- [345] J. P. Marques, M. J. P. F. G. Monteiro, and J. M. Fernandes. Grids of stellar evolution models for asteroseismology (cesam + posc). <u>Ap&SS</u>, 316:173-178, August 2008.
- [346] J. C. Martin. The origins and evolutionary status of b stars found far from the galactic plane. i. composition and spectral features. AJ, 128:2474-2500, November 2004.
- [347] J. C. Martin. The origins and evolutionary status of b stars found far from the galactic plane. ii. kinematics and full sample analysis. AJ, 131:3047-3068, June 2006.
- [348] P. Martin, J. Knödlseder, G. Meynet, and R. Diehl. Predicted gamma-ray line emission from the cygnus complex. <u>A&A</u>, 511:A86, February 2010.
- [349] B. D. Mason, D. R. Gies, W. I. Hartkopf, W. G. Bagnuolo, Jr., T. ten Brummelaar, and H. A. McAlister. lccd speckle observations of binary stars. xix - an astrometric/spectroscopic survey of o stars. <u>AJ</u>, 115:821, February 1998.
- [350] P. Massey, K. DeGioia-Eastwood, and E. Waterhouse. The progenitor masses of wolf-rayet stars and luminous blue variables determined from cluster turnoffs. ii. results from 12 galactic clusters and ob associations. AJ, 121:1050–1070, February 2001.
- [351] P. Massey, K. E. Johnson, and K. Degioia-Eastwood. The initial mass function and massive star evolution in the ob associations of the northern milky way. <u>ApJ</u>, 454:151-+, November 1995.
- [352] R. D. McClure. The carbon and related stars. <u>JRASC</u>, 79:277-293, December 1985.
- [353] P. R. McCullough, B. D. Fields, and V. Pavlidou. Discovery of an old, nearby, and overlooked supernova remnant centered on the southern constellation antlia pneumatica. <u>ApJ</u>, 576:L41–L44, September 2002.
- [354] B. J. McNamara. A positional determination of np 0532. <u>PASP</u>, 83:491-+, August 1971.
- [355] T. G. Mdzinarishvili and K. B. Chargeishvili. New runaway ob stars with hipparcos. <u>A&A</u>, 431:L1-L4, February 2005.
- [356] J. Meeus and D. Savoie. The history of the tropical year. <u>Journal</u> of the British Astronomical Association, 102:40-42, February 1992.
- [357] A. M. Mel'Nik and Y. N. Efremov. A new list of ob associations in our galaxy. <u>Astronomy Letters</u>, 21:10-26, January 1995.
- [358] S. Mengel and L. E. Tacconi-Garman. Nir spectroscopy of the most massive open cluster in the galaxy: Westerlund 1. In & A. Sills
 E. Vesperini, M. Giersz, editor, <u>IAU Symposium</u>, volume 246 of <u>IAU Symposium</u>, pages 113–114, May 2008.
- [359] M. O. Mennessier, X. Luri, F. Figueras, A. E. Gomez, S. Grenier, J. Torra, and P. North. Barium stars, galactic populations and evolution. <u>A&A</u>, 326:722-730, October 1997.
- [360] K. M. Menten, M. J. Reid, J. Forbrich, and A. Brunthaler. The distance to the orion nebula. <u>A&A</u>, 474:515-520, November 2007.
- [361] B. Merín, B. Montesinos, C. Eiroa, and et al. Study of the properties and spectral energy distributions of the herbig aebe stars hd 34282 and hd 141569. <u>A&A</u>, 419:301-318, May 2004.

- [362] J. C. Mermilliod, M. Mayor, and S. Udry. Red giants in open clusters. xiv. mean radial velocities for 1309 stars and 166 open clusters. <u>A&A</u>, 485:303-314, July 2008.
- [363] J.-C. Mermilliod and E. Paunzen. Analysing the database for stars in open clusters. i. general methods and description of the data. A&A, 410:511-518, November 2003.
- [364] P. W. Merrill. Spectra of long-period variable stars. 1940.
- [365] C. Messier. Catalogue des nébuleuses & des amas d'étoiles (catalog of nebulae and star clusters). Technical report, 1781.
- [366] G. Micela, F. Favata, and S. Sciortino. Hipparcos distances of xray selected stars: implications on their nature as stellar population. <u>A&A</u>, 326:221-227, October 1997.
- [367] J. M. Migliazzo, B. M. Gaensler, D. C. Backer, B. W. Stappers, E. van der Swaluw, and R. G. Strom. Proper-motion measurements of pulsar b1951+32 in the supernova remnant ctb 80. <u>ApJ</u>, 567:L141-L144, March 2002.
- [368] R. P. Mignani, G. G. Pavlov, and O. Kargaltsev. Optical-ultraviolet spectrum and proper motion of the middle-aged pulsar b1055-52. ApJ, 720:1635-1643, September 2010.
- [369] R. P. Mignani, D. Vande Putte, M. Cropper, R. Turolla, S. Zane, L. J. Pellizza, L. A. Bignone, N. Sartore, and A. Treves. The birthplace and age of the isolated neutron star RX J1856.5-3754. <u>ArXiv</u> <u>e-prints</u>, December 2012.
- [370] D. Mihalas and J. Binney. <u>Galactic astronomy: Structure and kinematics /2nd edition/</u>. 1981.
- [371] A. F. J. Moffat, S. V. Marchenko, W. Seggewiss, K. A. van der Hucht, H. Schrijver, B. Stenholm, I. Lundstrom, D. Y. A. Setia Gunawan, W. Sutantyo, E. P. J. van den Heuvel, J.-P. de Cuyper, and A. E. Gomez. Wolf-rayet stars and o-star runaways with hipparcos. i. kinematics. <u>A&A</u>, 331:949–958, March 1998.
- [372] A. F. J. Moffat, S. V. Marchenko, W. Seggewiss, K. A. van der Hucht, H. Schrijver, B. Stenholm, I. Lundstrom, D. Y. A. Setia Gunawan, W. Sutantyo, E. P. J. van den Heuvel, J.-P. de Cuyper, and A. E. Gomez. (erratum) wolf-rayet stars and o-star runaways with hipparcos. i. kinematics. <u>A&A</u>, 345:321-322, May 1999.
- [373] A. F. J. Moffat and N. Vogt. Southern open stars clusters. iii. ubvhbeta photometry of 28 clusters between galactic longitudes 297d and 353d. <u>A&AS</u>, 10:135-+, May 1973.
- [374] D. Montes, J. López-Santiago, M. J. Fernández-Figueroa, and M. C. Gálvez. Chromospheric activity, lithium and radial velocities of single late-type stars possible members of young moving groups. <u>A&A</u>, 379:976-991, December 2001.
- [375] A. Moór, P. Ábrahám, A. Derekas, C. Kiss, L. L. Kiss, D. Apai, C. Grady, and T. Henning. Nearby debris disk systems with high fractional luminosity reconsidered. <u>ApJ</u>, 644:525-542, June 2006.
- [376] W. W. Morgan, A. E. Whitford, and A. D. Code. Studies in galactic structure. i. a preliminary determination of the space distribution of the blue giants. <u>ApJ</u>, 118:318-+, September 1953.
- [377] C. Motch, A. M. Pires, F. Haberl, and A. Schwope. Measuring proper motions of isolated neutron stars with chandra. <u>Ap&SS</u>, 308:217-224, April 2007.
- [378] C. Motch, A. M. Pires, F. Haberl, A. Schwope, and V. E. Zavlin. Proper motions of rosat discovered isolated neutron stars measured with chandra: First x-ray measurement of the large proper motion of rx j1308.6+2127/rbs 1223. In <u>astro-ph</u>, 712, 342 (2007), volume 712, pages 342-+, 2007.
- [379] C. Motch, A. M. Pires, F. Haberl, A. Schwope, and V. E. Zavlin. Proper motions of thermally emitting isolated neutron stars measured with chandra. <u>A&A</u>, 497:423-435, April 2009.
- [380] C. Motch, V. E. Zavlin, and F. Haberl. The proper motion and energy distribution of the isolated neutron star rx j0720.4-3125. <u>A&A</u>, 408:323-330, September 2003.

- [381] J. W. Müller. Possible advantages of a robust evaluation of comparisons. Journal of Research of the National Institute of Standards and Technology, 105:551, July 2000.
- [382] T. Nakajima and J.-I. Morino. Potential members of stellar kinematic groups within 30 pc of the sun. <u>AJ</u>, 143:2, January 2012.
- [383] T. Nakajima, J.-I. Morino, and M. Fukagawa. Potential members of stellar kinematical groups within 20 pc of the sun. <u>AJ</u>, 140:713-722, September 2010.
- [384] Y. Nazé. Hot stars observed by xmm-newton. i. the catalog and the properties of ob stars. <u>A&A</u>, 506:1055-1064, November 2009.
- [385] R. Neuhäuser. Low-mass pre-main sequence stars and their x-ray emission. <u>Science</u>, 276:1363-1370, 1997.
- [386] R. Neuhäuser and W. Brandner. Hipparcos results for rosatdiscovered young stars. <u>A&A</u>, 330:L29–L32, February 1998.
- [387] R. Neuhäuser, E. Guenther, M. Mugrauer, T. Ott, and A. Eckart. Infrared imaging and spectroscopy of companion candidates near the young stars hd 199143 and hd 358623 in capricornius. <u>A&A</u>, 395:877-883, December 2002.
- [388] R. Neuhäuser, M. F. Sterzik, J. H. M. M. Schmitt, R. Wichmann, and J. Krautter. Rosat survey observation of t tauri stars in taurus. <u>A&A</u>, 297:391-+, May 1995.
- [389] R. Neuhäuser, F. M. Walter, E. Covino, J. M. Alcalá, S. J. Wolk, S. Frink, P. Guillout, M. F. Sterzik, and F. Comerón. Search for young stars among rosat all-sky survey x-ray sources in and around the r cra dark cloud. <u>A&AS</u>, 146:323-347, October 2000.
- [390] L. M. Newton, R. N. Manchester, and D. J. Cooke. Pulsar parameters from timing observations. <u>MNRAS</u>, 194:841-850, March 1981.
- [391] C.-Y. Ng and R. W. Romani. Fitting pulsar wind tori. <u>ApJ</u>, 601:479-484, January 2004.
- [392] C.-Y. Ng and R. W. Romani. Proper motion of the crab pulsar revisited. <u>ApJ</u>, 644:445-450, June 2006.
- [393] J. A. Nousek, L. L. Cowie, E. Hu, C. J. Lindblad, and G. P. Garmire. The gemini-monoceros x-ray enhancement - a giant x-ray ring. <u>ApJ</u>, 248:152-160, August 1981.
- [394] D. K. Ojha, O. Bienayme, A. C. Robin, M. Creze, and V. Mohan. Structure and kinematical properties of the galaxy at intermediate galactic latitudes. <u>A&A</u>, 311:456–469, July 1996.
- [395] E. H. Olsen. Estimation of spectral classifications for bright southern stars with interesting strongren indices. <u>A&AS</u>, 37:367-396, August 1979.
- [397] F. Palla and S. W. Stahler. Star formation in the orion nebula cluster. <u>ApJ</u>, 525:772-783, November 1999.
- [399] E. Paunzen and P. Reegen. Analysing the hipparcos epoch photometry of λ bootis stars. <u>Communications in Asteroseismology</u>, 153:49-53, April 2008.
- [400] G. G. Pavlov, O. Kargaltsev, and W. F. Brisken. Chandra observation of psr b1823-13 and its pulsar wind nebula. <u>ApJ</u>, 675:683-694, March 2008.
- [401] G. G. Pavlov, V. E. Zavlin, and D. Sanwal. Thermal radiation from neutron stars: Chandra results. In & J. Trümper W. Becker, H. Lesch, editor, <u>Neutron Stars, Pulsars, and Supernova Remnants</u>, page 273, 2002.

- [402] G. G. Pavlov, V. E. Zavlin, D. Sanwal, V. Burwitz, and G. P. Garmire. The x-ray spectrum of the vela pulsar resolved with the chandra x-ray observatory. <u>ApJ</u>, 552:L129–L133, May 2001.
- [403] M. J. Pecaut, E. E. Mamajek, and E. J. Bubar. A revised age for upper scorpius and the star formation history among the f-type members of the scorpius-centaurus ob association. <u>ApJ</u>, 746:154, February 2012.
- [404] A. Pedoussaut, J. M. Carquillat, N. Ginestet, and J. Vigneau. Spectroscopic binaries - 15th complementary catalog. <u>A&AS</u>, 75:441– 496, November 1988.
- [405] L. R. Penny. Projected rotational velocities of o-type stars. <u>ApJ</u>, 463:737-+, June 1996.
- [406] C. A. Perrot and I. A. Grenier. 3d dynamical evolution of the interstellar gas in the gould belt. <u>A&A</u>, 404:519–531, June 2003.
- [407] C. L. Perry, G. Hill, and D. M. Christodoulou. A study of sco 0b1 and ngc 6231. ii - a new analysis. <u>A&AS</u>, 90:195–223, October 1991.
- [408] M. A. C. Perryman, L. Lindegren, J. Kovalevsky, and et al. The hipparcos catalogue. <u>A&A</u>, 323:L49-L52, July 1997.
- [409] C. J. Philp, C. R. Evans, P. J. T. Leonard, and D. A. Frail. Do ob runaway stars have pulsar companions? <u>AJ</u>, 111:1220-+, March 1996.
- [410] A. Pietrinferni, S. Cassisi, M. Salaris, and F. Castelli. A large stellar evolution database for population synthesis studies. i. scaled solar models and isochrones. <u>ApJ</u>, 612:168–190, September 2004.
- [411] J. D. H. Pilkington, A. Hewish, S. J. Bell, and T. W. Cole. Observations of some further pulsed radio sources. <u>Nature</u>, 218:126–129, April 1968.
- [412] A. E. Piskunov, E. Schilbach, N. V. Kharchenko, S. Röser, and R.-D. Scholz. Tidal radii and masses of open clusters. <u>A&A</u>, 477:165-172, January 2008.
- [413] I. Platais, C. Melo, J.-C. Mermilliod, V. Kozhurina-Platais, J. P. Fulbright, R. A. Méndez, M. Altmann, and J. Sperauskas. Wiyn open cluster study. xxvi. improved kinematic membership and spectroscopy of ic 2391. <u>A&A</u>, 461:509-522, January 2007.
- [414] P. P. Plucinsky, S. L. Snowden, B. Aschenbach, R. Egger, R. J. Edgar, and D. McCammon. Rosat survey observations of the monogem ring. <u>ApJ</u>, 463:224-+, May 1996.
- [415] H. C. Plummer. On the problem of distribution in globular star clusters. <u>MNRAS</u>, 71:460-470, March 1911.
- [416] S. Plüschke, R. Diehl, V. Schönfelder, H. Bloemen, W. Hermsen, K. Bennett, C. Winkler, M. McConnell, J. Ryan, U. Oberlack, and J. Knödlseder. The comptel 1.809 mev survey. In & C. Winkler A. Gimenez, V. Reglero, editor, <u>Exploring the Gamma-Ray</u> <u>Universe</u>, volume 459 of <u>ESA Special Publication</u>, pages 55-58, September 2001.
- [417] J. A. Pons, J. A. Miralles, and U. Geppert. Magneto-thermal evolution of neutron stars. <u>A&A</u>, 496:207-216, March 2009.
- [418] S. B. Popov. The zoo of neutron stars. <u>Physics of Particles and</u> <u>Nuclei</u>, 39:1136-1142, December 2008.
- [419] S. B. Popov, H. Grigorian, and D. Blaschke. Neutron star cooling constraints for color superconductivity in hybrid stars. <u>Physical</u> Review C, 74(2):025803-+, August 2006.
- [420] S. B. Popov, J. A. Pons, J. A. Miralles, P. A. Boldin, and B. Posselt. Population synthesis studies of isolated neutron stars with magnetic field decay. <u>MNRAS</u>, 401:2675–2686, February 2010.
- [421] B. Posselt, S. B. Popov, F. Haberl, J. Trümper, R. Turolla, and R. Neuhäuser. The magnificent seven in the dusty prairie. <u>Ap&SS</u>, 308:171–179, April 2007.

- [422] D. Pourbaix, A. A. Tokovinin, A. H. Batten, F. C. Fekel, W. I. Hartkopf, H. Levato, N. I. Morell, G. Torres, and S. Udry. Sb9: 9th catalogue of spectroscopic binary orbits (pourbaix+ 2004-2009). <u>VizieR Online Data Catalog</u>, 1:2020-+, August 2009.
- [423] D. Pourbaix, A. A. Tokovinin, A. H. Batten, F. C. Fekel, W. I. Hartkopf, H. Levato, N. I. Morrell, G. Torres, and S. Udry. S_{B⁹}: The ninth catalogue of spectroscopic binary orbits. <u>A&A</u>, 424:727-732, September 2004.
- [424] A. Poveda, J. Ruiz, and C. Allen. Run-away stars as the result of the gravitational collapse of proto-stellar clusters. <u>Boletin de los</u> <u>Observatorios Tonantzintla y Tacubaya</u>, 4:86–90, April 1967.
- [425] T. Preibisch, A. G. A. Brown, T. Bridges, E. Guenther, and H. Zinnecker. Exploring the full stellar population of the upper scorpius ob association. <u>AJ</u>, 124:404-416, July 2002.
- [426] T. Preibisch, E. Guenther, and H. Zinnecker. A large spectroscopic survey for young low-mass members of the upper scorpius ob association. <u>AJ</u>, 121:1040-1049, February 2001.
- [427] T. Preibisch and E. Mamajek. <u>The Nearest OB Association:</u> <u>Scorpius-Centaurus (Sco OB2)</u>, page 235. December 2008.
- [428] T. Preibisch and H. Zinnecker. The history of low-mass star formation in the upper scorpius ob association. <u>AJ</u>, 117:2381-2397, May 1999.
- [429] I. N. Reid, S. L. Hawley, and J. E. Gizis. Palomar/msu nearby star spectroscopic survey (hawley+ 1997). <u>VizieR Online Data Catalog</u>, 3198:0-+, May 1997.
- [430] N. Reid. Activity and kinematics of members of the tw hydrae association. <u>MNRAS</u>, 342:837-850, July 2003.
- [431] B. Reipurth and N. Schneider. <u>Star Formation and Young Clusters</u> in Cygnus, pages 36-+. December 2008.
- [432] R. A. Rightmire, T. P. Kohman, and H. Hinten-Berger. Über die halbwertszeit des langlebigen ²⁶al. <u>Zeitschrift Naturforschung Teil</u> <u>A</u>, 13:847-+, October 1958.
- [433] L. C. Roberts, Jr., N. H. Turner, and T. A. ten Brummelaar. Adaptive optics photometry and astrometry of binary stars. ii. a multiplicity survey of b stars. <u>AJ</u>, 133:545-552, February 2007.
- [434] F. Royer, M. Gerbaldi, R. Faraggiana, and A. E. Gómez. Rotational velocities of a-type stars. i. measurement of v sin i in the southern hemisphere. A&A, 381:105-121, January 2002.
- [435] F. Royer, S. Grenier, M.-O. Baylac, A. E. Gómez, and J. Zorec. Rotational velocities of a-type stars in the northern hemisphere. ii. measurement of v sin i. <u>A&A</u>, 393:897–911, October 2002.
- [436] G. Rugel, T. Faestermann, K. Knie, G. Korschinek, M. Poutivtsev, D. Schumann, N. Kivel, I. Günther-Leopold, R. Weinreich, and M. Wohlmuther. New measurement of the fe60 half-life. <u>Physical</u> <u>Review Letters</u>, 103(7):072502, August 2009.
- [437] N. N. Samus, O. V. Durlevich, and et al. General catalogue of variable stars (samus+ 2007-2012). <u>VizieR Online Data Catalog</u>, 1:2025, January 2009.
- [438] H. Sana, E. Gosset, Y. Nazé, G. Rauw, and N. Linder. The massive star binary fraction in young open clusters - i. ngc 6231 revisited. MNRAS, 386:447-460, May 2008.
- [439] M. J. Sartori, J. R. D. Lépine, and W. S. Dias. Formation scenarios for the young stellar associations between galactic longitudes | = 280degr - 360degr. <u>A&A</u>, 404:913-926, June 2003.
- [440] G. Schaller, D. Schaerer, G. Meynet, and A. Maeder. New grids of stellar models from 0.8 to 120 solar masses at z = 0.020 and z = 0.001. <u>A&AS</u>, 96:269-331, December 1992.
- [441] L. Scheck, K. Kifonidis, H.-T. Janka, and E. Müller. Multidimensional supernova simulations with approximative neutrino transport. i. neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions. <u>A&A</u>, 457:963-986, October 2006.

- [442] H. Schild and A. Maeder. The initial mass limit for neutron star and black hole formation. <u>A&A</u>, 143:L7-L10, February 1985.
- [443] J. Schmidt. Master's thesis, AIU, Friedrich-Schiller-Universität Jena, Germany, 2011.
- [444] T. H. Schmidt-Kaler. Physical parameters of the stars. 1982.
- [445] V. Schoenfelder, H. Aarts, K. Bennett, H. de Boer, J. Clear, W. Collmar, A. Connors, A. Deerenberg, R. Diehl, A. von Dordrecht, J. W. den Herder, W. Hermsen, M. Kippen, L. Kuiper, G. Lichti, J. Lockwood, J. Macri, M. McConnell, D. Morris, R. Much, J. Ryan, G. Simpson, M. Snelling, G. Stacy, H. Steinle, A. Strong, B. N. Swanenburg, B. Taylor, C. de Vries, and C. Winkler. Instrument description and performance of the imaging gammaray telescope comptel aboard the compton gamma-ray observatory. <u>ApJS</u>, 86:657-692, June 1993.
- [446] A. D. Schwope, V. Hambaryan, F. Haberl, and C. Motch. The pulsed x-ray light curves of the isolated neutron star rbs1223. <u>A&A</u>, 441:597-604, October 2005.
- [447] L. I. Sedov. Propagation of strong shock waves. <u>Journal of Applied</u> <u>Mathematics and Mechanics</u>, 10:241-250, 1946.
- [448] D. M. Seymour, B. D. Mason, W. I. Hartkopf, and G. L. Wycoff. Binary star orbits. ii. preliminary first orbits for 117 systems. <u>AJ</u>, 123:1023-1038, February 2002.
- [449] T. V. Shabanova. Cyclical changes in the timing residuals from the pulsar b0919+06. <u>ApJ</u>, 721:251-258, September 2010.
- [450] J.-H. Shinn, K. W. Min, R. Sankrit, K.-S. Ryu, I.-J. Kim, W. Han, U.-W. Nam, J.-H. Park, J. Edelstein, and E. J. Korpela. Farultraviolet cooling features of the antlia supernova remnant. <u>ApJ</u>, 670:1132-1136, December 2007.
- [451] Y. P. Shitov, A. D. Kuz'min, S. M. Kutuzov, Y. P. Ilyasov, Y. I. Alekseev, and I. A. Alekseev. New pulsars discovered at 3-m wavelength. <u>Soviet Astronomy Letters</u>, 6:85-+, February 1980.
- [452] B. C. Siegman, R. N. Manchester, and J. M. Durdin. Timing parameters for 59 pulsars. <u>MNRAS</u>, 262:449–455, May 1993.
- [453] L. Siess, E. Dufour, and M. Forestini. An internet server for premain sequence tracks of low- and intermediate-mass stars. <u>A&A</u>, 358:593-599, June 2000.
- [454] S. Simón-Díaz and A. Herrero. Fourier method of determining the rotational velocities in ob stars. <u>A&A</u>, 468:1063-1073, June 2007.
- [455] M. W. Sinclair and J. W. Brooks. Formaldehyde absorption in the southern coal sack. <u>Astrophys. Lett.</u>, 11:207-+, May 1972.
- [456] B. A. Skiff. Catalogue of stellar spectral classifications (skiff, 2009). <u>VizieR Online Data Catalog</u>, 1:2023-+, February 2009.
- [457] N. Smith. A census of the carina nebula i. cumulative energy input from massive stars. <u>MNRAS</u>, 367:763-772, April 2006.
- [458] V. V. Smith, K. Cunha, and B. Plez. Is geming a runaway member of the orion association? <u>A&A</u>, 281:L41-L44, January 1994.
- [459] D. R. Soderblom, J. R. King, and T. J. Henry. High-resolution spectroscopy of some very active southern stars. <u>AJ</u>, 116:396-413, July 1998.
- [460] D. R. Soderblom, J. R. King, L. Siess, K. S. Noll, D. M. Gilmore, T. J. Henry, E. Nelan, C. J. Burrows, R. A. Brown, M. A. C. Perryman, G. F. Benedict, B. J. McArthur, O. G. Franz, L. H. Wasserman, B. F. Jones, D. W. Latham, G. Torres, and R. P. Stefanik. Hd 98800: A unique stellar system of post-t tauri stars. ApJ, 498:385-+, May 1998.
- [461] E. Solano and J. Fernley. Spectroscopic survey of delta scuti stars. i. rotation velocities and effective temperatures. <u>A&AS</u>, 122:131– 147, April 1997.

- [462] I. Song, M. S. Bessell, and B. Zuckerman. Additional twa members?. spectroscopic verification of kinematically selected twa candidates. <u>A&A</u>, 385:862-866, April 2002.
- [463] I. Song, B. Zuckerman, and M. S. Bessell. New members of the tw hydrae association, β pictoris moving group, and tucana/horologium association. <u>ApJ</u>, 599:342–350, December 2003.
- [464] I. Song, B. Zuckerman, and M. S. Bessell. Probing the low-mass stellar end of the η chamaeleontis cluster. <u>ApJ</u>, 600:1016–1019, January 2004.
- [465] J. Southworth, P. F. L. Maxted, and B. Smalley. Eclipsing binaries in open clusters - ii. v453 cyg in ngc 6871. <u>MNRAS</u>, 351:1277– 1289, July 2004.
- [466] D. H. Staelin and E. C. Reifenstein, III. Pulsating radio sources near the crab nebula. <u>Science</u>, 162:1481–1483, December 1968.
- [467] I. H. Stairs. Masses of radio pulsars. Journal of Physics G Nuclear Physics, 32:259, December 2006.
- [468] B. Stelzer and R. Neuhäuser. X-ray emission from young stars in the tucanae association. <u>A&A</u>, 361:581–593, September 2000.
- [469] M. F. Sterzik, J. M. Alcalá, E. Covino, and M. G. Petr. New t tauri stars in the vicinity of tw hydrae. <u>A&A</u>, 346:L41–L44, June 1999.
- [470] P. B. Stetson. Early-type high-velocity stars in the solar neighborhood. i - list of candidates. <u>AJ</u>, 86:1337-1359, September 1981.
- [471] R. C. Stone. Kinematics, close binary evolution, and ages of the o stars. <u>ApJ</u>, 232:520-530, September 1979.
- [472] R. C. Stone. The space frequency and origin of the runaway o and b stars. <u>AJ</u>, 102:333-349, July 1991.
- [473] K. Strassmeier, A. Washuettl, T. Granzer, M. Scheck, and M. Weber. The vienna-kpno search for doppler-imaging candidate stars. i. a catalog of stellar-activity indicators for 1058 late-type hipparcos stars. <u>A&AS</u>, 142:275-311, March 2000.
- [474] M. A. Svechnikov and E. F. Kuznetsova. <u>Katalog priblizhennykh</u> fotometricheskikh i absoliutnykh elementov zatmennykh peremennykh zvezd. 1990.
- [475] G. Swarup, D. K. Mohanty, and V. Balasubramanian. Two new pulsars. <u>IAU Circ.</u>, 2356:1, 1971.
- [476] G. Tagliaferri, S. Covino, T. A. Fleming, M. Gagne, R. Pallavicini, F. Haardt, and Y. Uchida. Coronal x-ray emission of hd 35850: the asca view. A&A, 321:850-858, May 1997.
- [477] T. M. Tauris and R. J. Takens. Runaway velocities of stellar components originating from disrupted binaries via asymmetric supernova explosions. A&A, 330:1047-1059, February 1998.
- [478] G. Taylor. The formation of a blast wave by a very intense explosion. i. theoretical discussion. <u>Royal Society of London Proceedings</u> <u>Series A</u>, 201:159–174, March 1950.
- [479] J. H. Taylor and J. M. Cordes. Pulsar distances and the galactic distribution of free electrons. <u>ApJ</u>, 411:674–684, July 1993.
- [480] J. H. Taylor and G. R. Huguenin. Two new pulsating radio sources. <u>Nature</u>, 221:816-817, March 1969.
- [481] R. Teixeira, C. Ducourant, M. J. Sartori, J. I. B. Camargo, J. P. Périé, J. R. D. Lépine, and P. Benevides-Soares. Proper motions of pre-main sequence stars in southern star-forming regions. <u>A&A</u>, 361:1143-1151, September 2000.
- [482] L. Terranegra, F. Morale, A. Spagna, G. Massone, and M. G. Lattanzi. Proper motions of faint rosat wtt stars in the chamaeleon region. <u>A&A</u>, 341:L79–L83, January 1999.
- [483] N. Tetzlaff. Kinematische untersuchungen zu jungen isolierten neutronensternen: Die suche nach den orten potentieller supernovae. Master's thesis, AlU, Friedrich-Schiller-Universität Jena, Germany, 2009.

- [484] N. Tetzlaff, T. Eisenbeiss, R. Neuhäuser, and M. M. Hohle. The origin of rx j1856.5-3754 and rx j0720.4-3125 - updated using new parallax measurements. <u>MNRAS</u>, 417:617-626, October 2011.
- [485] N. Tetzlaff, R. Neuhäuser, and M. M. Hohle. The origin of the guitar pulsar. <u>MNRAS</u>, 400:L99-L102, November 2009.
- [486] N. Tetzlaff, R. Neuhäuser, and M. M. Hohle. A catalogue of young runaway hipparcos stars within 3 kpc from the sun. <u>MNRAS</u>, 410:190-200, January 2011.
- [487] N. Tetzlaff, R. Neuhäuser, M. M. Hohle, and G. Maciejewski. Identifying birth places of young isolated neutron stars. <u>MNRAS</u>, 402:2369-2387, March 2010.
- [488] N. Tetzlaff, J. G. Schmidt, M. M. Hohle, and R. Neuhäuser. Neutron stars from young nearby associations: The origin of rx j1605.3+3249. <u>PASA</u>, 29:98-108, March 2012.
- [489] P. S. The, D. de Winter, and M. R. Perez. A new catalogue of members and candidate members of the herbig ae/be (haebe) stellar group. <u>A&AS</u>, 104:315-339, April 1994.
- [490] J. H. Thomas, R. L. Rau, R. T. Skelton, and R. W. Kavanagh. Half-life of ²⁶al. <u>Phys. Rev. C</u>, 30:385–387, July 1984.
- [491] R. J. Thompson, Jr., F. A. Cordova, R. M. Hjellming, and E. B. Fomalont. The proper motion of the soft x-ray-emitting radio pulsar psr 0656 + 14. <u>ApJ</u>, 366:L83–L86, January 1991.
- [492] S. E. Thorsett, R. A. Benjamin, W. F. Brisken, A. Golden, and W. M. Goss. Pulsar psr b0656+14, the monogem ring, and the origin of the "knee" in the primary cosmic-ray spectrum. <u>ApJ</u>, 592:L71–L73, August 2003.
- [493] A. Tiengo and S. Mereghetti. Xmm-newton discovery of 7 s pulsations in the isolated neutron star rx j1856.5-3754. <u>ApJ</u>, 657:L101– L104, March 2007.
- [494] B. M. Tinsley. Evolution of the stars and gas in galaxies. <u>Fundamentals of Cosmic Physics</u>, 5:287-388, 1980.
- [495] A. A. Tokovinin and N. I. Shatskii. Ccd observations of visual binary stars. <u>Astronomy Letters</u>, 21:464-469, July 1995.
- [496] C. A. O. Torres, L. da Silva, G. R. Quast, R. de la Reza, and E. Jilinski. A new association of post-t tauri stars near the sun. <u>AJ</u>, 120:1410-1425, September 2000.
- [497] C. A. O. Torres, G. R. Quast, L. da Silva, R. de La Reza, C. H. F. Melo, and M. Sterzik. Search for associations containing young stars (sacy). i. sample and searching method. <u>A&A</u>, 460:695-708, December 2006.
- [498] C. A. O. Torres, G. R. Quast, C. H. F. Melo, and M. F. Sterzik. Young Nearby Loose Associations, pages 757-+. December 2008.
- [499] L. Trepl. Untersuchung der emissionseigenschaften von rotationsgetriebenen pulsaren mit den röntgensatelliten xmm-newton und rosat. Diploma thesis, Ludwig-Maximilians-Universität München, Germany, 2007.
- [500] R. J. Trumpler. Globular star clusters. <u>Leaflet of the Astronomical Society of the Pacific</u>, 1:117, 1930.
- [501] D. G. Turner. The value of r in monoceros. <u>ApJ</u>, 210:65-75, November 1976.
- [502] D. G. Turner. Possible association membership for the three long period cepheids rz velorum, sw velorum, and kq scorpii. <u>A&A</u>, 76:350-353, July 1979.
- [503] D. G. Turner. The case for membership of the 67 day cepheid s vulpeculae in vulpecula ob2. ApJ, 235:146-152, January 1980.
- [504] D. G. Turner. Classical cepheids after 228 years of study. <u>Journal</u> of the American Association of Variable Star Observers (JAAVSO), 40:502, June 2012.

- [505] D. G. Turner, G. R. Grieve, W. Herbst, and W. E. Harris. The young open cluster ngc 3293 and its relation to car ob1 and the carina nebula complex. <u>AJ</u>, 85:1193-1206, September 1980.
- [506] D. G. Turner, V. V. Kovtyukh, D. J. Majaess, D. J. Lane, and K. E. Moncrieff. The cepheid impostor hd 18391 and its anonymous parent cluster. <u>Astronomische Nachrichten</u>, 330:807, August 2009.
- [507] N. H. Turner, T. A. ten Brummelaar, L. C. Roberts, B. D. Mason, W. I. Hartkopf, and D. R. Gies. Adaptive optics photometry and astrometry of binary stars. iii. a faint companion search of o-star systems. <u>AJ</u>, 136:554-565, August 2008.
- [508] A. J. Turtle and A. E. Vaughan. Discovery of two southern pulsars. <u>Nature</u>, 219:689-690, August 1968.
- [509] A. Uesugi and I. Fukuda. <u>Catalogue of stellar rotational velocities</u> (revised). 1982.
- [510] M. Ugliano, H. T. Janka, A. Arcones, and A. Marek. Explosion and remnant systematics of neutrino-driven supernovae for spherically symmetric models. In <u>Astronomical Society of the Pacific</u>, ASP Conference Series, in prep.
- [511] B. Uyanıker, E. Fürst, W. Reich, B. Aschenbach, and R. Wielebinski. The cygnus superbubble revisited. <u>A&A</u>, 371:675–697, May 2001.
- [512] J. A. Valenti, A. A. Fallon, and C. M. Johns-Krull. lue atlas of premain-sequence stars (valenti+, 2003). <u>VizieR Online Data Catalog</u>, 214:70305-+, September 2003.
- [513] M. E. van den Ancker, P. S. The, H. R. E. Tjin A Djie, C. Catala, D. de Winter, P. F. C. Blondel, and L. B. F. M. Waters. Hipparcos data on herbig ae/be stars: an evolutionary scenario. <u>A&A</u>, 324:L33-L36, August 1997.
- [514] S. van den Bergh and G. L. Hagen. Uniform survey of clusters in the southern milky way. <u>AJ</u>, 80:11–16, January 1975.
- [515] M. H. van Kerkwijk and D. L. Kaplan. Isolated neutron stars: magnetic fields, distances, and spectra. <u>Ap&SS</u>, 308:191–201, April 2007.
- [516] M. H. van Kerkwijk and D. L. Kaplan. Timing the nearby isolated neutron star rx j1856.5-3754. <u>ApJ</u>, 673:L163–L166, February 2008.
- [517] M. H. van Kerkwijk and S. R. Kulkarni. An unusual h α nebula around the nearby neutron star rx j1856.5-3754. <u>A&A</u>, 380:221-237, December 2001.
- [518] F. van Leeuwen. Validation of the new hipparcos reduction. <u>A&A</u>, 474:653-664, November 2007.
- [519] A. E. Vaughan and M. I. Large. Five new pulsars. <u>Nature</u>, 225:167-168, January 1970.
- [520] A. E. Vaughan and M. I. Large. Discovery of three pulsars. <u>MNRAS</u>, 156:27P-+, 1972.
- [521] A. E. Vaughan, M. I. Large, and R. Wielebinski. Three new pulsars. <u>Nature</u>, 222:963-+, June 1969.
- [522] J. P. W. Verbiest, M. Bailes, W. A. Coles, G. B. Hobbs, W. van Straten, D. J. Champion, F. A. Jenet, R. N. Manchester, N. D. R. Bhat, J. M. Sarkissian, D. Yardley, S. Burke-Spolaor, A. W. Hotan, and X. P. You. Timing stability of millisecond pulsars and prospects for gravitational-wave detection. <u>MNRAS</u>, 400:951-968, December 2009.
- [523] V. V. Vitkevitch, Y. I. Alekseev, V. F. Zhuravlev, and Y. P. Shitov. <u>Nature</u>, 224:49, 1969.
- [524] E. A. Vitrichenko, R. E. Gershberg, and L. P. Metik. An investigation of high velocity early type stars (run away ob stars). <u>Izvestiya</u> <u>Ordena Trudovogo Krasnogo Znameni Krymskoj Astrofizicheskoj</u> <u>Observatorii</u>, 34:193-+, 1965.

- [525] F. M. Walter, P. An, J. Lattimer, and M. Prakash. The isolated neutron star rx j185635-3754. In P. C. H. Martens, S. Tsuruta, and M. A. Weber, editors, <u>Highly Energetic Physical Processes and Mechanisms for Emission from Astrophysical Plasmas</u>, volume 195 of <u>IAU Symposium</u>, pages 437-+, May 2000.
- [526] F. M. Walter, T. Eisenbeiß, J. M. Lattimer, B. Kim, V. Hambaryan, and R. Neuhäuser. Revisiting the parallax of the isolated neutron star rx j185635-3754 using hst/acs imaging. <u>ApJ</u>, 724:669-677, November 2010.
- [527] F. M. Walter and J. M. Lattimer. A revised parallax and its implications for rx j185635-3754. <u>ApJ</u>, 576:L145-L148, September 2002.
- [528] F. M. Walter and L. D. Matthews. The optical counterpart of the isolated neutron star rx j185635-3754. <u>Nature</u>, 389:358-360, September 1997.
- [529] C. Wang, D. Lai, and J. L. Han. Neutron star kicks in isolated and binary pulsars: Observational constraints and implications for kick mechanisms. <u>ApJ</u>, 639:1007-1017, March 2006.
- [530] N. Wang, R. N. Manchester, J. Zhang, X. J. Wu, A. Yusup, A. G. Lyne, K. S. Cheng, and M. Z. Chen. Pulsar timing at urumqi astronomical observatory: observing system and results. <u>MNRAS</u>, 328:855-866, December 2001.
- [531] W. Wargau, H. Drechsel, J. Rahe, and A. Bruch. Spectrophotometry of the recently discovered cataclysmic variable cpd-48 deg 1577. <u>MNRAS</u>, 204:35P-39P, July 1983.
- [532] R. A. Webb, B. Zuckerman, I. Platais, J. Patience, R. J. White, M. J. Schwartz, and C. McCarthy. Discovery of seven t tauri stars and a brown dwarf candidatein the nearby tw hydrae association. <u>ApJ</u>, 512:L63-L67, February 1999.
- [533] W. A. Weidmann and R. Gamen. Central stars of planetary nebulae: New spectral classifications and catalogue. <u>A&A</u>, 526:A6, February 2011.
- [534] C. Weidner, P. Kroupa, and T. Maschberger. The influence of multiple stars on the high-mass stellar initial mass function and age dating of young massive star clusters. <u>MNRAS</u>, 393:663-680, February 2009.
- [535] A. J. Weinberger, E. E. Becklin, B. Zuckerman, G. Schneider, and M. D. Silverstone. A stellar association near hd 141569? In R. Jayawardhana & T. Greene, editor, <u>Young Stars Near Earth: Progress</u> <u>and Prospects</u>, volume 244 of <u>Astronomical Society of the Pacific <u>Conference Series</u>, pages 75-+, 2001.</u>
- [536] B. E. Westerlund. An ob association in the region of rs puppis. <u>MNRAS</u>, 127:71-+, 1963.
- [537] K. Wette, B. J. Owen, B. Allen, M. Ashley, J. Betzwieser, N. Christensen, T. D. Creighton, V. Dergachev, I. Gholami, E. Goetz, R. Gustafson, D. Hammer, D. I. Jones, B. Krishnan, M. Landry, B. Machenschalk, D. E. McClelland, G. Mendell, C. J. Messenger, M. A. Papa, P. Patel, M. Pitkin, H. J. Pletsch, R. Prix, K. Riles, L. Sancho de la Jordana, S. M. Scott, A. M. Sintes, M. Trias, J. T. Whelan, and G. Woan. Searching for gravitational waves from cassiopeia a with ligo. <u>Classical and Quantum Gravity</u>, 25(23):235011-+, December 2008.
- [538] S. M. White, P. D. Jackson, and M. R. Kundu. A via survey of nearby flare stars. $\underline{\rm ApJS},$ 71:895–904, December 1989.
- [539] D. C. B. Whittet, T. Prusti, G. A. P. Franco, P. A. Gerakines, D. Kilkenny, K. A. Larson, and P. R. Wesselius. On the distance to the chamaeleon i and ii associations. <u>A&A</u>, 327:1194–1205, November 1997.
- [540] R. Wichmann, M. Sterzik, J. Krautter, A. Metanomski, and W. Voges. T tau stars (wichmann+, 1997). <u>VizieR Online Data</u> <u>Catalog</u>, 332:60211-+, September 2005.
- [541] R. E. Wilson. General catalogue of stellar radial velocities. <u>Carnegie</u> Institute Washington D.C. Publication, page 0, 1953.

- [542] P. F. Winkler and R. Petre. Direct measurement of neutron star recoil in the oxygen-rich supernova remnant puppis a. <u>ApJ</u>, 670:635– 642, November 2007.
- [544] S. C. Wolff, S. E. Strom, D. Dror, and K. Venn. Rotational velocities for b0-b3 stars in seven young clusters: Further study of the relationship between rotation speed and density in star-forming regions. <u>AJ</u>, 133:1092-1103, March 2007.
- [545] S. J. Wolk, F. Comerón, and T. Bourke. <u>The Ara OB 1a</u> <u>Association</u>, pages 388-+. December 2008.
- [546] A. Wongwathanarat, H.-T. Janka, and E. Müller. Hydrodynamical neutron star kicks in three dimensions. <u>ApJ</u>, 725:L106–L110, December 2010.
- [547] S. E. Woosley, A. Heger, and T. A. Weaver. The evolution and explosion of massive stars. <u>Reviews of Modern Physics</u>, 74:1015– 1071, November 2002.
- [548] S. E. Woosley and T. A. Weaver. The evolution and explosion of massive stars. ii. explosive hydrodynamics and nucleosynthesis. <u>ApJS</u>, 101:181-+, November 1995.
- [549] C. O. Wright, M. P. Egan, K. E. Kraemer, and S. D. Price. The tycho-2 spectral type catalog. <u>AJ</u>, 125:359–363, January 2003.
- [550] F. Wu, R. X. Xu, and J. Gil. The braking indices in pulsar emission models. <u>A&A</u>, 409:641-645, October 2003.
- [551] R. X. Xu and G. J. Qiao. Pulsar braking index: A test of emission models? <u>ApJ</u>, 561:L85-L88, November 2001.
- [552] R. K. S. Yadav and R. Sagar. Ubvri ccdphotometric studyoftheopen clusters basel 4 and ngc 7067. <u>MNRAS</u>, 349:1481-1492, April 2004.
- [553] D. G. Yakovlev and C. J. Pethick. Neutron star cooling. <u>Annual</u> <u>Review of A&A</u>, 42:169-210, September 2004.
- [554] K. M. Yoss and R. F. Griffin. Radial velocities and ddo, bv photometry of henry draper g5-m stars near the north galactic pole. <u>Journal of Astrophysics and Astronomy</u>, 18:161, September 1997.
- [555] J. P. Yuan, R. N. Manchester, N. Wang, X. Zhou, Z. Y. Liu, and Z. F. Gao. A very large glitch in psr b2334+61. <u>ApJ</u>, 719:L111– L115, August 2010.
- [556] J. P. Yuan, N. Wang, R. N. Manchester, and Z. Y. Liu. 29 glitches detected at urumqi observatory. <u>MNRAS</u>, 404:289–304, May 2010.
- [557] N. Zacharias, D. G. Monet, S. E. Levine, S. E. Urban, R. Gaume, and G. L. Wycoff. Nomad catalog (zacharias+ 2005). <u>VizieR Online</u> <u>Data Catalog</u>, 1297:0-+, November 2005.
- [558] B. R. Zeiger, W. F. Brisken, S. Chatterjee, and W. M. Goss. Proper motions of psrs b1757-24 and b1951+32: Implications for ages and associations. <u>ApJ</u>, 674:271-277, February 2008.
- [559] S. V. Zharikov, Y. A. Shibanov, R. E. Mennickent, and V. N. Komarova. Possible optical detection of a fast, nearby radio pulsar psr b1133+16. <u>A&A</u>, 479:793-803, March 2008.
- [560] F.-J. Zickgraf, J. Krautter, S. Reffert, J. M. Alcalá, R. Mujica, E. Covino, and M. F. Sterzik. Identification of a complete sample of northern rosat all-sky survey x-ray sources. viii. the late-type stellar component. <u>A&A</u>, 433:151-171, April 2005.
- [561] W. Z. Zou, G. Hobbs, N. Wang, R. N. Manchester, X. J. Wu, and H. X. Wang. Timing measurements and proper motions of 74 pulsars using the nanshan radio telescope. <u>MNRAS</u>, 362:1189– 1198, October 2005.
- [562] B. Zuckerman and I. Song. Young stars near the sun. <u>ARA&A</u>, 42:685-721, September 2004.
- [563] B. Zuckerman, I. Song, and M. S. Bessell. The ab doradus moving group. <u>ApJ</u>, 613:L65–L68, September 2004.

- [564] B. Zuckerman, I. Song, M. S. Bessell, and R. A. Webb. The β pictoris moving group. <u>ApJ</u>, 562:L87–L90, November 2001.
- [566] B. Zuckerman and R. A. Webb. Identification of a nearby stellar association in thehipparcos catalog: Implications for recent, local star formation. <u>ApJ</u>, 535:959-964, June 2000.
- [567] B. Zuckerman, R. A. Webb, M. Schwartz, and E. E. Becklin. The tw hydrae association: Discovery of t tauri star members near hr 4796. <u>ApJ</u>, 549:L233-L236, March 2001.
- [568] T. Zwitter, A. Siebert, U. Munari, and et al. The radial velocity experiment (rave): Second data release. <u>AJ</u>, 136:421-451, July 2008.

Appendix

A The Sample of Associations and Clusters

Table A.1: Sample of OB associations and clusters with complete 3D kinematic data available. The table gives the consecutive number, the designation, the position on the sky (J2000 Galactic longitude *I* and latitude *b*), distances *d*, heliocentric velocity components *U*, *V* and *W* as well as estimated ages and spatial extensions either as found in the literature or obtained from angular extensions and distances. If not already published as such, *U*, *V* and *W* were computed as in [252] (errors include proper motion and radial velocity uncertainties only). Note that ages are often uncertain to a factor up to two. Many OB associations contain several clusters of different ages (many of them listed here as well).

Name	/ [°]	<i>b</i> [°]	d [kpc]	<i>U</i> [km/	/s]	V [km/	/s]	W [km	/s]	Age [Myr]	Ø[pc]	Ref.
Sgr OB5	0.00	-1.20	2.440	$-6.5\pm$	10.8	$1.2 \pm$	11.6	$1.3 \pm$	15.0	6-12	221	SM85, BH89, D01
NGC 6530	6.07	-1.35	1.316	$-12.1\pm$	6.3	$-16.2\pm$	1.0	$-14.3\pm$	0.8	4-5	11	LB03, K05
NGC 6514	7.11	-0.28	0.816	$-2.4\pm$	1.7	$1.3 \pm$	3.3	$-10.8\pm$	2.7	19	7	K05
Col 367	7.28	-2.01	1.200	$-2.7\pm$	4.0	$-7.3\pm$	3.2	$-11.2\pm$	2.6	7	17	K05
HD 141569	7.40	39.50	0.101	$-5.4\pm$	1.5	$-15.6 \pm$	2.6	$-4.4 \pm$	0.8	5	31	Meri04, F08
Sgr OB1	7.58	-0.78	1.539	$-8.0\pm$	1.8	$-12.8\pm$	1.5	$-9.5\pm$	1.5	5-8	207	SM85, BH89, D01
NGC 6531	7.65	-0.29	0.796	$-13.5\pm$	5.1	$-10.2 \pm$	3.0	$-5.7\pm$	2.6	16	5	K05, Bu11
Sgr OB7	10.71	-1.52	1.852	$-7.4 \pm$	3.1	$-3.2\pm$	2.3	$-18.6\pm$	2.4	4-5	58	K05
Markarian 38	11.99	-0.96	1.545	$1.1 \pm$	9.0	$-20.0 \pm$	4.0	4.0 \pm	4.5	9	8	K05
Sgr OB4	12.10	-0.98	1.923	$1.7 \pm$	3.6	$-6.2\pm$	7.2	$-7.3\pm$	12.8	$< 10^{a}$	54	Hu78, BH89, D01
IC 4725	13.65	-4.44	0.620	$2.2 \pm$	10.1	$-16.6\pm$	2.7	0.6 \pm	1.3	68	13	K05
Blanco 1	13.67	-79.38	0.207	$-17.7 \pm$	0.5	$-6.7 \pm$	0.3	$-7.2\pm$	2.3	209	9	K05, vL09
NGC 6613	14.16	-1.02	1.296	$-11.0\pm$	4.4	$-13.5 \pm$	2.8	$-0.3\pm$	3.4	33	8	K05
Sgr OB6	14.18	1.28	1.613	$-10.8\pm$	3.9	$-2.8 \pm$	7.4	$-16.0\pm$	8.6	<10 ^a	34	Hu78, BH89,
												ME95
M 17	15.02	-0.69	1.821	$-20.5\pm$	12.7	9.9 \pm	7.4	$-21.6\pm$	8.9	6	19	K05
NGC 6716	15.36	-9.56	0.789	9.9 \pm	4.8	$-14.9 \pm$	2.1	$-2.7 \pm$	2.2	30	4	K05
Ser OB1	16.73	0.00	0.531	$-4.3\pm$	4.9	$-3.1\pm$	1.6	$-2.1\pm$	1.3	8-13 ^a	71	Hu78, BH89, D01
NGC 6611	16.96	0.83	0.552	$17.2 \pm$	0.6	$5.3\pm$	0.7	$-1.6\pm$	0.8	14	5	LB03, K05, GB08,
												Bu11
Sct OB3	17.31	-0.85	1.351	7.4 \pm	6.1	$-3.7 \pm$	2.6	$-3.9\pm$	3.8	5 ^a	33	Hu78, BH89, D01
Ser OB2	18.22	1.66	1.587	$-1.6\pm$	1.8	$-6.9 \pm$	2.2	$-10.7 \pm$	0.8	5 ^a	61	Hu78, BH89, D01
NGC 6604	18.26	1.72	1.695	11.9 \pm	7.1	$-5.2 \pm$	2.7	$1.5 \pm$	1.5	4-5	15	LB03, K05
Sct OB2	23.22	-0.54	1.588	$-8.7 \pm$	7.5	$-7.8 \pm$	8.1	$-4.4 \pm$	3.8	<6	61	SM85, BH89, D01
NGC 6694	23.88	-2.92	1.729	$4.1 \pm$	1.6	$-31.4 \pm$	3.4	$3.6 \pm$	4.0	79	10	K05, MMU08,
												Bull
NGC 6664	23.92	-0.49	1.164	$23.8 \pm$	0.8	$-7.9 \pm$	1.6	$-8.7 \pm$	1.8	15	4	Di02, LB03,
											_	MMU08
NGC 6683	26.35	-0.81	1.196	3.9 ±	13.5	1.9 ±	6.7	$-0.1 \pm$	0.2	10	1	Y66, EY87, Di02
lr 35	28.29	0.00	1.205	4.1 ±	1.9	-17.6 ±	3.3	$-1.0 \pm$	3.6	73	2	D102
Col 359	29.60	12.70	0.450	$6.5 \pm$	0.3	$-15.8 \pm$	0.5	$-10.8 \pm$	0.7	28-80	17	LB03, K05, Lo06,
	20.70	16.00	0.256	2.0.1		16.0	1.0	0.5.1	0.7	4.2		KU7, BU8
NCC 6755	30.70	10.82	0.350	-2.8 ±	1.1	-10.9 ±	1.2	-8.5±	0.7	43	11	HUI, LBU3, KU5
NGC 0755	30.39	-1.75	1.092	42.1 ±	1.1	-11.5 ±	1.4	$-10.5 \pm$	1.0	45	10	MM1109 P. 11
NCC 6700	10 12	4.60	1.076	20⊥	F 2	11.1 ⊥	10	20.2⊥	15	120	•	KOE
	42.13 50.40	-0.11	1.587	2.0 <u>+</u>	1.2	-11.1 <u>+</u>	4.0 5.4	-20.2 <u>+</u>	1.5	10 16 ^a	230	Hu78 T805 BH80
VUIODI	33.40	-0.11	1.507	J 1 .1 ⊥	4.0	-11.5 <u>+</u>	5.4	-0.0 1	1.5	10-10	250	
NGC 6823	59 41	-0.16	1 446	427+	3.0	-55+	18	$-65 \pm$	41	2-10	7	Di02 W07 Bu11
	60.65	_0.14	0.800	+2.1 ⊥ 12.1 ⊥	2.0	_10 2 ±	3.0	_7 2 ±	2.7	10	35	T802 BH89 D01
NGC 6885	65 52	-3.97	1 703	12.1 ⊥ 36.4 +	44	$-10.2 \pm$ -183 +	2.1	$-1.2 \pm$	4.8	25	8	Di02 Bu11
NGC 6834	65.68	1 19	1 928	28.4 +	23	$-20.4 \pm$	1.6	32+	23	63	8	Di02 B03 Bu11
Stephenson 1	66 78	15.37	0 374	_4 5 +	1.9	-194+	3.9	$-10.2 \pm$	15	49	12	K05
Argus	70.35	-53.38	0.025	-6.8+	0.3	-27.2 +	1.3	-13.4 +	1.3	40	148	To08
NGC 6871	72.63	2.05	1.562	49.5 +	1.9	-25.8 +	2.2	-10.4 +	2.0	2-10	13	Mas95. LB03.
		2.00	2.002									So04, K05
Byurakan 1	72.73	1.76	2.699	84.9 ±	3.8	$-35.1 \pm$	3.0	$-5.5 \pm$	3.4	11	12	K05, Bu11
Byurakan 2	72.75	1.33	1.724	49.8 ±	4.3	$^{-38.4}\pm$	9.1	$-3.3 \pm$	3.2	5	11	K05, Bh07
,							-		-			

Table A.1: - Continued. -

Name	/[°]	<i>b</i> [°]	d [kpc]	$U[{\rm km/s}]$	V [km/s]	$W [\rm km/s]$	Age [Myr]	Ø[pc]	Ref.
Cyg OB3	72.80	2.00	2.325	77.6 ± 2.2	$-32.9\pm$ 2.1	-13.6 ± 3.3	8-12	106	BH89, D01, U01, So04
NGC 6883	73.29	1.18	2.083	68.8 ± 3.0	-31.3 ± 4.2	-4.6 ± 2.8	34	8	K05. A06
IC 4996	75.38	1.31	2.101	48.3 ± 7.1	-31.6 ± 13.9	-15.9 ± 5.2	7	9	K05, Bu11
Cyg OB1	75.90	1.12	1.695	45.4 ± 2.4	-27.0 ± 1.8	-6.8 ± 2.4	8	142	BH89, D01, U01
Berkeley 86	76.63	1.30	1.680	42.4 ± 7.4	$-30.5\pm$ 7.8	26.1 ± 7.3	10	5	K05, K07, Bu11
NGC 6913	76.91	0.60	1.148	31.6 ± 2.3	$-29.0\pm$ 2.8	$-1.1\pm$ 2.5	13	4	K05
Cyg OB8	78.02	3.30	1.235	30.1 ± 0.9	-32.4 ± 3.3	3.2 ± 2.3	3	78	BH89, D01, U01
	78.05	2.79	0.740	23.2 ± 1.2	-12.9 ± 4.9	-6.7 ± 0.9	7	6	K05
	78.18	2.01	0.902	20.5 ± 2.4	-22.7 ± 4.5	-0.8 ± 1.4	4-8	79	RU201 D01 001
Bica 1	80.14	0.74	0.610	20.8 ± 1.8 2.0 ± 1.8	-38.8 ± 2.7 -10.7 ± 3.6	-0.5 ± 1.0	7	3	Di02 Bu11
Cvg OB2	80.20	0.81	1.493	28.5 ± 1.7	-33.0 ± 0.3	-11.4 ± 1.8	1-5	31	Mas95, K05
Bica 2	80.22	0.77	1.235	9.1 ± 2.4	-10.8 ± 9.4	1.9 ± 1.8	9	2	Di02, Bu11
Cyg OB4	82.83	-7.47	0.800	1.9 ± 4.5	-6.0 ± 1.0	$-4.2\pm$ 4.1	7 ^a	43	Mo53, BH89, D01
NGC 7039	87.86	-1.71	0.821	17.4 ± 1.8	-11.9 ± 0.1	$-7.4\pm$ 1.8	79	5	K05, Bu11
Cyg OB7	89.12	0.00	0.719	10.8 ± 2.4	$-7.3\pm$ 2.3	$-3.8\pm$ 0.7	13	163	BH89, D01, U01
NGC 7031	91.31	2.28	0.831	25.0 ± 1.7	0.6± 0.2	4.6 ± 1.7	224	3	Di02, LB03 MMU08, KP08
IC 5146	94.40	-5.53	1.257	-6.6 ± 0.5	-8.2 ± 1.3	-12.3 ± 0.5	7	6	Wa59, LB03 MP03, Gu09, Bu11
NGC 7128	97.35	0.44	2.228	52.4 ± 18.2	-41.5 ± 5.5	-13.5 ± 16.7	22	9	Di02, LB03, Bu11
Tr 37	99.20	3.78	0.834	19.0 ± 3.5	-12.0 ± 3.4	-6.4 ± 3.4	3-5	19	Co02, LB03, K05
Lac OB1	100.62	-13.20	0.368	6.6 ± 0.3	-13.3 ± 0.1	-2.7 ± 0.3	16	65	dZ99, Br99, D01
Cap OB2	101.27	- 2.22	2.301	40.9 ± 4.7 16.1 ± 0.7	-50.9 ± 1.3 -18.2 ± 0.2	-0.0 ± 4.0 -3.1 ± 0.3	14 5	105	4700 Brog Dol
NGC 7235	102.68	0.78	2.856	-2.5 ± 14.5	-53.3 ± 5.1	-39.2 ± 16.2	28	11	Di02, K05, Di02, MD09, Bu11
NGC 7160	104.06	6.46	0.667	17.0 ± 1.8	-22.9 ± 3.8	-1.4 ± 1.8	22	2	K05, Bu11
NGC 7261	104.06	0.94	1.960	20.1 ± 5.3	$-13.4\pm$ 7.4	21.5 ± 4.6	40	9	EY87, Di02, LB03, Bu11
Cep OB1	104.19	-1.01	1.538	41.7 ± 1.6	-47.2 ± 3.0	-1.9 ± 1.5	6	322	Loz86, BH89, D01
NGC 7129	105.40	9.88	0.322	25.0 ± 24.4	-3.6 ± 11.3	-4.3 ± 26.9	20	1	MP03, Bu11
Cep OB6	105.68	0.21	0.270	$-14.2\pm$ 1.0	$-24.8\pm$ 0.3	-5.7 ± 0.4	50	40	dZ99, Br99
NGC 7380	107.19	-0.90	2.362	53.9 ± 6.0	-19.4 ± 6.1	-20.6 ± 5.4	18	18	LB03, K05, Bu11
Cep OB5	108.50	-2.70	1.7	52.9 ± 9.3	-33.6 ± 27.7	3.1 ± 1.4	47	2-4	BH89, Mas95, MD09
NGC 7419	109.12	1.12	1.490	34.1 ± 9.0	-66.8 ± 5.2	14.5 ± 7.5	22	11	Di02, K07, Bu11
Cep OB3	110.51	2.59	0.840	15.6 ± 1.3	-17.1 ± 1.6	-7.7 ± 1.6	45	29	GS92, D01, K05
Markarian 50	111.36	-0.22	2.095	53.7 ± 10.4 58.2 ± 5.4	15.0 ± 0.1 -60.2 ± 12.1	5.2 ± 10.5 -563 \pm 20	45	15	D:02 MD03
Cas OB2	112.13	0.03	2.084	58.2 ± 5.4 58.2 ± 6.2	-24.9 ± 12.5	-1.0 ± 4.9	10	167	Loz86. BH89. D01
NGC 7654	112.82	0.45	1.242	28.2 ± 4.3	-31.5 ± 1.8	-9.0 ± 5.8	32	10	K05, Bu11
Czernik 43	112.86	0.16	3.085	67.5 ± 13.3	$-34.5\pm$ 6.2	-17.5 ± 11.6	56	18	K05, Bu11
Stock 17	115.11	0.34	2.020	32.9 ± 6.9	$-33.9\pm$ 5.5	$-32.0\pm$ 8.4	8	5	Di02, LB03, MP03 Bu11
King 12	116.12	-0.14	2.519	57.4 ± 10.2	-14.2 ± 5.0	$-4.8\pm$ 5.3	16	11	K05, Bu11
Cas OB5	116.17	-0.34	2.000	49.6 ± 3.9	$-24.1\pm$ 6.2	-18.6 ± 2.8	8	206	Loz86, BH89, D01
NGC 7788	116.42	-0.78	2.430	13.1 ± 7.2	-20.7 ± 5.7	-27.0 ± 8.5	45	13	Di02, K05, Bu11
NGC 7790	116.60	-1.02	3.382	70.6 ± 12.4	-56.0 ± 6.4	-13.6 ± 13.0	79	18	PJ94, K05, Bu11
Stock 18	117.63	2.29	2.600	61.2 ± 12.5	-17.3 ± 8.0	-0.2 ± 20.7	12	13	RU3, RAGU7
Mayor 1	110.44	0.02	1 552	9.0 ± 3.0	-3.7 ± 4.0	-3.3 ± 4.3	63	9	GS92
NGC 103	119.44	-1.38	3 026	47.8 ± 11.8	-199 ± 106	-30.2 ± 7.0 -0.5 ± 10.9	50	4	Ff78 P 194 Di02
Cas OB4	119.84	0.14	2 777	47.8 + 7.8	-28.3 ± 9.9	-17.0 ± 5.3	8	226	LB03
NGC 129	120.31	-2.56	1 973	29.6 ± 3.5	-32.9 ± 3.5	-1.8 ± 4.7	79	10	ME95, D01
Cas OB14	120.40	0.82	0.909	1.6 ± 4.8	-16.5 ± 4.0	5.0 ± 2.6	<10 ^a	60	Hu78, BH89, D01
NGC 146	120.86	0.52	2.869	54.6± 12.8	-29.3 ± 12.3	14.0 ± 14.2	63	19	Ef78, PJ94, K05 Bu11
Czernik 2	122.09	1.33	1.559	$-4.0\pm$ 55.1	-44.9 ± 34.5	$-4.6\pm$ 30.7	11	8	MP03, Bu11
Cas OB7	122.78	1.39	1.818	34.3 ± 4.1	-21.8 ± 6.1	$-8.8\pm$ 1.7	8	102	Loz86, GS92, ME95, D01
IC 1590	123.11	-6.25	2.285	33.5 ± 9.6	-24.5 ± 9.9	$-10.4\pm$ 2.8	7	15	K05, Bu11
Cas OB1	124.79	-1.69	2.000	39.7 ± 4.3	-24.3 ± 6.3	-13.7 ± 7.6	10	122	Loz86, BH89, D01
NGC 433	125.87	-2.60	1.741	59.6 ± 9.5	-2.8 ± 6.9	-5.7 ± 7.5	56	15	К05, MMU08 Bu11
NGC 436	126.11	-3.92	3.014	30.6 ± 2.8	-74.4 ± 2.0	-52.0 ± 3.1	60	4	PJ94, Di02, LB03
NGC 457	126.63	-4.39	2.246	41.0 ± 2.5	-11.0 ± 2.8	-20.7 ± 2.0	22	16	LB03, K05, Bu11
NGC 581	128.03	-1.78 1.73	2.058 2.484	30.4 ± 3.3 168 + 10.2	-21.5 ± 2.8 -35.6 ± 0.2	2.1 ± 1.2 -25.8 ± 5.4	20 13	10	- 194, NUS, BUII
NGC 654	120.04 120.08	-0.35	∠.404 2.973	10.0 ± 10.3 39.0 ± 12.7	-35.0 ± 9.3 -175 ± 10.2	-25.0 ± 5.4 3.2 + 14.5	16	24	K05, Ru11
Cas OB8	129.20	-1.19	1.923	30.5 ± 2.1	-17.5 ± 2.3	-8.3 ± 5.5	20 ^a	43	GS92, ME95, D01
NGC 659	129.38	-1.53	2.578	58.4 ± 7.9	-17.2 ± 7.1	-12.6 ± 9.7	79	18	PJ94, MP03, K05, Bu11
NGC 663	129.51	-0.95	2.520	42.2 ± 3.6	$-6.0\pm$ 3.5	-31.3 ± 2.8	45	30	PJ94, K05, Bu11

track 1307 2.40 1.00 1.01 1.02 1.0 0.00 2.0 2.0 2.4 0 Kos Baul 1.03 1.03 1.03 1.03 1.03 1.03 2.0	Name	/[°]	<i>b</i> [°]	d [kpc]	$U[{\rm km/s}]$	V [km/s]	W [km/s]	Age [Myr]	Ø[pc]	Ref.
	Stock 5	130.72	2.60	1.100	13.9 + 1.7	-13.0 ± 1.5	-9.7 ± 2.0	54	9	K05
Base II 154/20 -2-92 1030 110 -101 -25 38 6 D02 Meet Buil Pr 13460 -371 2338 232 1 1 -0-12 2 8 1 1 1 0 1403 100 Meet Meet Buil C1100 13477 0 0 0 0 1 0 -1 1 0 -1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 <td>Czernik 6</td> <td>130.91</td> <td>1.07</td> <td>2.120</td> <td>19.4 ± 0.0</td> <td>-9.7 ± 0.0</td> <td>3.9 ± 0.0</td> <td>28</td> <td>7</td> <td>Bu11</td>	Czernik 6	130.91	1.07	2.120	19.4 ± 0.0	-9.7 ± 0.0	3.9 ± 0.0	28	7	Bu11
b Per 134.6 -3.71 20.3 22.7 22 -28.51 22 -4.11 23.81 73.11 33.74 10.97 10.98 50.11 33.74 10.97 10.98 10.99 $93.1\pm$ 10.0 $-70.2\pm$ 23.4 11.34 87.74 10.87 10.98 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.92 <td>Basel 10</td> <td>134.29</td> <td>-2.62</td> <td>1.930</td> <td>13.8 ± 1.1</td> <td>-30.8 ± 1.1</td> <td>9.0 ± 2.5</td> <td>28</td> <td>8</td> <td>Di02, Mer08, Bu11</td>	Basel 10	134.29	-2.62	1.930	13.8 ± 1.1	-30.8 ± 1.1	9.0 ± 2.5	28	8	Di02, Mer08, Bu11
$ \begin{array}{c} \mathbf{P} \mathbf{r} \ OB1 \\ \mathbf{S} \ Sinch 7 \\ \mathbf{S} \ Norm 7 \\ $	h Per	134.61	-3.71	2.103	28.7 ± 2.2	-28.5 ± 2.2	$-8.4\pm$ 2.4	11-35	29	LB03, MP03, K05, Bu11
Steck 7 13.7.1 0.08 0.068 0.054 6.6 0.7.1 6.0 -0.7.2 1.1 1.1 4 No LC 1805 1.187 0.01 1.00 7.76 1.10 -7.26 1.0 -7.24 1.0 7.76 1.10 1.00 7.76 1.10 1.00 7.76 1.10 1.00 7.76 1.10 1.00 7.77 1.00 7.77 1.00 7.77 1.00 7.77 1.00 7.77 1.00 7.77 1.00 7.77 1.00 7.77 1.00 7.77 1.00 7.77 1.00 7.77 1.00 7.77 1.00 7.77 1.00 7.77 1.00 7.77 1.00 7.72 1.00	Per OB1	134.69	-3.11	2.326	29.2 ± 1.0	-31.1 ± 1.0	-16.0 ± 2.2	8-11	307	Mae87, ME95, D01
$ \begin{bmatrix} 1 \ 2 \ 185 \\ Yer \\ Yer \\ 1502 \\ Yer \\ 1502 \\ $	Stock 7	134.71	0.08	0.698	10.5 ± 6.8	9.7 ± 6.9	-7.9 ± 2.1	13	4	K05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IC 1805	134.75	0.91	1.769	39.1 ± 13.0	-27.8 ± 13.0	-22.4 ± 2.8	1-7	7	Mas95, LB03, K05,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										Bu11
$ \begin{array}{c} c_n \ 0.6e \\ c_n \ 0.6e \\ c_n \ 0.7e	χ Per	135.02	-3.59	1.898	29.8 ± 5.2	$-24.9\pm$ 5.1	$-7.3\pm$ 1.5	11-32	20	LB03, MP03, K05, Bu11
NGC 1027 135 78 1.51 1.40 1.4 ± 1.2 2.42 ± 2.3 ± 2.1 7.1 9 K65 MUUUE NGC 97 136.29 -2.61 2.198 17.7 ± 52 -40.0 ± 5.3 -62.± 6.0 13 15 Ligs MK05 Bell T 3 138.03 4.40 0.224 3.45 7.7 -82.± 6.4 13 15 Ligs MK05 Bell MCC 1932 1.643 -500 0.044 -7.4 ± 2.2 -7.4 ± 1.3 7.1 2.9 5.0 1.8 1.12 1.44 1.5 1.4<	Cas OB6	135.12	0.77	2.381	33.8 ± 3.8	-24.1 ± 3.8	$-14.1\pm$ 4.5	4 ^a	234	GS92, ME95, D01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NGC 1027	135.78	1.51	1.406	1.8 ± 1.2	24.2 ± 1.2	2.3 ± 2.1	71	9	K05, MMU08,
$ \begin{array}{c} \operatorname{Rec} 3 \\ R$		126.00	0.61	2 1 0 0	170 50	40.0 5.2		10	15	Bull
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NGC 957	127.20	-2.01	2.190	17.0 ± 5.2	-40.0 ± 5.3	-6.2 ± 0.0 10.2 \pm 7.0	15	15	L1009, K05, DUII
	Tr 3	138.03	1 10	2.200	33.4 ± 1.0	-4.4 ± 7.7 -0.1 ± 1.4	-19.2 ± 7.0 -2.1 ± 1.4	15	3	D:02 K05 Bu11
$ \begin{array}{c} \mathrm{AGC} \ C \ D \ D \ A \ D \ C \ A \ D \ C \ A \ D \ C \ A \ D \ C \ A \ D \ A \ D \ C \ A \ D \ A \ D \ A \ A \ D \ A \ A \ D \ A \ A$	Cam OB1	141 24	0.01	0.885	67 ± 20	-8.7 ± 1.4	-2.1 ± 1.4 -7.2 ± 1.3	43 7-14	253	SM85 BH89 D01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NGC 1502	143 65	7.68	0.005	15.8 ± 5.2	-136 ± 39	-1.2 ± 1.5 -1.8 ± 1.5	16	5	L B03 K05 Bu11
$ \begin{array}{c} cm \ 0B3 \\ cm $	AB Dor	146 31	- 59.00	0.014	-74 + 32	-274 + 32	-129 ± 64	30-120	85	L06 Ma07 F08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cam OB3	146.96	2.88	3.448	9.1 ± 14.2	-37.4 ± 17.5	13.5 ± 8.2	11 ^a	122	Hu78, ME95, D01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	αPer	147.89	-6.00	0.172	-12.7 ± 0.9	-24.6 ± 0.7	-7.0 ± 0.2	50-71	24	dZ99 Br99 LB01
NCC 1444 148.11 -1.33 1.076 -5.9± 4.5 0.8± 1.0 -7.9 4 Hm32. DD2. Buil NCC 1513 1525.6 -1.61 1.364 -4.6± 51 -4.1± 58 -5.5± 1.0 79 1.3 DD2. Buil Cav Tee 1574.3 -1.67 0.30 -21.5± 0.4 -5.5± 1.2 -9.1± 0.5 4.4 4.259. Br90. DO1 C348 1050.5 -1.70 0.267 -6.5± 1.0 -0.15± 0.3 1.28 K05 BU3 MU90E Pie Aur OB2 17.32 -0.01 1.06 4.1± 0.1 -0.04 0.9 -1.15± 1.3 6* M06 K05.8 BU3 ME65.0 DU3 ME65.0 H4.5 1.15± 1.3 6* M070 K05.8 BU3 ME65.0 H4.5										M02, BL04, K05
	NGC 1444	148.11	-1.33	1.076	$-5.9\pm$ 4.5	0.8 ± 3.6	-23.3 ± 2.9	79	4	Hay32, Di02,
$ \begin{array}{c} NGC 5133 & 152.56 & -1.61 & 1.364 & -4.66 & 5.1 & -4.14 & 9.7 & 5.5 & 10.9 & 79 & 13 & Di2. Build (248) \\ Per OB2 & 159.66 & -16.78 & 0.319 & -21.54 & 0.4 & -55.5 & 12 & -9.14 & 0.5 & 4.8 & 41 & dZ90 Bre9. Do1 \\ IC 348 & 105.50 & -17.8 & 0.267 & -15.5 & 0.3 & -6.55 & 1 & 0 & -7.0 & 1.1 & 56 & 2 & KOS Buill \\ Pleiades & 163.4 & -23.99 & 0.21 & -6.7 & 0.9 & -25.0 & 0.5 & -12.8 & 0.5 & 120 & 18 & KOS \\ NGC 1912 & 17.23 & 0.70 & 1.066 & 4.11 & 0.1 & -30.0 & 0.6 & -14.5 & 0.6 & 363 & 32 & LB03. & MMU08. \\ Pi08 & Aar OB2 & 173.34 & -0.17 & 2.703 & 1.6 & 4.1 & -0.2 & 8.9 & -11.5 & 1.3 & 6^{6} & 206 & H-78. & GS92 \\ Stock 8 & 173.37 & -0.18 & 1.306 & -8.0 & 5.0 & -14.3 & 4.2 & -20.9 & 3.5 & 7 & 8 & Mai90. KOS Buill \\ NGC 1930 & 173.88 & -1.67 & 1.307 & 0.8 & 5.2 & -16.2 & 12 & -1.21 & 1.1 & 12.2 & 120 & Ha78. BH89. DO1 \\ NGC 1940 & 174.58 & 1.09 & 0.511 & -1.0 & 3.3 & -8.4 & 0.9 & -5.6 & 1.1 & 1.22^{2} & 120 & Ha78. BH89. DO1 \\ NGC 1746 & 1.09 & 0.68.7 & 0.019 & -13.6 & 3.7 & -227.4 & 3.4 & -7.94 & 5.2 & 40.200 & 26 & Fu0.4 (.06. E07 \\ Her.Lyr & 180.00 & 68.75 & 0.019 & -13.6 & 3.7 & -227.4 & 3.4 & -7.94 & 5.2 & 40.200 & 26 & Fu0.4 (.06. E07 \\ Her.Lyr & 180.00 & 2.30 & 2.041 & -14.8 & 1.5 & -16.9 & 1.8 & -0.7 & 1.3 & 3.2 & 14 & KO5 \\ Her.Cyr & 180.60 & 2.30 & 0.204 & -27.5 & 1.3 & -18.4 & 1.6 & -6.81 & 0.5 & 7 & 2 & LB03. KO5. Buill \\ NGC 2149 & 195.67 & -2.21 & 0.449 & -27.5 & 1.3 & -16.4 & 1.6 & -5.1 & 5 & 6 & 300 & DM01. LB03. KO5 \\ NGC 2149 & 195.67 & -2.91 & 0.786 & -17.5 & 1.6 & -13.2 & 2 & 17 & 76 & BH89. DO1 \\ NGC 0241 & 202.06 & -1.10 & 0.786 & -17.5 & 1.6 & -13.2 & 2 & 125 & 776 & BH89. DO1 \\ NGC 0241 & 202.06 & -1.10 & 0.158 & -2.1 & -15.2 & 1.3 & -6.4 & 10 & 2.2 & KO5 & Buill \\ NGC 0218 & 202.60 & -1.01 & 0.575 & -19.7 & 2 & 4.0 & -0.9 & 1.1 & 1.6 & 1.7 & 7 & 2 & KO5 & Buill \\ NGC 0210 & 20.00 & -1.03 & 1.600 & -33.12 & 4.7 & -4.24 & 2.0 & 5.2 & 4.7 & 1.25 & 1.7 & 1.208 & 5.8 & 1.1 \\ NGC 0210 & 20.00 & -1.03 & 0.143 & -2.25 & 1.3 & -16.4 & 1.4 & -1.12 & 2.0 & 5.2 & 1.70 & T76 & BH89. D01 \\ NGC 0242 $										LB03, Bu11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NGC 1513	152.56	-1.61	1.364	-4.6 ± 5.1	-41.4 ± 9.7	$5.5\pm~10.9$	79	13	Di02, Bu11
Per OB2 198.66 -16.78 0.310 -21.54 0.4 -55.4 12 -91.4 0.5 4.8 41 4209, BP9, D0 IC 348 160.50 -17.84 10.50 -17.84 1.05 128 0.5 120 165 10 165 10 10 K05 100 K05 100 A 63 128 K05 100 K05 100 100 100 -14.54 0.6 -14.54 0.6 363 128 LB03. MMU08, Pi0 D0 100 110 100 110 100 100 100 100 100 100 100 110 100 110 100 100 100 110 100 110 100 110 100 110 110 <td< td=""><td>Cas- Tau</td><td>157.43</td><td>-18.56</td><td>0.176</td><td>-14.1 ± 5.8</td><td>-19.7 ± 3.5</td><td>-6.8 ± 1.9</td><td>50</td><td>215</td><td>BI56, dZ99</td></td<>	Cas- Tau	157.43	-18.56	0.176	-14.1 ± 5.8	-19.7 ± 3.5	-6.8 ± 1.9	50	215	BI56, dZ99
$ \begin{bmatrix} 2 \ 548 \\ 106.54 \\ 106.34 \\ 106.39 \\ 106.34 \\ 106.39 \\ 107.23$	Per OB2	159.66	-16.78	0.319	-21.5 ± 0.4	-5.5 ± 1.2	-9.1 ± 0.5	4-8	41	dZ99, Br99, D01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IC 348	160.50	-17.80	0.267	-15.5 ± 0.3	-6.5 ± 1.0	-7.0 ± 1.1	56	2	K05, Bu11
NGC 1912 172.23 0.70 1.066 41. \pm 0.1 -0.04 0.6 $-14.5 \pm$ 0.6 363 32 LB03. MM 008 Aur 0B2 173.24 -0.17 2703 1.6 \pm 4.1 $-0.2\pm$ 8.9 $-11.5\pm$ 1.3 6 ³ 206 Hu78. G592. ME55.01 Stock 8 173.37 -0.18 1.308 $-8.0\pm$ 5.0 $-14.3\pm$ 4.2 $-2.09\pm$ 3.5 7 8 Mai90.K05.Bu11 Aur 0B1 173.88 0.19 0.591 $-1.0\pm$ 3.3 $-8.4\pm$ 0.9 $-5.6\pm$ 1.1 11.22 ² 120 Hu78.BH89.001 NGC 1930 174.58 1.09 1.153 $-1.4\pm$ 4.4 $-2.42\pm$ 1.7 $-12.3\pm$ 2.0 22 12 K05.Bu11 MGC 1760 174.58 1.00 1.65 $-1.4\pm$ 3.7 $-2.27\pm$ 3.4 $-7.9\pm$ 5.2 40.200 2.6 Fu40.L6.E07 NGC 2129 186.62 0.16 1.431 $-11.6\pm$ 2.3 $-8.0\pm$ 8.6 $-9.3\pm$ 6.7 10.22 12 K05.Bu11 NGC 2129 186.62 0.16 1.431 $-11.6\pm$ 2.3 $-8.0\pm$ 8.6 $-9.3\pm$ 6.7 10.28 6 K05 C6.8u11 NGC 2129 186.62 0.16 1.431 $-11.5\pm$ 2.1 $-11.6\pm$ 2.3 $-8.0\pm$ 8.6 $-9.3\pm$ 6.7 10.28 6 K05 C6.8u11 NGC 2129 186.62 0.16 1.431 $-11.5\pm$ 2.1 $-11.6\pm$ 2.3 $-8.0\pm$ 8.6 $-9.3\pm$ 6.7 10.28 6 K05 C6.8u11 NGC 2129 186.62 0.16 -1.431 $-11.5\pm$ 1.5 $-11.8\pm$ 1.8 $-0.7\pm$ 1.3 3.22 14 K05 Gem 0B1 189.00 2.30 2.041 $-14.5\pm$ 1.5 $-11.8\pm$ 1.8 $-0.7\pm$ 1.3 3.22 14 K05 NGC 2129 195.65 -2.91 0.768 $-19.7\pm$ 2.4 $-9.9\pm$ 1.9 -9^2 1.9 -9^3 1.96 Mu78.BH89.D01 NGC 2244 202.91 2.17 0.459 $-11.8\pm$ 2.1 $-13.2\pm$ 1.0 $-4.3\pm$ 0.5 7 2 LB03.K05.Bu11 NGC 2168 203.54 -6.19 2.184 $-15.8\pm$ 1.9 $-7.5\pm$ 2.3 $-2.5\pm$ 7.7 2 LB03.K05.Bu11 NGC 2166 206.02 -0.39 1.600 $-33.1\pm$ 4.7 $2.5\pm$ 3.3 $-8.4\pm$ 2.0 5 29 K05 Cc 1.166 206.02 -0.39 1.600 $-33.1\pm$ 4.7 $2.5\pm$ 3.3 $-8.4\pm$ 2.0 5 29 K05 Cc 1.166 206.02 -0.39 1.600 $-33.1\pm$ 4.7 $2.5\pm$ 3.3 $-8.4\pm$ 2.0 5 29 K05 Cc 1.166 206.02 -0.39 1.600 $-33.1\pm$ 4.7 $2.5\pm$ 3.3 $-8.4\pm$ 2.0 5 2.9 K05 Cc 1.166 206.02 -0.39 1.610 $-33.1\pm$ 4.7 $2.5\pm$ 3.3 $-8.4\pm$ 2.0 5 2.9 K05 Cc 1.166 206.02 -0.39 1.610 $-33.1\pm$ 4.7 $2.5\pm$ 3.3 $-8.4\pm$ 2.0 5 2.9 K05 Cc 1.166 206.02 -0.39 1.610 $-33.1\pm$ 4.7 $2.5\pm$ 3.3 $-8.4\pm$ 4.9 11 8 K05 NGC 2142 206.29 -2.07 1.133 $-2.5\pm$ 5.1 $-9.7\pm$ 4.4 $-14.4\pm$ 1.9 1.1 16 2 D102.K05.Bu11 NGC 2244 206.29 -2.07 1.139 $-2.5\pm$ 5.1 $-1.7\pm$ 4.8 $-1.2\pm$ 5.1 5 1.6 K05.Me7 NGC 2176 209.00 -1.936 0.618	Pleiades	166.34	-23.99	0.121	-6.7 ± 0.9	-25.0 ± 0.5	-12.8 ± 0.5	120	18	K05
Aur OB2 173.24 -0.17 2.703 1.6 \pm 4.1 -0.2 \pm 8.9 -11.5 \pm 1.3 6 ² 266 Hu78. GS92. Steck 8 173.37 -0.18 1.300 -8.0 \pm 5.0 -14.3 \pm 4.2 -20.9 \pm 3.5 7 8 Mi90. KOS. Bull Nar OB1 173.88 0.19 0.591 -10.4 3.3 -8.4 (0) 0.56 (1) 11.122 ⁴ 12.0 Hu78. M69. D01 NCC 1746 179.08 -10.61 0.76 (0) -24.4 (4) -70.21 (1) 135 155 KOS NCC 1746 170.66 0.22 (4) -50.4 0.7 -71.21 (1) 155 KOS F04. L66. 507 NCC 2169 186.62 2.17 1.64 ± 1.7 -10.21 ± 1.0 -10.24 ± 6 Hu7.8 KOS F04.1 KOS	NGC 1912	172.23	0.70	1.066	41.1 ± 0.1	-30.0 ± 0.6	-14.5 ± 0.6	363	32	LB03, MMU08,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Aur OB2	173.24	-0.17	2.703	$1.6\pm$ 4.1	$-0.2\pm$ 8.9	-11.5 ± 1.3	6 ^a	206	P108 Hu78, GS92,
Steck 8 173.37 -0.18 1308 -0.0 ± 10.0 143 ± 4.2 -2.0 ± 3.5 7 8 Mal90 K05 Bull Aur OB1 173.88 0.19 0501 -0.10 ± 3.3 -0.4 ± 0.9 -5.6 ± 1.1 11 L22 ² 120 Ha78, BH89, D01 NCC 1960 174.58 10.9 1153 -0.4 ± 4.6 -24.2 ± 1.1 -12.2 ± 2.2 18 Ha78, BH89, D01 NCC 1960 174.58 10.9 1153 -0.4 ± 4.6 -24.2 ± 1.7 -12.2 ± 2.2 12 K05, Bull NCC 1960 174.58 10.9 1153 -0.4 ± 4.9 -5.0 ± 0.7 -7.2 ± 1.1 115 15 15 K05 Her-Lyr 180.00 68.75 0.019 -13.6 ± 3.7 -22.7 ± 3.4 -7.9 ± 5.2 40.200 26 Fu.04, L06, E07 NCC 2168 186.62 2.17 1267 9.8 ± 4.7 -21.5 ± 1.7 1.7 1.4 ± 1.1 155 12 K05 Bull NCC 2129 186.62 0.16 1.431 -11.8 ± 2.3 -8.0 ± 8.6 -9.3 ± 6.7 10.28 6 K05, C06, Bull CG 189 188.65 -0.291 0.768 -19.7 ± 7.5 -11.8 ± 1.8 -0.7 ± 1.3 32 14 K05 Gem OB1 189.00 2.30 2.041 -14.5 ± 1.5 -16.9 ± 2.9 -10.2 ± 1.9 9 ² 196 Hu78, BH89, D01 A Ori 195.27 -12.10 0.439 -27.5 ± 1.3 -14.4 ± 0.5 5.6 3.0 DM01, L803, K05 NGC 2169 195.65 -2.91 0.768 -19.7 ± 2.4 -9.9 ± 1.9 -12.5 ± 2.4 7 2 K05, Bull NCC 2264 202.91 ± 1.7 0.450 -13.8 ± 2.1 -13.2 $\pm 1.$ -3.2 ± 2.2 (25 125 T76, BH89, D01 NCC 2266 202.54 -0.19 2.134 -15.5 ± 1.9 -18.2 ± 3.8 11.0 ± 2.4 63 14 Di02, K05, Bull NCC 2264 202.9 1.100 1.55 ± 5.0 -7.5 ± 2.6 -10.7 ± 1.1 209 5 K05 Col 106 206.02 -0.39 1600 -33.1 ± 4.7 2.5 ± 3.3 -8.4 ± 2.0 5 29 K05 Mon OB2 206.20 -1.00 1.205 -22.1 ± 2.4 -4.9 ± 1.8 -1.6 ± 1.7 17 Ma.95, L803, K05, S NGC 2016 200.02 -0.39 1600 -33.1 ± 4.7 2.5 ± 3.3 -8.4 ± 2.0 5 29 K05 Mon OB2 206.80 -17.35 0.412 -20.9 ± 0.6 -14.4 ± 0.9 -3.9 ± 1.1 16 2 Di02, Bu11 Ori 02.618 -17.36 0.413 -22.9 ± 0.6 -14.4 ± 1.9 -7.2 ± 2.3 <25 179 T76, BH89, D01, NG5, Bu11 Ori 02.608 -17.53 0.412 -20.9 ± 0.6 -14.4 ± 1.9 -7.2 ± 2.3 <25 25 7 70 NGC 1960 209.40 -19.36 0.413 -22.9 ± 2.4 -4.9 ± 1.4 -10.4 1.2 5 16 6 N05 NGC 197 209.00 -19.36 0.413 -22.9 ± 2.4 -4.9 ± 1.4 -0.0 ± 1.5 179 T76, BH89, D01, NG5, Bu11 Ori 02.605 -1.173 0.412 -2.0.9 ± 3.1 -5.7 ± 2.0 -6.8 ± 1.6 1.										ME95, D01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Stock 8	173.37	-0.18	1.308	-8.0 ± 5.0	-14.3 ± 4.2	-20.9 ± 3.5	7	8	Ma 90, K05, Bu11
Aur OBI 174.88 0.19 0.591 -1.0 \pm 3.3 -84 \pm 0.9 -5.6 \pm 1.1 1.22 120 Ha/8, BH89, DOI NGC 1960 174.58 1.09 1.15 -1.4 \pm 4.6 -24.2 \pm 1.7 -1.2.3 \pm 2.0 2.2 12 K05. Bull NGC 1746 179.08 -10.61 0.760 0.2 \pm 4.9 -5.0 \pm 0.7 -12.1 \pm 1.1 155 15 K05 Her4, L06, E07 NGC 2168 186.62 2.17 1.267 9.8 \pm 4.7 -21.5 \pm 0.7 3.7 \pm 0.6 4.5 12 K05, Bull NGC 2169 186.62 0.16 1.431 -11.8 \pm 2.3 -8.0 \pm 8.6 -9.3 \pm 6.7 10-28 6 K05, C06. Bull Col 89 188.65 3.80 0.800 -24.8 \pm 7.5 -11.8 \pm 1.8 -0.7 \pm 1.3 3.2 14 K05 Col 8.4 \pm 0.7 Col 9.1 195.27 -12.10 0.43 0 -27.8 \pm 7.5 -11.8 \pm 1.8 -0.7 \pm 1.3 3.2 14 K05 NGC 2169 196.65 -2.91 0.768 -10.7 \pm 2.4 -9.9 \pm 1.9 -12.5 \pm 2.4 7 2 K05, Bull MOI L803, K05 NGC 2169 196.65 -2.91 0.768 -10.7 \pm 2.4 -9.9 \pm 1.9 -12.5 \pm 2.4 7 2 K05, Bull NGC 2264 20.291 2.17 0.450 -13.8 \pm 2.1 -3.2 \pm 1.0 -4.3 \pm 0.5 7 2 L803, K05, Bull NGC 2264 20.291 2.17 0.450 -13.8 \pm 2.1 -3.2 \pm 1.0 -4.3 \pm 0.5 7 2 L803, K05, Bull NGC 2264 202.91 2.17 0.450 -13.8 \pm 2.1 -3.2 \pm 1.0 -4.3 \pm 0.5 7 2 L803, K05, Bull NGC 22186 203.54 -6.19 2.164 -1.5.5 \pm 1.9 -1.8.2 \pm 3.8 11.0 \pm 2.4 6.3 11.4 D102, K05. Bull NGC 22186 203.54 -6.19 2.164 -1.5.5 \pm 1.9 -7.8 \pm 2.4 -7.2 \pm 2.5 7.76, BH89, DOI NGC 2244 206.29 -2.07 1.193 -26.1 \pm 3.1 -5.7 \pm 2.0 -6.8 \pm 1.6 1-7 17 Ma/95, L803, K05, Bull OR -3.31 \pm 4.7 2.5 \pm 3.3 -8.4 \pm 2.0 5 2.9 K05 MG7 NGC 2244 206.29 -2.07 1.193 -26.1 \pm 3.1 -5.7 \pm 2.0 -6.8 \pm 1.6 1-7 17 Ma/95, L803, K05, Bull OR 0.8 0.1 1.2 -0.9 \pm 0.8 -1.21 \pm 0.9 -3.9 \pm 1.1 16 2 D102, K05 Bull OR 0.2 2.04 2.0 -1.08 0.234 -2.29 \pm 0.8 -1.21 \pm 0.9 -3.9 \pm 1.1 16 2 D102, K05 MeI OR 0.2 2.24 2.2 2.2 2.2 2.2 2.2 1.25 1 6 K05, MeO 7 1.2 1.2 5.5 -6.7 \pm 0.5 1.1 Ma/95 1.203, K05, Bull OR 0.246 \pm 1.2 -1.7.5 0.412 -2.2.9 \pm 0.8 -1.21 \pm 1.0 -1.2 \pm 1.1 \pm 1.1 16 2 D102, K05, Bull OR 0.260 \pm 1.1 2.2 0.9 \pm 0.8 -1.21 \pm 0.9 \pm 0.4 \pm 1.1 4 8 K05 MEO 7 MOI BU1 2.00.9 \pm 0.14 \pm 2.2 1.4 4 4.4 7.0 \pm 1.2 5 1 6 K05, MeO 7 1.4 1.4 1.2 2.4 4.4 5 1.4 1.4 -7.0 \pm 1.	NGC 1893	173.58	-1.67	1.307	0.8 ± 5.2	-16.2 ± 2.2	-11.3 ± 2.2	18	11	LB03, K05, Bu11
$ \begin{array}{c} \text{NCC} 1740 \\ \text{NCC} 1740 \\ \text{NCC} 1740 \\ \text{I} 7006 \\ 17006 \\ 1700 \\ \text{I} 1000 \\ \text{C} 677 \\ \text{I} 1000 \\ \text{C} 677 \\ \text{I} 1000 \\ \text{C} 677 \\ \text{C} 1019 \\ \text{C} 136 \\ \text{I} 133 \\ \text{C} 174 \\ \text{I} 134 \\ \text{I} 134 \\ \text{C} 136 \\ \text{I} 133 \\ \text{C} 174 \\ \text{I} 134 \\ \text{I} 13$	Aur OB1	173.88	0.19	0.591	-1.0 ± 3.3	-8.4 ± 0.9	-5.6 ± 1.1	11-225	120	Hu78, BH89, D01
$ \begin{array}{c} \operatorname{NCC} 1449 & 1938 & -10.31 & 0.760 & 0.2 \pm 4.9 & -3.0 \pm 0.7 & -12.1 \pm 1.1 & 153 & 15 & \operatorname{KO3} \\ \operatorname{NCC} 2168 & 186.62 & 2.17 & 1.267 & 9.8 \pm 4.7 & -22.5 \pm 0.7 & 3.7 \pm 0.6 & 4.5 & 12 & \operatorname{KO3} & \operatorname{KO3} \\ \operatorname{NCC} 2129 & 186.62 & 0.16 & 1.431 & -11.8 \pm 2.3 & -8.0 \pm 8.6 & -9.3 \pm 6.7 & 10.28 & 6 & \operatorname{KO5} & \operatorname{Co6} & \operatorname{Bu1} \\ \operatorname{Cel} 89 & 188.65 & 3.80 & 0.800 & -24.8 \pm 7.5 & -11.8 \pm 1.8 & -0.7 \pm 1.3 & 3.2 & 14 & \operatorname{KO5} \\ \operatorname{Gem} OB1 & 199.00 & 2.30 & 2.041 & -14.5 \pm 1.5 & -16.9 \pm 2.9 & -10.2 \pm 1.9 & 9^{4} & 196 & \operatorname{Hu78} & \operatorname{BH89} & \operatorname{DO1} \\ \operatorname{AOri} & 195.27 & -12.10 & 0.49 & -27.5 \pm 1.3 & -14.4 \pm 0.6 & -8.1 \pm 0.5 & 5.6 & 30 & \operatorname{DMM0} & \operatorname{LEO3} & \operatorname{KO5} \\ \operatorname{NCC} 2169 & 195.65 & -2.91 & 0.768 & -19.7 \pm 2.4 & -9.9 \pm 1.9 & -12.5 \pm 2.4 & 7 & 2 & \operatorname{KO5} & \operatorname{Bu1} \\ \operatorname{NCC} 2160 & 195.65 & -4.91 & 0.755 & -19.7 \pm 4.6 & -13.6 \pm 2.6 & -5.3 \pm 2.2 & 2.5 & 125 & T7.6 & \operatorname{BH89} & \operatorname{DO1} \\ \operatorname{NCC} 2264 & 202.91 & 2.17 & 0.450 & -15.5 \pm 5.0 & -7.5 \pm 2.6 & -10.7 \pm 1.1 & 20.9 & 5 & \operatorname{KO5} \\ \operatorname{Cel} 106 & 206.02 & -0.39 & 1.600 & -33.1 \pm 4.7 & 2.5 \pm 3.3 & -8.4 \pm 2.0 & 5 & 29 & \operatorname{KO5} \\ \operatorname{Cel} 106 & 206.02 & -0.39 & 1.600 & -33.1 \pm 4.7 & 2.5 \pm 3.3 & -8.4 \pm 1.6 & 1.7 & 17 & \operatorname{Ma955} & \operatorname{LB03} & \operatorname{KO5} \\ \operatorname{Cel} 107 & 205.34 & -17.2 & 0.500 & -15.5 \pm 5.0 & -7.5 \pm 2.6 & -10.7 \pm 1.1 & 16 & 2 & \operatorname{D02} & \operatorname{KO5} \\ \operatorname{Cel} 107 & 205.34 & -17.3 & 0.618 & -25.9 \pm 0.6 & -14.4 \pm 0.9 & -3.9 \pm 1.1 & 16 & 2 & \operatorname{D02} & \operatorname{KO5} \\ \operatorname{Cel} 107 & 205.34 & -17.3 & 0.618 & -25.9 \pm 0.6 & -14.4 \pm 0.9 & -3.9 \pm 1.1 & 16 & 2 & \operatorname{D02} & \operatorname{B01} \\ \operatorname{Ori} OB1 & 206.96 & -17.53 & 0.412 & -20.9 \pm 0.8 & -12.1 \pm 0.5 & -1.11^{10} & \operatorname{B189} & \operatorname{B191} & \operatorname{B99} \\ \operatorname{D01} & \operatorname{Co1} 97 & 20.50 & -13.86 & -24.7 \pm 1.4 & -10.5 & 1.11^{10} & 16 & \operatorname{B189} & \operatorname{B11} \\ \operatorname{Ori} OB1 & 206.96 & -17.53 & 0.412 & -20.9 \pm 0.6 & -14.4 \pm 0.9 & -3.9 \pm 1.1 & 16 & 2 & \operatorname{D02} & \operatorname{KO5} \\ \operatorname{NCC} 1976 & 209.00 & -13.66 & 0.413 & -22.9 \pm 0.6 & -14.4 \pm 0.9 & -3.9 \pm 1.1 & 16 & 5 & \operatorname{B11} \\ \operatorname{Ori} OB1 & 206.96 & -17.53 & 0.412 & -30.7 \pm 1.9 & -14.6 \pm 1.8 & -14.4 & 9 & 11 \\ \operatorname{Mon} R2 & 213.90 & -11.91 & 0.83 $	NGC 1960	174.58	1.09	1.153	-1.4 ± 4.6	-24.2 ± 1.7	-12.3 ± 2.0	22	12	KUS, BUII
$\begin{array}{c} \text{Here}(y) \\ \text{NGC} 2168 \\ \text{IB6}62 \\ \text{C} 217 \\ \text{IB}662 \\ \text{C} 217 \\ \text{IB}662 \\ \text{C} 2129 \\ \text{IB}662 \\ \text{IB}662 \\ \text{C} 2129 \\ \text{IB}662 \\ \text{IB}662 \\ \text{C} 2129 \\ \text{IB}662 \\ \text{C} 2120 \\ \text{C} 2129 \\ \text{IB}662 \\ \text{C} 2120 \\ \text{C} 21$		190.00	-10.01	0.760	0.2 ± 4.9	-5.0 ± 0.7	-12.1 ± 1.1	155	15	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		100.00	00.75	1.267	-13.0 ± 3.7	-22.7 ± 0.4	-7.9 ± 5.2	40-200	20	FU04, L00, E07
$ \begin{array}{c} \operatorname{Koc} 2125 & 100.22 & 0.10 & 1.431 & -11.9 \pm 1.2 & -0.64 & 0.0 & -9.54 & 0.1 & 10.2 & 0.0 & 10.0 &$	NGC 2108	100.02	2.17	1.207	9.0 ± 4.7	-21.5 ± 0.7	3.7 ± 0.0	45	6	K05, DUII K05, C06, Pu11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		188.65	3.80	0.800	-11.0 ± 2.3 -24.8 ± 7.5	-3.0 ± 3.0 -11.8 ± 1.8	-9.3 ± 0.7 -0.7 ± 1.3	32	1/	K05, C00, Bull
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gem OB1	180.05	2 30	2 041	-24.0 ± 1.5 -14.5 ± 1.5	-169 ± 29	-0.7 ± 1.3 -10.2 ± 1.9	9 ^a	196	Hu78 BH89 D01
NGC 2169 195.65 -2.91 0.768 -19.7 \pm 2.4 $-9.9 \pm$ 1.9 $-12.5 \pm$ 2.4 7 2 K05 Bull Mon OB1 202.06 1.10 0.575 -19.7 \pm 4.6 $-13.6 \pm$ 2.6 $-5.3 \pm$ 2.2 <25 125 T76, BH99, D01 NGC 2264 202.91 2.17 0.450 -13.8 \pm 2.1 $-13.2 \pm$ 1.0 $-4.3 \pm$ 0.5 7 2 L L603, K05, Bull NGC 2186 203.54 -6.19 2.184 $-15.5 \pm$ 1.9 $-18.2 \pm$ 3.8 11.0 \pm 2.4 63 1.4 Di02, K05, Bull Col 106 206.02 -0.39 1.600 $-3.31 \pm$ 4.7 $.25 \pm$ 3.3 $-8.4 \pm$ 2.0 5 29 K05 Mon OB2 206.20 -1.00 1.205 $-22.1 \pm$ 2.4 $-4.5 \pm$ 1.9 $-7.2 \pm$ 2.3 <25 179 T76, BH89, D01 NGC 2244 206.29 -2.07 1.193 $-26.1 \pm$ 3.1 $-5.7 \pm$ 2.0 $-6.8 \pm$ 1.6 1.7 17 Mas95, LB03, K05, Bull Ori OB1 206.61 -17.36 0.618 $-25.9 \pm$ 0.6 $-14.4 \pm$ 0.9 $-3.9 \pm$ 1.1 1.6 2 Di02, Bull Ori OB1 206.96 -1.753 0.412 $-20.9 \pm$ 0.8 $-12.1 \pm$ 0.5 $-6.7 \pm$ 0.5 $-1.11^{\rm b}$ BH69, B19, Br99, D01 NGC 1981 208.09 -1.955 0.505 $-20.3 \pm$ 1.9 $-13.2 \pm$ 1.3 $-6.5 \pm$ 1.1 32 2 K05 NGC 1976 209.00 -19.36 0.413 $-23.2 \pm$ 2.3 $-16.4 \pm$ 1.4 $-70.\pm$ 1.2 51 6 K05, Me07 NGC 1980 209.48 -19.55 0.550 $-20.3 \pm$ 1.9 $-13.6 \pm$ 1.6 $-7.1 \pm$ 1.5 5 4 K05 NGC 1976 209.00 -19.36 0.413 $-23.2 \pm$ 2.3 $-16.4 \pm$ 1.4 $-70.\pm$ 1.2 51 6 K05, Me07 NGC 1980 209.48 -19.55 0.550 $-20.3 \pm$ 1.9 $-13.6 \pm$ 1.6 $-7.1 \pm$ 1.5 5 4 K05 NGC 2322 21.137 -7.51 0.352 $-14.0 \pm$ 0.8 $-9.1 \pm$ 0.6 $-12.4 \pm$ 1.5 5 4 K05 NGC 2343 224.26 -1.17 1.014 $-17.7 \pm$ 2.6 $-3.2 \pm$ 2.6 $1.9 \pm$ 2.2 18 7 Di02, K07, Bull Man R2 213.90 -11.91 0.334 $-11.3 \pm$ 9.0 $2.2 \pm$ 16.6 $-11.1 \pm$ 2.4 8 6.10 7 HR76, CH08 NGC 2343 224.26 -1.50 1.450 $-40.2 \pm$ 2.7 $-4.6 \pm$ 4.1 $-21.3 \pm$ 2.3 102 C (7.4, ME95, D01 NGC 2343 224.26 -1.17 1.014 $-17.7 \pm$ 2.6 $-3.2 \pm$ 2.6 $-19.2 \pm$ 1.8 7 Di02, K07, Bull Man R2 213.90 -31.97 $-33.2 \pm$ 2.45 $-3.7 \pm$ 2.4 $-4.6 \pm$ 4.1 $-21.3 \pm$ 2.3 -33 102 C 17.4, ME95, D01 NGC 2345 226.59 -2.31 2.623 $-45.2 \pm$ 5.1 $-37.9 \pm$ 4.7 $-14.7 \pm$ 5.0 79 28 Di02, K05, Bull CMa OB1 224.26 -1.50 1.604 $-40.3 \pm$ 4.2 $-4.6 \pm$ 4.1 $-21.3 \pm$ 2.3 $-3.5 \pm$ 4.6 \pm 4 MP03, Bull NGC 2345 226.59 -2.31 2.623 $-45.2 \pm$ 5.1 -37.9	λ Ori	195.00	-12 10	0.439	-27.5 ± 1.3	-144 ± 0.6	-81 ± 0.5	5-6	30	DM01 B03 K05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NGC 2169	195.65	-2.91	0 768	-197 ± 24	-99 ± 19	-125 ± 24	7	2	K05 Bu11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mon OB1	202.06	1.10	0.575	-19.7 ± 4.6	-13.6 ± 2.6	-5.3 ± 2.2	< 25	125	T76, BH89, D01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NGC 2264	202.91	2.17	0.450	-13.8 ± 2.1	-13.2 ± 1.0	-4.3 ± 0.5	7	2	LB03 K05 Bu11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NGC 2186	203.54	-6.19	2.184	-15.5 ± 1.9	-18.2 ± 3.8	11.0 ± 2.4	63	14	Di02, K05, Bu11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Col 97	205.34	-1.72	0.500	-15.5 ± 5.0	-7.5 ± 2.6	-10.7 ± 1.1	209	5	K05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Col 106	206.02	-0.39	1.600	-33.1 ± 4.7	2.5 ± 3.3	$-8.4\pm$ 2.0	5	29	K05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Mon OB2	206.20	-1.00	1.205	-22.1 ± 2.4	-4.5 ± 1.9	$-7.2\pm$ 2.3	<25	179	T76, BH89, D01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NGC 2244	206.29	-2.07	1.193	-26.1 ± 3.1	$-5.7\pm$ 2.0	-6.8 ± 1.6	1-7	17	Mas95, LB03, K05,
σ Ori 206.81 −17.36 0.618 −25.9 ± 0.6 −14.4 ± 0.9 −3.9 ± 1.1 16 2 Di02, Bu11 Ori OB1 206.96 −17.53 0.412 −20.9 ± 0.8 −12.1 ± 0.5 −6.7 ± 0.5 1-11 ^b 165 BH89, B!91, Br99, D01 Col 107 207.34 −0.75 1.450 −17.2 ± 5.8 −4.9 ± 4.8 −18.4 ± 4.9 11 8 K05 NGC 1981 208.05 −18.96 0.400 −24.6 ± 2.1 −11.9 ± 1.3 −6.5 ± 1.1 32 2 K05 NGC 1976 209.00 −19.36 0.413 −23.2 ± 2.3 −16.4 ± 1.4 −7.0 ± 1.2 51 6 K05, Me07 NGC 1980 209.48 −11.91 0.834 −11.3 ± 90 2.2 ± 16.6 −11.1 ± 24.8 6-10 7 HR76, CH08 NGC 23232 214.37 −7.51 0.352 −14.0 ± 0.8 −9.1 ± 0.6 −12.6 ± 0.7 53 5 H0										Bu11
Ori OB1 206.96 -17.53 0.412 -20.9 ± 0.8 -12.1 ± 0.5 -6.7 ± 0.5 1.11 ^b 165 BH89, BI91, Br99, D01 Col 107 207.34 -0.75 1.450 -17.2 ± 5.8 -4.9 ± 4.8 -18.4 ± 4.9 11 8 K05 NGC 1981 208.05 -18.96 0.400 -24.6 ± 2.1 -11.9 ± 1.3 -6.5 ± 1.1 32 2 K05 NGC 1976 209.00 -19.36 0.413 -23.2 ± 2.3 -16.4 ± 1.4 -7.0 ± 1.2 51 6 K05, Me07 NGC 1980 209.48 -19.55 0.550 -20.3 ± 1.9 -13.6 ± 1.6 -7.1 ± 1.5 5 4 K05 Dolidze 25 211.93 -1.29 6.368 -24.7 ± 14.2 -107.5 ± 14.4 19.6 ± 14.5 9 54 Di02, K07, Bu11 Mon R2 213.90 -1.191 0.834 -11.3 ± 2.6 1.9 ± 2.2 1.8 7 Di02, K05, Bu11 E05	σ Ori	206.81	-17.36	0.618	$-25.9\pm$ 0.6	$-14.4\pm$ 0.9	$-3.9\pm$ 1.1	16	2	Di02, Bu11
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ori OB1	206.96	-17.53	0.412	-20.9 ± 0.8	-12.1 ± 0.5	$-6.7\pm$ 0.5	1-11 ^b	165	BH89, BI91, Br99,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										D01
NGC 1981 208.05 -18.96 0.400 -24.6 ± 2.1 -11.9 ± 1.3 -6.5 ± 1.1 32 2 K05 NGC 1976 209.00 -19.36 0.413 -23.2 ± 2.3 -16.4 ± 1.4 -7.0 ± 1.2 51 6 K05, Me07 NGC 1980 209.48 -19.55 0.550 -20.3 ± 1.9 -13.6 ± 1.6 -7.1 ± 1.5 5 4 K05 Dolidze 25 211.39 -1.29 6.368 -24.7 ± 1.4 -107.5 ± 14.4 19.6 ± 14.5 9 54 Di02, K07, Bu11 Mon R2 213.90 -11.91 0.834 -11.3 ± 9.0 2.2 ± 16.6 -11.1 ± 24.8 6-10 7 HR76, CH08 NGC 2343 224.26 -1.17 1.014 -17.7 ± 2.6 -3.2 ± 2.6 1.9 ± 2.2 18 7 Di02, K05, Bu11 CMa OB1 224.60 -1.50 1.640 -40.3 ± 4.2 -4.6 ± 4.1 -21.3 ± 2.3 3 102 Cl74,	Col 107	207.34	-0.75	1.450	-17.2 ± 5.8	-4.9 ± 4.8	$-18.4\pm$ 4.9	11	8	K05
NGC 1976 209.00 -19.36 0.413 -23.2 ± 2.3 -16.4 ± 1.4 -7.0 ± 1.2 51 6 K05, Me07 NGC 1980 209.48 -19.55 0.550 -20.3 ± 1.9 -13.6 ± 1.6 -7.1 ± 1.5 5 4 K05 Dolidze 25 211.93 -1.29 6.368 -24.7 ± 14.2 -107.5 ± 14.4 19.6 ± 14.5 9 54 Di02, K07, Bu11 Mon R2 213.90 -11.91 0.834 -11.3 ± 9.0 2.2 ± 16.6 -11.1 ± 24.8 6-10 7 HR76, CH08 NGC 2323 214.37 -7.51 0.352 -14.0 ± 0.8 -9.1 ± 0.6 -12.6 ± 0.7 53 5 H01, LB03, K05 NGC 2343 224.26 -1.17 1.014 -17.7 ± 2.6 -3.2 ± 2.6 1.9 ± 2.2 18 7 Di02, K05, Bu11 CMa OB1 224.60 -1.50 1.640 -40.3 ± 4.2 -4.6 ± 4.1 -21.3 ± 2.3 3 102	NGC 1981	208.05	-18.96	0.400	-24.6 ± 2.1	-11.9 ± 1.3	-6.5 ± 1.1	32	2	K05
NGC 1980 209.48 -19.55 0.550 -20.3 ± 1.9 -13.6 ± 1.6 -7.1 ± 1.5 5 4 K05 Dolidze 25 211.93 -1.29 6.368 -24.7 ± 14.2 -107.5 ± 14.4 19.6 ± 14.5 9 54 Di02, K07, Bu11 Mon R2 213.90 -11.91 0.834 -11.3 ± 9.0 2.2 ± 16.6 -11.1 ± 24.8 6-10 7 HR76, CH08 NGC 2323 214.37 -7.51 0.352 -14.0 ± 0.8 -9.1 ± 0.6 -12.6 ± 0.7 53 5 H01, LB03, K05 NGC 2343 224.26 -1.17 1.014 -17.7 ± 2.6 -3.2 ± 2.6 1.9 ± 2.2 18 7 Di02, K05, Bu11 CMa OB1 224.60 -1.50 1.640 -40.3 ± 4.2 -4.6 ± 4.1 -21.3 ± 2.3 3 102 Cl74, ME95, D01 NGC 2345 226.59 -2.31 2.623	NGC 1976	209.00	-19.36	0.413	-23.2 ± 2.3	-16.4 ± 1.4	-7.0 ± 1.2	51	6	K05, Me07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NGC 1980	209.48	-19.55	0.550	-20.3 ± 1.9	-13.6 ± 1.6	-7.1 ± 1.5	5	4	K05
Mon R2213.90 -11.91 0.834 $-11.3 \pm$ 9.0 $2.2 \pm$ 10.6 $-11.1 \pm$ 24.8 $6-10$ 7 HR76. CH08NGC 2232214.37 -7.51 0.352 $-14.0 \pm$ 0.8 $-9.1 \pm$ 0.6 $-12.6 \pm$ 0.7 53 5 H01, LB01, LB03, K05NGC 2343224.26 -1.17 1.014 $-17.7 \pm$ 2.6 $-3.2 \pm$ 2.6 $1.9 \pm$ 2.2 18 7 Di02, K05, Bu11CMa OB1224.60 -1.50 1.640 $-40.3 \pm$ 4.2 $-4.6 \pm$ 4.1 $-21.3 \pm$ 2.3 3 102 Cl74, ME95, D01NGC 2353224.66 0.39 1.307 $-25.2 \pm$ 7.5 $-6.3 \pm$ 7.4 $-12.6 \pm$ 2.0 89 9 K05, Bu11NGC 2345226.59 -2.31 2.623 $-45.2 \pm$ 5.1 $-37.9 \pm$ 4.7 $-14.7 \pm$ 5.0 79 28 Di02, K05, Bu11IC 1848229.07 30.40 2.000 $3.6 \pm$ 7 $-41.4 \pm$ 11.5 $26.6 \pm$ 10.6 28 4 MP03, Bu11NGC 2422230.93 3.17 0.397 $-29.3 \pm$ 1.8 $-24.2 \pm$ 2.3 $-83.3 \pm$ 0.3 132 7 K05, VL09NGC 2414231.40 1.94 2.932 $-59.2 \pm$ 3.0 $-38.7 \pm$ 2.6 $-43.7 \pm$ 3.7 10 12 LB03, K05, Bu11Ruprecht 26232.08 2.69 2.368 $-14.6 \pm$ 3.8 <td>Dolidze 25</td> <td>211.93</td> <td>-1.29</td> <td>6.368</td> <td>-24.7 ± 14.2</td> <td>-107.5 ± 14.4</td> <td>19.6 ± 14.5</td> <td>9</td> <td>54</td> <td>Di02, K07, Bu11</td>	Dolidze 25	211.93	-1.29	6.368	-24.7 ± 14.2	-107.5 ± 14.4	19.6 ± 14.5	9	54	Di02, K07, Bu11
NGC 2232 214.37 -7.51 0.332 $-14.0 \pm$ 0.8 $-9.1 \pm$ 0.6 $-12.6 \pm$ 0.7 53 5 H01, LB01, LB03, K05NGC 2343 224.26 -1.17 1.014 $-17.7 \pm$ 2.6 $-3.2 \pm$ 2.6 $1.9 \pm$ 2.2 18 7 Di02, K05, Bu 11CMa OB1 224.60 -1.50 1.640 $-40.3 \pm$ 4.2 $-4.6 \pm$ 4.1 $-21.3 \pm$ 2.3 3 102 Cl74, ME95, D01NGC 2353 224.66 0.39 1.307 $-25.2 \pm$ 7.5 $-6.3 \pm$ 7.4 $-12.6 \pm$ 2.0 89 9 K05, Bu 11NGC 2345 226.59 -2.31 2.623 $-45.2 \pm$ 5.1 $-37.9 \pm$ 4.7 $-14.7 \pm$ 5.0 79 28 Di02, K05, Bu 11IC 1848 229.07 30.40 2.000 $3.6 \pm$ 7 $14.3 \pm$ 7.3 $-35.3 \pm$ 6.8 5 24 K05Waterloo 7 230.28 0.62 1.982 $-79.6 \pm$ 13.7 $-41.4 \pm$ 11.5 $26.6 \pm$ 10.6 28 4 MP03, Bu 11NGC 2422 230.93 3.17 0.397 $-29.3 \pm$ 1.8 $-24.2 \pm$ 2.3 $-83.2 \pm$ 0.3 132 7 K05, vL09NGC 2414 231.40 1.94 2.932 $-59.2 \pm$ 3.0 $-38.7 \pm$ 2.6 $-43.7 \pm$ 3.7 10 12 LB03, K05, Bu 11Ruprecht 26 232.08 2.69 2.368 $-14.6 \pm$	Mon R2	213.90	-11.91	0.834	-11.3 ± 9.0	2.2 ± 16.6	-11.1 ± 24.8	6-10	-	
NGC 2343224.26 -1.17 1.014 -17.7 ± 2.6 -3.2 ± 2.6 1.9 ± 2.2 18 7 Di02, K05, Bu11CMa OB1224.60 -1.50 1.640 -40.3 ± 4.2 -4.6 ± 4.1 -21.3 ± 2.3 3 102 Cl74, ME95, D01NGC 2353224.66 0.39 1.307 -25.2 ± 7.5 -6.3 ± 7.4 -12.6 ± 2.0 89 9 K05, Bu11NGC 2345226.59 -2.31 2.623 -45.2 ± 5.1 -37.9 ± 4.7 -14.7 ± 5.0 79 28 Di02, K05, Bu11IC 1848229.07 30.40 2.000 3.6 ± 7 14.3 ± 7.3 -35.3 ± 6.8 5 24 K05Waterloo 7230.28 0.62 1.982 -79.6 ± 13.7 -41.4 ± 11.5 26.6 ± 10.6 28 4 MP03, Bu11NGC 2422230.93 3.17 0.397 -29.3 ± 1.8 -24.2 ± 2.3 -8.3 ± 0.3 132 7 K05, vL09NGC 2414 231.00 -10.45 0.695 -16.2 ± 1.3 -13.0 ± 1.5 -18.5 ± 0.7 $100-180$ 12 K05, GH08NGC 2414 231.40 1.94 2.932 -59.2 ± 3.0 -38.7 ± 2.6 -43.7 ± 3.7 10 12 LB03, K05, Bu11Ruprecht 26 232.08 2.69 2.368 -14.6 ± 3.8 -10.0 ± 2.9 -39.7 ± 5.0 32 11 K05, Bu11Bochum 5 232.51 0.79 1.31 -26.7 ± 2.4 -31.3 ± 1.9 -10.0 ± 2.7 32 4 K05, Bu11C	NGC 2232	214.37	-7.51	0.352	-14.0 ± 0.8	-9.1± 0.0	-12.0 ± 0.7	53	5	K05
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NGC 2343	224.26	-1.17	1.014	-17.7 ± 2.6	$-3.2\pm$ 2.6	1.9 ± 2.2	18	7	Di02, K05, Bu11
NGC 2353224.660.391.307 -25.2 ± 7.5 -6.3 ± 7.4 -12.6 ± 2.0 899K05, Bu11NGC 2345226.59 -2.31 2.623 -45.2 ± 5.1 -37.9 ± 4.7 -14.7 ± 5.0 7928Di02, K05, Bu11IC 1848229.0730.402.000 3.6 ± 7 14.3 ± 7.3 -35.3 ± 6.8 524K05Waterloo 7230.280.621.982 -79.6 ± 13.7 -41.4 ± 11.5 26.6 ± 10.6 284MP03, Bu11NGC 2422230.933.170.397 -29.3 ± 1.8 -24.2 ± 2.3 -8.3 ± 0.3 1327K05, vL09NGC 2412231.00 -10.45 0.695 -16.2 ± 1.3 -13.0 ± 1.5 -18.5 ± 0.7 100-18012LB03, K05, Bu11Ruprecht 26232.082.692.368 -14.6 ± 3.8 -10.0 ± 2.9 -39.7 ± 5.0 3211K05, Bu11Bochum 5232.510.791.031 -26.7 ± 2.4 -31.3 ± 1.9 -10.0 ± 2.7 324K05, Bu11ColA233.13 -33.88 0.084 -13.2 ± 1.3 -21.8 ± 0.8 -5.9 ± 1.2 30169To08MGC 2384235.30 -24.1 ± 5.6 -14.5 ± 5.2 30169To08	CMa OB1	224.60	-1.50	1.640	$-40.3\pm$ 4.2	$-4.6\pm$ 4.1	-21.3 ± 2.3	3	102	CI74, ME95, D01
NGC 2345 226.59 -2.31 2.623 -45.2 ± 5.1 -37.9 ± 4.7 -14.7 ± 5.0 79 28 Di02, K05, Bu11IC 1848 229.07 30.40 2.000 3.6 ± 7 14.3 ± 7.3 -35.3 ± 6.8 5 24 K05Waterloo 7 230.28 0.62 1.982 -79.6 ± 13.7 -41.4 ± 11.5 26.6 ± 10.6 28 4 MP03, Bu11NGC 2422 230.93 3.17 0.397 -29.3 ± 1.8 -24.2 ± 2.3 -8.3 ± 0.3 132 7 K05, vL09NGC 2412 231.00 -10.45 0.695 -16.2 ± 1.3 -13.0 ± 1.5 -18.5 ± 0.7 100.180 12 LB03, K05, Bu11Ruprecht 26 232.08 2.69 2.368 -14.6 ± 3.8 -10.0 ± 2.9 -39.7 ± 5.0 32 11 K05, Bu11Bochum 5 232.51 0.79 1.031 -26.7 ± 2.4 -31.3 ± 1.9 -10.0 ± 2.7 32 4 K05, Bu11ColA 233.13 -33.88 0.084 -13.2 ± 1.3 -21.8 ± 0.8 -5.9 ± 1.2 30 169 To08MGC 2384 235.30 -2.41 56 0.14 ± 52 40.6 ± 0.2 10.0 ± 1.26 10.0 ± 1.26 10.0 ± 1.26	NGC 2353	224.66	0.39	1.307	-25.2 ± 7.5	$-6.3\pm$ 7.4	-12.6 ± 2.0	89	9	K05, Bu11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NGC 2345	226.59	-2.31	2.623	-45.2 ± 5.1	$-37.9\pm$ 4.7	$-14.7\pm$ 5.0	79	28	Di02, K05, Bu11
Waterloo7230.280.621.982 -79.6 ± 13.7 -41.4 ± 11.5 26.6 ± 10.6 284MP03, Bu11NGC 2422230.933.170.397 -29.3 ± 1.8 -24.2 ± 2.3 -8.3 ± 0.3 1327K05, vL09NGC 2287231.00 -10.45 0.695 -16.2 ± 1.3 -13.0 ± 1.5 -18.5 ± 0.7 100-18012K05, GH08NGC 2414231.401.942.932 -59.2 ± 3.0 -38.7 ± 2.6 -43.7 ± 3.7 1012LB03, K05, Bu11Ruprecht 26232.082.692.368 -14.6 ± 3.8 -10.0 ± 2.9 -39.7 ± 5.0 3211K05, Bu11Bochum 5232.510.791.031 -26.7 ± 2.4 -31.3 ± 1.9 -10.0 ± 2.7 324K05, Bu11ColA233.13 -33.88 0.084 -13.2 ± 1.3 -21.8 ± 0.8 -59 ± 1.2 30169To08	IC 1848	229.07	30.40	2.000	3.6 ± 7	14.3 ± 7.3	-35.3 ± 6.8	5	24	K05
NGC 2422 230.93 3.17 0.397 -29.3 ± 1.8 -24.2 ± 2.3 -8.3 ± 0.3 132 7 K05, vL09 NGC 2287 231.00 -10.45 0.695 -16.2 ± 1.3 -13.0 ± 1.5 -18.5 ± 0.7 100-180 12 K05, GH08 NGC 2414 231.40 1.94 2.92 -59.2 ± 3.0 -38.7 ± 2.6 -43.7 ± 3.7 10 12 LB03, K05, Bu11 Ruprecht 26 232.08 2.69 2.368 -14.6 ± 3.8 -10.0 ± 2.9 -39.7 ± 5.0 32 11 K05, Bu11 Bochum 5 232.51 0.79 1.031 -26.7 ± 2.4 -31.3 ± 1.9 -10.0 ± 2.7 32 4 K05, Bu11 ColA 233.13 -33.88 0.084 -13.2 ± 1.3 -21.8 ± 0.8 -5.9 ± 1.2 30 169 To08 MGC 2384 235 30 -24.116 5.6 0.1 ± 5.2 40.6 ± 0.0 11 10.4 10.4 10.5 10.5	Waterloo 7	230.28	0.62	1.982	-79.6 ± 13.7	-41.4 ± 11.5	26.6 ± 10.6	28	4	MP03, Bu11
NGC 2287 231.00 -10.45 0.695 -16.2 ± 1.3 -13.0 ± 1.5 -18.5 ± 0.7 100-180 12 K05, GH08 NGC 2414 231.40 1.94 2.932 -59.2 ± 3.0 -38.7 ± 2.6 -43.7 ± 3.7 10 12 LB03, K05, Bu11 Ruprecht 26 232.08 2.69 2.368 -14.6 ± 3.8 -10.0 ± 2.9 -39.7 ± 5.0 32 11 K05, Bu11 Bochum 5 232.51 0.79 1.031 -26.7 ± 2.4 -31.3 ± 1.9 -10.0 ± 2.7 32 4 K05, Bu11 ColA 233.13 -33.88 0.084 -13.2 ± 1.3 -21.8 ± 0.8 -59 ± 1.2 30 169 To08 MCC 2384 235.30 -24.11 56 -01 ± 52 40.6 ± 0.0 11 10 12 L05 100	NGC 2422	230.93	3.17	0.397	-29.3 ± 1.8	$-24.2\pm$ 2.3	$-8.3\pm$ 0.3	132	7	K05, vL09
NGC 2414 231.40 1.94 2.932 -59.2 ± 3.0 -38.7 ± 2.6 -43.7 ± 3.7 10 12 LB03, K05, Bu11 Ruprecht 26 232.08 2.69 2.368 -14.6 ± 3.8 -10.0 ± 2.9 -39.7 ± 5.0 32 11 K05, Bu11 Bochum 5 232.51 0.79 1.03 -26.7 ± 2.4 -31.3 ± 1.9 -10.0 ± 2.7 32 4 K05, Bu11 ColA 233.13 -33.88 0.084 -13.2 ± 1.3 -21.8 ± 0.8 -5.9 ± 1.2 30 169 To08 MCC 2384 235.30 -24.1 2.116 -71.0 ± 5.6 0.1 ± 5.2 40.6 ± 0.0 11 10 12 LB03, K05, Bu11	NGC 2287	231.00	-10.45	0.695	-16.2 ± 1.3	-13.0 ± 1.5	-18.5 ± 0.7	100-180	12	K05, GH08
Kuprecht 2b 232.08 2.69 2.368 $-14.6 \pm$ 3.8 $-10.0 \pm$ 2.9 $-39.7 \pm$ 5.0 32 11 K05, Bul1 Bochum 5 232.51 0.79 1.031 $-26.7 \pm$ 2.4 $-31.3 \pm$ 1.9 $-10.0 \pm$ 2.7 32 4 K05, Bul1 ColA 233.13 -33.88 0.084 $-13.2 \pm$ 1.3 $-21.8 \pm$ 0.8 $-5.9 \pm$ 1.2 30 169 To08 MGC 2384 235.30 -241 $-21.0 \pm$ 5.2 $40.6 \pm$ $60.6 \pm$	NGC 2414	231.40	1.94	2.932	-59.2 ± 3.0	-38.7 ± 2.6	-43.7 ± 3.7	10	12	LB03, K05, Bu11
Bochum 5 232.51 0.79 1.031 $-26.7 \pm$ 2.4 $-31.3 \pm$ 1.9 $-10.0 \pm$ 2.7 32 4 K05, Bull ColA 233.13 -33.88 0.084 $-13.2 \pm$ 1.3 $-21.8 \pm$ 0.8 $-5.9 \pm$ 1.2 30 169 To 08 MGC 2384 235.30 -241 2.16 $-71.0 \pm$ 5.2 $40.6 \pm$ 9.0 111 10 12.02 105	Ruprecht 26	232.08	2.69	2.368	-14.6 ± 3.8	-10.0 ± 2.9	-39.7 ± 5.0	32	11	K05, Bu11
COLA 233.13 -33.88 0.084 -13.2 ± 1.3 -21.8 ± 0.8 -5.9 ± 1.2 30 169 To08	Bochum 5	232.51	0.79	1.031	-26.7 ± 2.4	-31.3 ± 1.9	-10.0 ± 2.7	32	4	KU5, Bull T 00
(1) (1)	COIA NGC 2384	233.13	-33.88 -2.41	0.084	-13.2 ± 1.3 -71.0 ± 5.6	-21.8 ± 0.8 -9.1 ± 5.2	-5.9 ± 1.2 -40.6 ± 8.0	3U 11	10	1008 11089 K05

Table A.1: - Continued. -

/[°] *b*[°] U [km/s] V [km/s] W [km/s] Age [Myr] Name d [kpc] Ø[pc] Ref. NGC 2367 235 59 -3.821 546 -62.0 ± 4.5 $-9.4 \pm$ 6.0 $-39.7 \pm$ 7 6 LB03. K05. Bu11 3.3 Col 121 0.775 $-37.4 \pm$ $-14.9\pm$ 2.2 $-13.9 \pm$ dZ99, Br99, D01 237.39 -7.711.5 0.8 5-11 115 LB01, BL04, KM07 NGC 2362 238.21 -5.531.732 -45.2 ± 3.5 $-12.6 \pm$ 5 $-6.3 \pm$ 2.5 7 11 LB03, K05, Bu11 Tr 7 238.22 -3.341.749 $-43.8 \pm$ 6.4 $-11.2 \pm$ 4.4 $-6.4 \pm$ 6.0 32 7 K05. Bu11 239.90 -4.96 1.757 $-3.4 \pm$ 6.8 $-33.0 \pm$ 3.9 $-10.4 \pm$ 79 12 Di02, Mer08, Bu11 Ruprecht 18 6.9 Ruprecht 32 241.58 -0.555.171 -155.3 ± 11.0 $-10.0 \pm$ -21.5 ± 12.5 13 25 Di02, MP03, Bu11 6.0 $-75.2\pm$ Di02, K07, Bu11 243.07 0.52 $-38.3 \pm$ $-19.1 \pm$ Haffner 19 4.426 3.9 5.5 3.4 7 17 NGC 2467 243.17 0.34 1.352 $-44.9 \pm$ 5.4 $-40.1 \pm$ 8.8 $-15.3 \pm$ 4.7 112 9 K05 CI77. K05 Col 132 243.18 -9.240.411 $-23.6 \pm$ 1.9 $-15.7 \pm$ 1.9 $-10.1 \pm$ 1.2 32 4 NGC 2453 LB03 243 29 -0.933 4 4 0 $-80.7 \pm$ 22 $3.1 \pm$ 12 -27.1 +29 22 12 Di02 MMU08, Bu11 Pup OB1 243.51 0.14 2.000 -48.4 ± 17.2 -24.1 ± 16.5 5.0 ± 15.3 4 129 Ha72, Hu 78 HB89. ME95 Col 140 H01, LB01, K05 245.09 -7.790.376 -22.2 ± 0.7 $-18.1 \pm$ 0.9 $-12.2 \pm$ 0.5 35 6 D01, BL04, K05 NGC 2439 246.44 -4.46 3.212 $-14.7 \pm$ 2.3 $-56.7 \pm$ 4.4 $-40.3 \pm$ 1.3 7-32 27 Col 135 248.67 -11.150.300 $-18.3 \pm$ 0.8 $-7.0 \pm$ 2.0 $-12.7 \pm$ 0.5 26 12 H01, LB01, LB03, K05 Di02, K05, Bu11 NGC 2571 249.11 3.54 1.234 -39.9 ± 3.1 $-13.1\pm$ 1.2 3.1 ± 3.4 28 4 $-35.0\,\pm$ Di02, MP03, K05, Haffner 26 249.61 2.35 2.272 $-83.3 \pm$ 3.6 -12.3 ± 10.5 9 9.6 16 Bu11 Pup OB3 BH89 253.89 -0.241.449 -53.5 ± 15.3 -21.5 ± 12.6 -6.6 ± 14.4 4 29 We63. M E 95 NGC 2546 254.83 -2.060.918 -35.4 ± 0.5 $-27.5\pm$ 0.1 -11.0 ± 0.5 83 20 LB03, K05 $-19.8\,\pm$ Vel OB2 262.47 -7.47 0.508 $-26.3 \pm$ 3.1 2.7 $-6.9 \pm$ 10 70 dZ99, Br99, D01 1.3 15-35 Tr 10 262.73 0.44 0.387 $-27.1 \pm$ 1.5 $-21.8\pm$ 1.0 $-9.8 \pm$ 0.7 45 dZ99, Br99, LB01 K04, BL04 NGC 2547 264.36 -8.620.474 $-20.3 \pm$ 0.4 $-10.8 \pm$ 1.9 $-14.9 \pm$ 0.5 50 5 K05, vL09 NGC 2645 264.79 -2.911.752 $-65.4 \pm$ 7.0 $-14.9 \pm$ 3.1 $-0.3 \pm$ 7.1 14 11 Di02. Bu11 Vel OB1 264.88 -1.420.885 $-30.2 \pm$ $-20.1\pm$ 1.7 $-6.1 \pm$ 20 120 T79, BH89, D01 1.3 0.8 Di02, MP03, Bu11 Pismis 8 265.09 -2.581.397 -79.7 ± 16.8 1.9 $-12.8\pm$ 18.4 32 $-56.3\pm$ 6 LB03, K05 IC 2395 266.68 -3.56 $-20.6 \pm$ -23.6 ± 16.9 $-7.0 \pm$ 0.710 1.3 1.4 12 9 LB03. MMU08 NGC 2670 267.51 -3.621.409 $-40.4 \pm$ 5.6 $-3.4 \pm$ 0.6 $-24.0 \pm$ 6.5 71 11 Pi08 Bu11 Col 205 269.21 -1.851.476 -52.1 ± 4.7 -19.6 +5.6 $10.7 \pm$ 4.9 14 9 K05. Bu11 IC 2391 270.40 -7.120.145 -22.7 ± 0.5 $-18.5\pm$ 1.0 $-6.3\pm$ 0.3 46-76 20 H01, LB01, LB03, K05, Bu11 $-19.1\pm$ $-23.3\pm$ NGC 2669 270.85 -6.091.276 $-30.2 \pm$ Di02, K05, Bu11 4.4 0.5 4.3 79 9 NGC 2516 273.84 -15.80 0.342 $-19.0 \pm$ 0.2 $-19.9 \pm$ 1.5 $-2.2 \pm$ 0.5 120 5 K05, vL09 K05, Bu11 Pismis 16 277.83 0.69 1.073 $-26.1 \pm$ 4.3 $-25.0 \pm$ 8.9 $-14.3 \pm$ 4.1 79 4 CarA 278.47 -10.14 0.097 $-10.2 \pm$ 0.4 $-23.0 \pm$ 0.8 $-4.4 \pm$ 1.5 30 115 To08 280.83 $-14.5 \pm$ $-3.6\,\pm$ $-11.2 \pm$ 221 Т₀08 Oct -8.74 0.118 0.9 1.6 1.4 20 BH 92 283.00 2.412 $-60.2 \pm$ 5.1 $-31.7\pm$ 1.3 $-8.5 \pm$ K05, Bu11 0.44 5.2 56 13 IC 2581 K05. Bu11 284.60 0.05 2.499 $-89.6 \pm$ 7.9 $-18.6 \pm$ 4.0 $-4.5 \pm$ 9.1 13 11 Loden 153 285.67 0.08 2.657 $-89.3 \pm$ 8.5 $-14.3\pm$ 3.3 $8.2 \pm$ 9.2 7 6 K05, Bu11 NGC 3293 285.85 0.07 2.325 -90.2 +6.0 $-12.9 \pm$ 2.8 $-12.5 \pm$ 6.6 5-9 6 T80b, K05 NGC 3324 286 22 -0.172.428 $-99.0 \pm$ 4.2 $-19.9 \pm$ 1.2 $-10.0 \pm$ 3.7 10 17 LB03. K05. Bu11 Car OB1 286.51 -1.491.886 $-66.5 \pm$ 1.0 $-15.0 \pm$ 1.6 $-8.9 \pm$ 0.9 8-13² 165 Hu78, BH89, D01 vdB-Hagen 99 286.61 -0.600.665 $-36.3 \pm$ 2.3 $-16.9 \pm$ 3.4 $-20.3 \pm$ 28 45 H01. K05. Bu11 2 $-57.4 \pm$ Bochum 9 286.78 -1.592.986 $-130.0 \pm$ $-46.9 \pm$ 3.6 14 10 MP03, K05, Bu11 5.1 6.3 Tr 14 $-47.5 \pm$ 287.39 -0.59 2.249 3.3 $0.7 \pm$ 1.1 15.7 \pm 3.3 7 10 LB03, K05, S06 Tr 15 287.42 -0.382.128 $-57.6 \pm$ 4.0 $3.4 \pm$ 1.6 11.5 \pm 3.3 12 6 LB03, K05, Mer08 Col 232 287.48 -0.552.300 $-69.1\,\pm$ 3.6 $-4.6 \pm$ 8.7 $15.6 \pm$ 2.2 3 Di02. MP03 2 287.62 2.857 $-84.9 \pm$ $-29.1\pm$ $15.2 \pm$ 0-8 12 Mas95, LB03, K05, Tr 16 -0.64 3.6 1.6 3.2 S06 Col 228 -65.3 ± 2.7 LB03, K05 287.65 -1.071.923 $-6.9 \pm$ 3.2 $-7.9 \pm$ 2.5 5 23 H01, LB01, LB03 IC 2602 289.29 -5.010.149 $-8.2 \pm$ 0.4 $-19.9\pm$ 0.9 $-0.3 \pm$ 0.2 32-67 8 K05 NGC 3532 289.63 1.39 0.411 -21.4 ± 1.3 -4.4 +3.6 0.7 ± 0.4 282 9 K05. vL09 289.83 Bochum 12 -1.702 299 $-20.2 \pm$ 5.4 $-2.1\pm$ 2.0 $-37.1 \pm$ 6.2 40 5 K04. Bu11 Melotte 101 289.89 -5.57 2.394 $-66.9 \pm$ 5.5 $-32.8\pm$ $-9.4 \pm$ 71 18 Di02, K05, Mer08, 2.3 6.9 Bu11 $-40.4 \pm$ Feinstein 1 290.14 0.44 1.159 3.7 $-0.5 \pm$ 8.4 $-2.8 \pm$ 2.2 9 16 K05 Car OB2 $-78.9 \pm$ BH89, G94, D01 290.41 0.09 2.564 2.4 $-25.1 \pm$ 2.3 $-9.7 \pm$ 2.4 152 Stock 13 290.49 1.60 1.577 $-70.9 \pm$ 4.3 $-27.8 \pm$ 4.9 $-6.9 \pm$ 3.4 23 13 K05 NGC 3572 290.71 0.19 1.781 -84.2 ± 10.3 $-21.8 \pm$ 6.4 $-24.1\pm$ 7.5 10 K05 9 LB03, K05 290.98 -0.131.352 $-53.2 \pm$ 2.2 $0.8 \pm$ 0.9 $-11.9 \pm$ 59 Tr 18 2.4 4 NGC 3590 291.21 -0.172.057 $-62.7 \pm$ $-16.4 \pm$ $-10.1 \pm$ 4.3 32 9 K05. Bu11 6.0 6.4 Sod98. TWA 291.61 20.22 0.061 -9.7 ± 4.1 $-17.1 \pm$ 3.1 $-4.8 \pm$ 3.7 10 66 Web99 d|R06, BYN06 F08 292.42 η Cha -21.450.093 $-12.2 \pm$ $-18.1 \pm$ $-10.1 \pm$ 0.5 7 13 LS04, J05, F08 0.0 0.9 NGC 3766 294.12 -0.031.754 $-59.8\pm$ 1.2 $-10.9 \pm$ 1.6 $-8.3 \pm$ 33 14 LB03. K05 1.0 IC 2944 294.84 -1.641.786 $-46.5 \pm$ $-14.0 \pm$ 12.7 $-24.0 \pm$ 8 15 K05, MP03 8.9 7.4 Cru OB1 294.89 -1.081.640 $-43.7 \pm$ 1.6 $-16.6 \pm$ 1.9 $-6.2 \pm$ 0.8 5-7 117 BH89, KG94, D01 Stock 14 295.22 -0.67 2.146 $-55.5 \pm$ 6.6 $-16.3\,\pm$ 4.3 $-2.6 \pm$ 6.8 10 9 K05 Tu c-Hor 296.57 -51.720.043 $-10.1 \pm$ 2.4 $-20.7 \pm$ 2.3 $-2.5 \pm$ 3.8 25 100 SN00, Z01b, Ma07,

F08

Table A.1: - Continued. -
Name	/[°]	<i>b</i> [°]	d [kpc]	<i>U</i> [km/	s]	V [km	/s]	W [km	/s]	Age [Myr]	Ø[pc]	Ref.
Chal	207.22	14.26	0.160	0.0.1	10.0	10.2	20.2	601	10.0	2.6	0	M/h 07 l 08
Chai	297.22	-14.20	0.162	$-9.9\pm$	18.9	$-10.3 \pm$	20.2	$-0.2 \pm$	10.8	2-0	9	VVN97, LUU8
NGC 4103	297.59	1.18	1.892	$-43.6 \pm$	3.9	$-9.6 \pm$	4.7	$-16.4 \pm$	2.8	32	9	K05, Bu11
∈ Cha	300.43	-15.08	0.096	$-8.6 \pm$	3.6	$-18.6 \pm$	0.8	$-9.3\pm$	1.7	5-15	55	Te99, J05, F08
NGC 4463	300.61	-2.01	1.281	$-30.0 \pm$	4.7	10.7 \pm	5.8	$0.5 \pm$	3.3	28	3	K05, Bu11
LCC	301.54	6.74	0.119	$-8.2\pm$	5.1	$-18.6 \pm$	7.3	$-6.4 \pm$	2.6	13-20	45	dG89, dZ99, Br99,
												M02, Sa03, F08
NGC 4609	301.87	-0.14	1 208	-544+	27	$-87 \pm$	17	-114 +	49	56	3	K05 MMU08
	001.01	0.11	1.200	0		0.1 ±	2.1	11.1 1			Ū.	P11
NGC 4755	202.00	0.40	0.000		• •	107	2.0				10	BUII
NGC 4755	303.20	2.48	2.032	$-41.4 \pm$	2.8	$-12.7 \pm$	3.0	$-11.5 \pm$	2.9	25	10	KU5, Bull
Cen OB1	304.18	1.41	1.786	$-45.5 \pm$	1.3	$-6.7 \pm$	1.7	$-8.2\pm$	1.7	6-12	175	BH89, KG94, D01
Ruprecht 107	305.94	-2.23	1.519	$-58.3\pm$	7.5	14.0 \pm	5.5	$-3.3\pm$	6.2	32	6	Di02, Mer08, Bu11
Stock 16	306.07	0.17	1.639	$-44.5\pm$	5.4	19.1 \pm	7.2	$-2.6\pm$	1.5	6	13	LB03, K05
Basel 18	307.17	0.22	2.510	$-56.4 \pm$	9.8	$-44.3 \pm$	7.4	$-54.4 \pm$	6.6	35	5	Di02 MP03 K05
												Bu11
H	207 50	1.24	1 507	F2 2	4.4	E 1	E 4	126	14	10	E	
Hogg IO	307.50	1.54	1.567	-52.2 ±	4.4	5.1 ±	5.4	-12.0 ±	1.4	10	5	L BUS, KUS
Col 272	307.59	1.20	2.130	$-52.5 \pm$	7.3	$-0.2 \pm$	7.7	$-18.7 \pm$	3.9	22	14	Di02, K05, Bu11
NGC 5168	307.73	1.58	1.777	$-12.8 \pm$	8.2	$-1.1 \pm$	7.1	0.9 \pm	7.6	55	7	K05, MP03
NGC 5281	309.18	-0.72	1.108	$-32.3\pm$	0.8	$-1.2 \pm$	0.7	$-12.8\pm$	1.3	58	14	LB03, MMU08,
												Pi08
R 80	309.40	-0.40	2.900	$-60.5 \pm$	6.2	0.0 +	5.8	$-25.9 \pm$	6.9	?	5	MD09
NCC 5216	210.22	0.14	1 215	21 0 ⊥	1 7	7.0 ±	1 /	0.6 ±	2.1	165	10	
NGC 5510	310.23	0.14	1.215	-31.9 1	1.7	-7.2 1	1.4	0.0 1	2.1	155	12	
NGC 5617	314.68	-0.11	1.533	$-40.7 \pm$	3.9	$10.1 \pm$	3.9	$-19.8 \pm$	5.5	105	10	K05, MMU08
NGC 5606	314.84	0.98	1.818	$-51.2\pm$	1.9	$2.6 \pm$	1.9	$-15.3\pm$	1.9	7	13	LB03, K05
Pismis 20	320.52	-1.20	3.200	$-78.0\pm$	6.3	$-24.1\pm$	5.9	$-44.0 \pm$	5.5	7	2	Di02, MD09
NGC 6025	324.52	-5.90	0.769	$-12.5 \pm$	4.1	$-12.2 \pm$	3.0	3.4 +	1.4	91	10	K05
Plaiadan P1	225.66	10 11	0.120	1 E -	4.7	20.1 ⊥	2.2	5.1 <u>×</u>	1.0	20	107	A = 0.0
	325.00	10.11	0.129	-4.5 <u></u>	4.7	-20.1 1	3.5	-5.5 ±	1.9	20	107	AS99
NGC 6087	327.71	-5.42	0.901	$-13.9 \pm$	1.1	$-4.7 \pm$	4.7	$-1.9 \pm$	1.8	85	15	K05
Nor OB1	327.99	-0.90	2.800	$-59.1\pm$	19.4	$-27.3 \pm$	13.2	$-0.8 \pm$	6.6	7ª	54	MD09, Hu78
NGC 6067	329.76	-2.20	1.409	$-45.7\pm$	3.6	$-5.1\pm$	2.2	$-17.2 \pm$	0.8	102	12	LB03, K05
Harvard 10	329.83	-3.28	1.311	$-51.6 \pm$	3.8	$-48.7 \pm$	5.9	$-33.7 \pm$	6.8	74	25	K05, FM08
ПСІ	330 51	12.86	0 144	-68+	4.6	_193+	47	-57±	2.5	10-20	65	dG89 d799 Br99
002	550.51	12.00	0.144	0.0 1	4.0	15.5 ±	4.7	5.1 <u>⊥</u>	2.5	10 20	00	M02 C-03 E09
				1001								1VIU2, 3403, FUO
β Pic-Cap	330.95	-55.54	0.018	$-10.8 \pm$	3.4	$-15.9 \pm$	1.2	$-9.8 \pm$	2.5	8-34	113	Z01a, Ma07, F08
R 103	332.39	-0.81	3.201	$-71.1 \pm$	28.3	$-31.3 \pm$	21.4	$-37.3 \pm$	34.9	5 ^a	173	Hu78, MD09
R 105	333.12	1.88	1.613	$-32.4\pm$	10.5	17.0 \pm	16.8	$-44.5\pm$	18.8	< 10 ^a	8	Hu78, BH89,
												ME95
NCC 6167	225 24	1 40	1 1 0 9	27.0 ⊥	47	10-	20	170 -	2 5	145	7	KOF
NGC 0107	335.24	-1.40	1.100	-57.9 1	4.7	1.9 1	0.7	-17.9 1	0.0	145	10	1005
NGC 6193	336.72	-1.55	1.149	$-38.4 \pm$	4.0	$-7.6 \pm$	2.7	$-13.4 \pm$	2.3	8	10	K05
Ara OB1A	337.73	-0.92	1.124	$-16.0 \pm$	8.3	$-7.8 \pm$	4.0	$-11.6 \pm$	2.1	50	106	BH89, D01, Wo08
Ara OB1B	337.92	-0.85	2.778	$-50.0\pm$	1.1	$-30.7 \pm$	2.4	$-28.8\pm$	4.0	50	276	BH89, Mas95,
												D01, Wo08
NGC 6178	338 42	1 24	1 014	22+	24	$-46 \pm$	33	$-10.7 \pm$	37	32	6	K05
H 22	220 50	1 16	2.021	747	10.1	10.7	6 1	10.0	4 1	12	-	KOE Buill
Hogg 22	338.58	-1.10	2.021	-74.7±	12.1	$-10.7 \pm$	0.1	$-19.8 \pm$	4.1	13	5	KU5, BUII
NGC 6204	338.58	-1.05	1.087	$-7.4 \pm$	1.6	$-19.2 \pm$	4.3	$1.3 \pm$	4.6	36	3	LB03, MP03, K05
NGC 6250	340.66	-1.92	0.872	$-9.5\pm$	0.9	$-1.4 \pm$	1.6	$-12.8\pm$	1.8	22	6	Di02, K05, Bu11
Lynga 14	340.92	-1.10	1.043	$-27.9\pm$	1.2	$-16.4 \pm$	3.8	$-0.1\pm$	4.6	9	5	Di02, MP03, Bu11
NGC 6231	343.45	1.19	1.250	$-28.8 \pm$	2.9	$-1.4 \pm$	1.0	$-0.8 \pm$	0.7	4-7	10	BaL95, LB03. K05
Sco OB1	343 73	1 38	1 530	-29.4 +	2.8	-28+	15	-5.8 +	15	8	62	BH89 P91 D01
	344.60	1.00	1 504	29.+⊥ 10.1 ↓	2.0	-2.0 <u>F</u>	1.0	- 3.0 _	1.5	0 0F	02	KOE D. 11
ып 200 — ал	344.00	1.03	1.594	-10.1 ±	0.0	-10.2±	2.0	U.D ±	∠.3	25	9	NUD, DUII
Tr 24	344.71	1.51	1.138	$-5.1 \pm$	1.0	$-3.8 \pm$	1.1	$-1.0 \pm$	1.2	8	20	Di02, LB03
NGC 6322	345.23	-3.03	0.947	$-57.5 \pm$	0.2	$6.3 \pm$	0.9	$-3.0 \pm$	0.9	14	2	LB03, K05, Bu11
NGC 6242	345.47	2.47	1.161	$-6.4 \pm$	0.4	$3.3 \pm$	1.2	$-1.4 \pm$	1.3	32	3	LB03, MMU08,
												Pi08, Bu11
BH 217	346 79	_1 51	1 71/	-24 6 +	31	<u>_46 2 ⊥</u>	137	_12 7 ⊥	11 2	45	11	MP03 Bull
	251.07	-1.51	0.150	-24.0 <u>+</u>	5.4	-40.2 <u>+</u>	2.5	-12.7 ±	11.5	40	20	
05	351.07	19.43	0.150	$-6.7 \pm$	5.9	$-16.0 \pm$	3.5	$-8.0 \pm$	2.7	5-10	30	dG89, dZ99, Br99,
												M02, Pr02, Sa03,
												F08
Bochum 13	351.18	1.37	1.879	$-7.4 \pm$	1.6	$-31.1\pm$	4.3	$1.1 \pm$	5.1	7	10	LB03, K05, Bu11
Sco OB4	352 40	3 44	1,099	3 9 +	0.3	-85+	0.8	_85+	0.8	7	65	D01 K05
Diamia 24	252.40	0.45	0.060	2.7 1	20	3.5 <u>+</u>	22.4	10.6	27.0	12	e e	_ 01,0
Fismis 24	553.07	0.05	0.909	$-2.1 \pm$	5.0	-4.9±	∠5.4	10.0 ±	21.0	13	0	IVINIS, IVIASUL,
												MP03, Bull
NGC 6396	353.96	-1.76	1.592	$-34.5 \pm$	2.7	$-48.7 \pm$	8.3	$-5.8\pm$	7.0	45	6	Di02, K07, Bu11
Tr 27	355.05	-0.76	1.205	$-17.0 \pm$	0.3	$-12.0 \pm$	3.3	$-7.2\pm$	3.4	30	11	LB03, K05
NGC 6383	355.67	0.06	0.981	$3.5 \pm$	3.2	$-2.2 \pm$	1.7	$-10.5 \pm$	1.8	5	9	K05
- M 6	356 50	_0.70	0 488	-125+	35	-164+	04	_30+	04	81	7	L B03 K05
	350.39	17.10	0.400	- 12.5 _	0.0 6 4	-10.4 I	1.4	-3.9 <u>F</u>	0.4	12	60	LD05, 105
⊨xt. K CrA	359.41	-17.18	0.102	$-0.1 \pm$	0.4	$-14.8 \pm$	1.4	$-10.1 \pm$	3.3	12	62	NUU, FU8

Table A.1: - Continued. -

^a Ages were derived by G. Maciejewski from HR diagrams from memberlists either from Hu78 or GS92 (Mo53 for Cyg OB4) by fitting a set of theoretical Padova isochrones [186] assuming solar metallicity. The fitting algorithm is based on the least-squares method and uses stellar magnitudes as weights. ^b Ori OB1a: 11 Myr, Ori OB1b: 2 Myr, Ori OB1c: 5 - 11 Myr, Ori OB1d (= Trapezium cluster): \approx 1 Myr.

References: A06 - [6], B08 - [51], BaL95 - [20], BH89 - [48] (according to [110] distances taken from this publication have been reduced by 20%), Bh07 - [37], Bl56 - [42], Bl91 - [46], BL04 - [36], Br99 - [61], Bu11 - [64], BYN06 - [24], C06 - [77], CH08 - [76], Cl74 - [89], Co02 - [99], D01 - [110], dG89 - [119], Di02 - [133], dlR06 - [120], DM01 - [140], dZ99 - [126], E07 - [149], F08 - [160], Fu04 - [173], G94 -[177], GB08 - [201], GH08 - [193], GS92 - [182], H01 - [230], Ha72 - [212], HR76 - [217], Hu78 - [241], J05 - [250], K05 - [268], K07 -[272], KG94 - [259], KM07 - [258], L06 - [306], LB01 - [304], LB03 - [305], Lo06 - [303], Loz86 - [309], LS04 - [314], Lu08 - [312], M02 - [324], Ma07 - [330], Mae87 - [325], Mas95 - [351], Mas01 - [350], MC68 - [323], ME95 - [357], Me07 - [360], Mer08 - [362], Meri04 -[361], MP03 - [363, WEBDA database, http://www.univie.ac.at/webda], MV73 - [373], Mo53 - [376], N00 - [389], P91 - [407], Pr02 - [425], S66 - [457], Sa03 - [439], SM85 - [442], SN00 - [468], So04 - [465], Sod98 - [460], T76 - [501], T79 - [502], T80a - [503], T80b - [505], E07 - [149], Te99 - [482], To08 - [498], U01 - [511], W07 - [544], We63 - [536], Web99 - [532], Wh97 - [539], Wo08 - [545], Z01a - [564], Z01b - [565]

Name	/[°]	b [°]	d [kpc]	Age [Myr]	Ø[pc]	Ref.
Bochum 14	6.38	-0.51	0.623	16	1	Bu11
Kronberger 25	16.58	-0.47	1.643	71	4	Bu11
Kharchenko 2	16.67	-0.32	2.533	79	9	Bu11
Bica 3	18.47	-0.41	1.132	56	5	Bu11
Basel 1	27.35	-1.95	2.178	78	3	Di02
NGC 6704	28.21	-2.22	2.974	73	4	Di02, LB03
Berkely 79	31.17	0.92	2.124	79	14	Bu11
Archinal 1	38.24	1.77	1.436	13	2	Bu11
NGC 6756	39.10	-1.68	1.843	79	8	Bu11
Alessi 56	43.22	0.96	0.700	25	3	Bu11
Kronberger 13	49.17	-0.98	2.414	13	4	Bull
Alessi 57	50.20	0.75	0.758	22	3	Bu11
NGC 6830	60.11	-1.77	1.913	56	5	Bull D 11
AH03J2011+207	70.21	-3.90	2.592	22	4	Bull B 11
Toepier 1 Toutoch 8	70.31	1.73	2.813	10	5	Bull Bull
Kronberger 28	71.00	2.42	2.005	10	3	Bull Bull
Rionberger 20 Basel 6	74.86	3 31	2.202	63	5	Bu11 Bu11
Kronberger 72	75.11	2 14	2.420	71	5	Bull
Kronberger 57	75.34	-0.50	2.044	35	6	Bu11
Teutsch 30	75.35	-1.42	2.368	11	4	Bu11
NGC 7063	83.11	-9.87	0.701	79	4	Bu 11
NGC 7024	84.26	-3.86	1.536	79	7	Bu11
NGC 7067	91.20	-1.67	3.199	79	13	Bu11
Barkhatova 2	95.57	-1.55	1.690	7	4	Bu11
Teutsch 126	101.98	-0.60	2.034	50	9	Bu11
Berkeley 94	103.10	-1.16	2.813	16	10	Bu11
Berkeley 96	103.72	-2.09	3.065	9	9	Bu11
Berkeley 95	105.46	1.20	3.388	45	20	Bu11
Berkeley 97	106.64	0.38	2.589	14	11	Bu11
Teutsch 54	107.91	0.59	1.805	63	6	Bu11
King 10	108.49	-0.40	3.127	40	29	Bu11
Czernik 44	113.92	0.43	3.342	22	15	Bu11
Teutsch 23	115.79	1.01	2.029	13	9	Bu11
Neguerela 1	115.80	1.23	1.971	45	7	Bu11
King 21	115.95	0.65	2.633	16	12	Bull
Czernik 45	117.01	2.39	3.165	22	10	Bu11
Czernik I Stark 20	117.74	-0.96	1.801	18	2	Bull Bull
NGC 133	120.68	0.10	1.052	18	2	Bull Bull
King 14	120.00	0.00	2 304	32	22	Bu 11
NGC 189	120.72	-1.73	0.872	9	2	Bu11
Stock 24	121.56	-0.87	2.357	71	10	Bu11
Dias 1	121.95	1.19	1.963	32	10	Bu11
King 16	122.10	1.33	2.024	32	11	Bu11
Berkeley 4	122.25	1.53	2.016	7	8	Bu11
Berkeley 62	124.01	1.08	2.721	13	16	Bu11
Czernik 3	124.27	-0.05	2.831	22	8	Bu11
NGC 366	124.67	-0.59	2.217	56	12	Bu11
Tr 1	128.21	-1.13	2.526	45	13	Bu11
Czernik 4	128.22	-1.13	2.051	32	3	Bu11
Berkeley 6	130.10	-0.97	2.667	79	9	Bu11
Berkeley 7	130.13	0.38	2.692	11	9	Bu11
Czernik 7	131.15	0.53	2.218	22	5	Bull
leutsch 55	134.10	1.37	1.808	71	5	Bull
Czernik 10	135.35	-0.19	2.340	56	11	Bull B. 11
Czernik 13 Czernik 9	135.04	2.27	3.382	13	0	DUII D., 11
CZETITIK O Berkelov 65	135.00	0.26	2.939	19 Q	0	Bull
Czernik 11	135.05	-0.54	2.070	30	5	Bull
King 4	136.05	-1.16	2.130	50	15	Bull
Teutsch 162	136.11	2.11	2.224	56	9	Bu11
OC 374	139.58	27.35	1.927	71	8	Bu 11
Czernik 14	140.94	0.93	2.916	8	9	Bu11
Czernik 17	142.53	6.20	2.570	63	6	Bu11
NGC 1220	143.04	-3.96	2.446	79	10	Bu11
King 6	143.33	-0.10	0.613	71	5	Bu11
Czernik 15	145.11	-3.99	2.570	40	12	Bu 11
Juchert 9	145.12	3.67	3.263	56	12	Bu11
Czernik 16	145.92	-2.99	2.282	71	8	Bu11
Mayer 2	151.17	2.12	1.607	25	5	Bu11
Waterloo 1	151.30	1.82	3.456	7	14	Bu11
NGC 1624	155.36	2.61	4.630	22	22	Bu11
NGC 1605	158.57	-1.57	2.174	71	16	Bu 11
Ruprecht 148	160.36	-0.41	2.938	71	7	Bu 11

Table A.2: Sample of OB associations and clusters without fully available kinematic properties. The designations are as Table A.1 but without U, V and W velocities.

				-		
Name	/[°]	<i>b</i> [°]	d [kpc]	Age [Myr]	Ø[pc]	Ref.
Kronberger 1	173.11	0.04	1.757	32	7	Bu11
NGC 1931	173.94	0.25	0.877	8	7	Bu11
Teutsch 1	175.56	1.21	3.392	71	11	Bu11
Teutsch 45	177.94	0.53	2.618	13	7	Bu11
Basel 4	179.24	1.20	3.000	200	3	Di02, YS04
Kronberger 60	179.81	4.75	2.973	71	11	Bu11
Teutsch 10	179.96	-0.29	2.293	63	11	Bu11
Dutra-Bica 83	182.05	0.43	1.608	14	3	Bu11
Dutra-Bica 84	186.14	2.59	6.368	9	15	Bu11
IC 2157	186.42	1 21	2 219	56	5	Bu11
Kronberger 12	188 79	2 30	2 702	22	8	Bull
NCC 2221	190.60	15 12	2.102	63	0	Bull Bull
Diamia 27	109.09	15.15	1 720	05	6	Dull Dull
	190.07	1.00	1.759	25	10	
Ivanov 2	196.21	-1.20	2.101	14	12	Bull
Alessi 53	202.26	-0.66	1.460	56	3	Bull
Basel /	204.07	0.60	1.946	89	2	Bull
Alessi 59	211.08	1.20	3.865	25	13	Bull
vdB 85	211.24	-0.41	1.675	71	7	Bu11
Berkeley 28	212.53	0.25	2.749	63	13	Bu11
Chupina 1	215.39	31.66	1.798	13	2	Bu11
lvanov 9	217.49	-0.02	0.736	79	2	Bu11
Mon OB3	217.65	-0.42	2.439	7 ^a	47	Gr71, BH89
vdB 80	219.26	-8.94	1.637	10	10	Bu11
NGC 2302	219.30	-3.10	1.728	10	9	Bu11
Haffner 3	219.83	0.02	1.592	79	6	Bu11
lvanov 4	221.85	-2.01	0.719	10	3	Bu11
NGC 2401	229.67	1.85	5.360	71	20	Bu11
Haffner 24	233.42	-0.34	2 951	79	12	Bu11
Mayer 3	233.76	_0.20	2.501	13	11	Bu11
Rice 4	235.70	4 11	2.521	15	4	Bu11 Bu11
	235.02	-4.11	2.317	71	4	Dull Dull
NGC 2421	230.20	0.00	2.432	79	70	
Juchert 12	230.50	-4.10	2.148	71	<i>'</i>	Bull
Ivanov b	238.48	-4.27	0.448	16	2	Bull
Ruprecht 157	241.63	11.59	2.076	56	6	Bull
Ruprecht 36	242.58	-0.32	2.055	45	6	Bull
Haffner 18	243.16	0.45	6.234	13	34	Bu11
Pup OB2	244.6	0.6	3.2	20	212	Ha72, BH89, MD09
ESO 494-09	244.94	1.08	1.218	63	4	Bu11
Ruprecht 44	245.73	0.50	3.722	10	19	Bu11
Haffner 15	247.93	-4.15	2.459	22	16	Bu11
Bochum 15	248.02	-5.46	3.116	10	8	Bu11
Dc 3	250.28	-9.70	0.671	79	2	Bu11
Kronberger 18	250.88	-35.26	2.531	14	10	Bu11
Col 196	253.95	7.02	0.663	79	2	Bu11
AH03 10822-364	254 93	0.33	0 751	9	1	Bu11
Piemie 1	255 11	-0.72	5 300	63	20	Bu11
Piamia E	250.24	0.02	0 772	12	20	Bull Bull
F ISTITIS 5	259.34	1 72	0.112	15	2	Dull Dull
ESU 312-04	259.47	-1.75	2.144	71	<i>'</i>	
leutsch 64	260.69	-1.30	1.572	79	5	Bull
NGC 2671	262.15	0.78	2.019	100	15	Bull
NGC 2659	264.17	-1.65	1.982	10	23	Bull
BH 54	264.49	-0.27	1.109	7	6	Bu11
ESO 315-14	266.80	9.21	1.801	71	3	Bu11
ESO 260-17	267.54	0.61	1.379	71	8	Bu11
Graham 1	271.03	32.96	3.040	32	5	Bu11
Ruprecht 76	273.76	-0.90	1.431	45	5	Bu11
Ruprecht 78	275.06	-1.24	1.711	50	5	Bu11
Pismis 14	275.70	-1.89	1.322	22	3	Bu11
Ruprecht 77	276.46	-3.12	3.151	35	14	Bu11
BH 79	277.13	-0.04	1.464	22	5	Bu11
Hogg 3	279.52	0.10	2.674	89	30	Bu11
NGC 3105	279.92	0.27	8.710	25	28	Bu11
BH 84	282.05	-2.42	2.943	18	14	Bull
BH 90	283 14	-1 46	2 705	100	14	Bu11
BH 01	284.02	-1.62	0 701	63	1	Bull
Westerlund 2	204.02	_0.22	1 010	7	-	Bull
vvestendia 2 Rochum 11	204.20	0.02	2 /07	1	*	Duii Duii
Bochum 11	200.01	-0.92	3.407	(22	
ieutsch 31	288.37	0.02	1.057	20	3	Bull
Hogg 9	288.84	0.69	3.062	28	12	Bull
Turner 6	289.10	0.31	2.837	79	6	Bu11
Sher 1	289.63	-0.24	4.406	14	9	Bu11
Col 240	290.88	0.22	1.577	14	15	Di02, LB03
Hogg 12	291.21	-0.18	2.587	25	11	Bull
NGC 3576	291.30	-0.60	2.5	15	13	BH89, Di02, MD09
NGC 4052	297.29	-0.90	1.209	251	6	LB03, K05
ESO 131-09	300.02	4.88	2.297	22	6	Bull
NGC 4439	300.06	2.63	1.785	51	7	LB03, Pi08
Coalsack	300.71	-0.96	0.152	?	16	SB72, HF07

Table A.2: - Continued. -

		Tuble /		ontinaca.		
Name	/[°]	<i>b</i> [°]	d [kpc]	Age [Myr]	Ø[pc]	R ef .
Hogg 15	302.05	-0.24	2.031	11	14	Bu11
Cha III	302.63	-16.63	0.150	?	10	Lu08, RELKE 96
Cha	303.43	-14.14	0.178	1-10	8	Wh97, Lu08
Danks 2	305.39	0.09	0.385	71	1	Bu 11
Tr 21	307.57	-0.31	1.312	58	8	K05
C1331-622	307.89	0.00	1.099	63	6	Bu11
BH 151	308.67	0.59	1.705	63	5	Bu11
Tr 22	314.63	-0.57	1.516	129	7	K05
Cir OB1	315.50	-2.80	2.0	4-10	35	BH89, MD09
NGC 5749	319.50	4.52	1.242	71	5	Bu 11
Hogg 18	320.77	6.44	1.480	56	4	Bu11
NGC 6031	329.28	-1.51	1.823	117	2	Di02, LB03
Pismis 22	331.46	-0.61	0.898	56	3	Bu11
ESO 275-01	333.05	5.85	1.482	71	7	Bu 11
Westerlund 1	339.55	-0.40	3.550	4	2	MT08, Bra08
NGC 6216	340.64	0.01	4.916	45	27	Bu11
BH 200	341.14	0.27	1.491	22	9	Bu11
Havlen-Moffat 1	348.69	-0.78	3.300	4	5	Di02
AH03 J1725-344	353.09	0.64	0.295	7	1	Bu 11
NGC 6357	353.15	0.90	0.248	8	1	Bu11
Col 347	359.78	-0.26	1.420	13	11	Bu11
^a See Table A.1						
D / D // 00	1.01 (0.0 (E.c) D		

Table A.2: - Continued. -

References: BH89 – [48] (note also Table A.1), Bra08 – [56], Bu11 – [64], Di02 – [133], Gr71 – [190], Ha72 – [212], HF07 – [233], K05 – [268], LB03 – [305], Loz97 – [310], Lu08 – [312], MT08

- [358], Pi08 - [412], SB72 - [455], Wh97 - [539], YS04 - [552]

B The Sample of Neutron Stars

			ne sample c	n neutron sta	15.		
PSR	lpha [h:m:s]	δ [°΄΄']	<i>d</i> [pc]	μ^*_{lpha} [mas/yr]	μ_{δ} [mas/yr]	$ au_{char}$ [Myr]	Ref.
J0014+4746	00 : 14 : 17.75	+47 : 46 : 33.4	1700 ± 150	19.3 ± 1.8	-19.7 ± 1.5	34.8	DTH78, HLK04, BEG03
J0034-0721	00 : 34 : 08.8703	-07 : 21 : 53.409	1075^{+101}_{-85}	10.37 ± 0.08	-11.13 ± 0.16	36.6	LVW69a, CBV09,
J0139+5814	01 : 39 : 19.7401	+58 : 14 : 31.819	2703^{+328}_{-264}	-19.11 ± 0.07	-16.60 ± 0.07	0.403	DTH78, CBV09, HLK04
J0152—1637	01 : 52 : 10.8536	-16 : 37 : 52.99	650 ± 150	3.1 ± 1.2	-27 ± 2	10.2	MLT78, HLK04, BFG03
J0206-4028	02 : 06 : 01.268	-40 : 28 : 04.33	730 ± 150	-10 ± 25	75 ± 35	8.33	MLT78, SMD93
J0304+1932	03 : 04 : 33.115	+19:32:51.4	800 ± 200	6 ± 7	-37 ± 4	17	FSS73, HLK04, LAS82
J0332+5434	03 : 32 : 59.368	+54 : 34 : 43.57	1064^{+141}_{-111}	17.0 ± 0.3	-9.5 ± 0.4	5.53	CP68, HLK04, BBGT02
J0358+5413	03 : 58 : 53.7165	+54 : 13 : 13.727	1099^{+234}_{-164}	9.20 ± 0.18	8.17 ± 0.39	0.564	MTH72, CCV04, HLK04
J0452-1759	04 : 52 : 34.1057	-17 : 59 : 23.371	1667^{+2917}_{-1167}	8.9 ± 2.2	10.6 ± 1.9	1.51	VLW69, CBV09, HLK04
J0454+5543	04 : 54 : 07.7506	+55 : 43 : 41.437	1190^{+75}_{-67}	53.34 ± 0.06	-17.56 ± 0.14	2.28	DTH78, CBV09, HIK04
J0502+4654	05 : 02 : 04.561	+46 : 54 : 06.09	1600 ± 250	-8 ± 3	8 ± 5	1.81	DTH78, HLK04, HLA93
J0528+2200	05 : 28 : 52.264	+22:00:04	1950 ± 350	-20 ± 19	7 ± 9	1.48	SR68, YWML10, HLA93
J0534+2200ª	05 : 34 : 31.973	+22 : 00 : 52.06	2000 ± 500	-14.7 ± 0.8	2.0 ± 0.8	0.00124	SR68, MCN71,
J0538+2817	05 : 38 : 25.0572	+28 : 17 : 09.161	1389^{+278}_{-198}	-23.57 ± 0.10	52.87 ± 0.10	0.618	FCWA95, CBV09. KLH03
J0543+2329	05 : 43 : 09.660	+23 : 29 : 05	2800 ± 750	19 ± 7	12 ± 8	0.253	DLS72, HLK04, HLA93

Table B 1. The sample of neutron stars

Table B.1: - Continued. -

PSR	<i>α</i> [h∶m∶s]	δ [°.'.']	<i>d</i> [pc]	μ^*_{lpha} [mas/yr]	μ_{δ} [mas/yr]	τ _{char} [Myr]	Ref.
J0614+2229	06 : 14 : 17.16	+22:30:36	3400 ± 1400	-4 ± 5	-3 ± 7	0.0893	DLS72, HLK04,
J0629+2415	06 : 29 : 05.728	+24 : 15 : 43.3	3500 ± 1300	-7 ± 12	2 ± 12	3.78	DTH78, HLK04,
J0630-2834	06 : 30 : 49.404393	-28 : 34 : 42.77881	332^{+52}_{-40}	-46.30 ± 0.99	21.26 ± 0.52	2.77	LVW69a,
J0633+1746 ^b	06 : 33 : 54.1530	+17 : 46 : 12.909	250^{+120}_{-61}	142.2 ± 1.2	107.4 ± 1.2	0.342	HH92, CLM98,
J0653+8051	06 : 53 : 15.09	+80 : 52 : 00.22	2500 ± 1000	19 ± 3	-1 ± 3	5.07	
J0659+1414	06 : 59 : 48.134	+14 : 14 : 21.5	288^{+33}_{-27}	44.07 ± 0.63	-2.40 ± 0.29	0.111	MLT78, HLK04, BTGG03
J0720-3125	07 : 20 : 24.9620	-31 : 25 : 50.083	278^{+222}_{-85}	-92.8 ± 1.4	55.3 ± 1.7	1.9	HMB97, KVA07, E11, HHV10
J0737-3039B	07 : 37 : 51.248419	-30 : 39 : 40.71431	$1149\substack{+220 \\ -159}$	-3.82 ± 0.62	2.13 ± 0.23	49.2	BDP03, DBT09, KSM06
J0742-2822	07 : 42 : 49.058	-28 : 22 : 43.76	1900 ± 200	-29 ± 2	4 ± 2	0.157	FSS73, HLK04, FGML97
J0754+3231	07 : 54 : 40.688	+32 : 31 : 56.2	2700 ± 1200	-4 ± 5	7 ± 3	21.2	DTH78, HLK04, HLA93
J0758-1528	07 : 58 : 29.0708	-15 : 28 : 08.738	3300 ± 500	1 ± 4	4 ± 6	6.68	MLT78, HLK04, BFG03
J0820-1350	08 : 20 : 26.3817	-13 : 50 : 55.859	1961^{+167}_{-143}	21.64 ± 0.09	-39.44 ± 0.05	9.32	VL70, CBV09, HLK04
J0821-4300 J0826+2637	08 : 21 : 57.355 08 : 26 : 51.3833	-43 : 00 : 17.17 +26 : 37 : 23.79	$\begin{array}{r} 2200\pm 550\\ 357^{+97}_{-63} \end{array}$	$\begin{array}{c} -153\pm28\\ 61\pm3 \end{array}$	$\begin{array}{c} -62\pm 38\\ -90\pm 2\end{array}$	1.49 4.92	GH09, WP07 CLS68, HLK04,
J0835—4510 ^c	08 : 35 : 20.61149	-45 : 10 : 34.8751	286^{+17}_{-15}	-49.68 ± 0.06	29.9 ± 0.1	0.0113	LAS82, GTWR86 LVM68, DLRM03,
J0837+0610	08 : 37 : 05.642	+06 : 10 : 14.56	700 ± 50	2 ± 5	51 ± 3	2.97	DML02 PHBC68,
J0837-4135	08 : 37 : 21.1818	-41 : 35 : 14.37	3300 ± 2200	-2.3 ± 1.8	-18 ± 3	3.36	LVW68, WMZ01,
J0846-3533	08 : 46 : 06.06	-35 : 33 : 40.7	1000 ± 600	93 ± 72	-15 ± 65	11	MLT78, HLK04,
J0908-1739	09 : 08 : 38.1822	-17:39:37.67	770 ± 150	27 ± 11	-40 ± 11	9.5	MLT78, HLK04,
J0922+0638	09 : 22 : 14.022	+06 : 38 : 23.30	1205^{+224}_{-163}	18.8 ± 0.9	86.4 ± 0.7	0.501	MLT78, HLK04, BFG03, CCL01,
J0946+0951	09 : 46 : 07.6	+09:51:55	800 ± 200	-38 ± 19	-21 ± 12	4.98	VAZS69, HLK04,
J0953+0755	09 : 53 : 09.3097	+07 : 55 : 35.75	262^{+5}_{-5}	-2.09 ± 0.08	29.46 ± 0.7	17.5	PHBC68, HIK04 BBGT02
J1041-1942	10 : 41 : 36.196	-19:42:13.61	2300 ± 850	-1 ± 3	14 ± 5	23.2	MLT78, HLK04, BEG03
J1057-5226	10 : 57 : 58.965	-52 : 26 : 56.26	1100 ± 500	42 ± 5	-3 ± 5	0.535	VL72, MPK10,
J1115+5030	11 : 15 : 38.400	+50 : 30 : 12.29	500 ± 50	22 ± 3	-51 ± 3	10.5	FSS73, HLK04, HLA93
J1116-4122	11 : 16 : 43.086	-41 : 22 : 43.96	2100 ± 650	-1 ± 5	7 ± 20	1.88	MLT78, BFG03, ANTT94
J1136+1551	11 : 36 : 03.2477	+15 : 51 : 04.48	357^{+22}_{-19}	-74.0 ± 0.4	368.1 ± 0.3	5.04	PHBC68, HLK04, BBGT02

Appendix

Table B.1: - Continued -

PSR	<i>α</i> [h∶m∶s]	δ [°΄΄΄]	<i>d</i> [pc]	μ^*_{lpha} [mas/yr]	μ_{δ} [mas/yr]	$ au_{char}$ [Myr]	Ref.
J1239+2453	12 : 39 : 40.4614	+24 : 53 : 49.29	862^{+64}_{-56}	-104.5 ± 1.1	49.4 ± 1.4	22.8	LAN69, HLK04, BFG03. BBGT02
J1308+2127 ^d	13 : 08 : 48.7	+21 : 27 : 08	400 ± 300	-207 ± 20	84 ± 20	1.5	HHSS02,
							KKV02, KV05a, MPH09,
							SHHM05,
J1321+8323	13 : 21 : 46.18	+83 : 23 : 38.92	770 ± 10	-53 ± 20	13 ± 7	18.7	MPH07 DBTB82,
							HLK04, HLA93
J1328—4357	13 : 28 : 06.432	-43 : 57 : 44.12	1800 ± 500	3 ± 7	54 ± 23	2.8	MLT78, BFG03, NMC81
J1430-6623	14 : 30 : 40.872	-66 : 23 : 05.04	1400 ± 400	-31 ± 5	-21 ± 3	4.49	LVW68, SMD93, BMK90b
J1453-6413	14 : 53 : 32.737	-64 : 13 : 15.59	1950 ± 150	-16 ± 1	-21.3 ± 0.8	1.04	LVW69a,
							SMD93, BMK905
J1456-6843	14 : 56 : 00.158	-68 : 43 : 39.25	455_{-55}^{+72}	-39.5 ± 0.4	-12.3 ± 0.3	42.5	LVW68, SMD93,
							BMK90b,
J1509+5531	15 : 09 : 25.6298	+55 : 31 : 32.394	$2128\substack{+145 \\ -128}$	-73.64 ± 0.05	-62.65 ± 0.09	2.34	HTG68, CBV09,
11542 0000	15 42 20 1570			17 0	4 - 2	10.0	HLK04
J1543-0620	15 : 43 : 30.1579	-06 : 20 : 45.25	950 ± 250	-17 ± 2	-4 ± 3	12.8	BFG03
J1559-4438	15 : 59 : 41.526126	-44 : 38 : 45.901778	2604^{+696}_{-454}	1.52 ± 0.14	13.15 ± 0.05	4.0	VL72, DTBR09,
J1604-4909	16 : 04 : 22.999	-49:09:58.34	4300 ± 800	-30 ± 7	-1 ± 3	5.09	MLT78,
							BMK90b,
J1605+3249	16:05:18.9	+32:49:07	350 ± 50	-34.7 ± 1.7	148.7 ± 2.6	?	SMD93, TC93 HAB07, KKK03,
11607 0000	16 07 10 1004	00 00 10 00			7 4 0	01.0	
J1607-0032	16 : 07 : 12.1034	-00:32:40.83	630 ± 40	-1 ± 14	-7 ± 9	21.8	VL70, HLK04, LAS82
J1645-0317	16 : 45 : 02.0414	-03 : 17 : 58.32	2000 ± 900	-3.7 ± 1.5	30.0 ± 1.6	3.45	HT69, HLK04, BEC03
J1709-1640	17 : 09 : 26.4413	-16 : 40 : 57.73	1050 ± 220	3 ± 9	0 ± 14	1.64	LVW69b, HLK04,
11722_3207	17 · 22 · 02 055		2800 ± 500	-1+5	-40 ± 27	11 7	FGML97 DIS72 HIK04
51122-5201	17 . 22 . 02.955	-32 : 07 : 43.3	2000 ± 300	-1±5	-40 ± 27	11.7	ZHW05
J1735—0724	17:35:04.9717	-07:24:52.49	3300 ± 1100	-2.4 ± 1.7	28 ± 3	5.47	LL76, HLK04, BEG03
J1740+1311	17 : 40 : 07.3455	+13 : 11 : 56.69	3100 ± 1600	-22 ± 2	-20 ± 2	8.77	MLT78, HLK04,
J1741—3927	17 : 41 : 18.081	-39:27:38.0	4000 ± 800	20 ± 15	-6 ± 59	4.2	BFG03 MLT78, WMZ01,
11745-3040	17 · 45 · 56 305		2000 ± 100	6 + 3	4 + 26	0 546	ZHW05 KAC73 ZHW05
51145-5040	17 . 43 . 30.303	-30 : 40 : 23.3	2000 ± 100	0 ± 3	4 <u>1</u> 20	0.540	HLK04
J1752—2806	17 : 52 : 58.6896	-28:06:37.3	1380 ± 150	-4 ± 6	-5 ± 5	1.1	TV68, HLK04, FGML97
J1801-2451	18 : 01 : 00.016	-24 : 51 : 27.5	4900 ± 300	-11 ± 9	-1 ± 15	0.0155	MDT85, HLK04,
J1803—2137	18 : 03 : 51.4105	-21 : 37 : 07.351	3900 ± 800	11.6 ± 1.8	14.8 ± 2.3	0.0158	CL86, BCFK06,
J1809—1943	18 : 09 : 51.08696	—19 : 43 : 51.9315	3500 ± 400	-6.60 ± 0.06	-11.7 ± 1.0	0.0113	YVVML10 IMS04, HCB07,
11824-1945	18 · 24 · 00 4555		5000 + 300	-12 + 14	-100 + 220	0 573	CCR07 MIT78 HIK∩4
	20.21.00.4000	23 . 10 . 01.1	2000 - 000		200 - 220	0.070	ZHW05

Table B.1: - Continued. -

PSR	α [h∶m∶s]	δ [°.'.'']	<i>d</i> [pc]	μ^*_{lpha} [mas/yr]	μ_{δ} [mas/yr]	τ _{char} [Myr]	Ref
J1824-2452A	18 : 24 : 32.00796	-24 : 52 : 10.824	3400 ± 400	-0.9 ± 0.1	-4.6 ± 1.8	29.9	LBM87, VBC09,
J1825—0935	18 : 25 : 30.629	-09 : 35 : 22.3	1000 ± 200	-13 ± 11	-9 ± 5	0.232	DLS72, YWML10,
J1826-1334	18 : 26 : 13.175	-13 : 34 : 46.8	4000 ± 100	23.0 ± 2.5	-3.9 ± 3.1	0.0214	CL86, PKB08, YWML10
J1829-1751	18 : 29 : 43.137	-17:51:03.9	5100 ± 400	22 ± 13	-150 ± 130	0.877	DLW72, HLK04, ZHW05
J1832-0827	18 : 32 : 37.0200	-08 : 27 : 03.64	4800 ± 700	-4 ± 4	20 ± 15	0.161	CL86, HLK04
J1835-1106	18 : 35 : 18.287	-11:06:15.1	3000 ± 200	27 ± 46	56 ± 190	0.128	MLD96, DSB98, ZHW05
J1836-1008	18 : 36 : 53.925	-10:08:08.3	4900 ± 500	18 ± 65	12 ± 220	0.756	MLT78, HLK04, ZHW05
J1840+5640	18 : 40 : 44.608	+56 : 40 : 55.47	1700 ± 20	-30 ± 4	-21 ± 2	17.5	SKK80, HLK04, HLA93
J1844+1454	18 : 44 : 54.8946	+14 : 54 : 14.12	2200 ± 50	-9 ± 10	45 ± 6	3.18	MLT78, HLK04, HLA93
J1856-3754	18 : 56 : 35.41	-37 : 54 : 08	123^{+15}_{-11}	$+325.9\pm2.3$	-59.2 ± 2.1	3.76	TM07, WM97, WEL10, VK08
J1900-2600	19 : 00 : 47.582	-26 : 00 : 43.8	$2000^{+?}_{-1091} f$	-19.9 ± 0.3	-47.3 ± 0.9	47.4	VL70, HLK04, FGBC99
J1907+4002	19:07:34.656	+40 : 02 : 05.71	2000 ± 250	11 ± 4	11 ± 1	36.2	DTH78, HLK04, HLA93
J1913-0440	19 : 13 : 54.1735	-04 : 40 : 47.68	3000 ± 200	7 ± 13	-5 ± 9	3.22	LVW69b, HLK04, HLA93
J1917+1353	19 : 17 : 39.7902	+13 : 53 : 56.95	4000 ± 200	0 ± 12	-6 ± 15	0.428	SMB71, HLK04, ZHW05
J1919+0021	19 : 19 : 50.663	+00:21:39.8	3200 ± 200	-2 ± 30	-1 ± 10	2.63	DLS72, HLK04, HLA93
J1921+2153	19 : 21 : 44.815	+21 : 53 : 02.25	880 ± 250	17 ± 4	32 ± 6	15.7	HBP68, HLK04, ZHW05
J1932+1059	19 : 32 : 13.9497	+10 : 59 : 32.420	361^{+9}_{-9}	94.09 ± 0.11	42.99 ± 0.16	3.1	LVW68, CCV04, HLK04
J1935+1616	19 : 35 : 47.8259	+16 : 16 : 39.986	4545^{+5455}_{-1604}	1.13 ± 0.13	-16.09 ± 0.15	0.947	DL70, HLK04, CBV09
J1941-2602	19 : 41 : 00.4070	-26 : 02 : 05.75	3200 ± 1500	12 ± 2	-10 ± 4	6.68	MLT78, HLK04, BFG03
J1946-2913	19 : 46 : 51.734	-29:13:47.1	2900 ± 1400	19 ± 9	-22 ± 20	10.2	MLT78, HLK04, BFG03
J1952+3252	19 : 52 : 58.206	+32 : 52 : 40.51	2700 ± 500	-28.8 ± 0.9	-14.7 ± 0.9	0.107	KCB88, ZBCG08, HLK04
J1955+5059	19 : 55 : 18.7637	+50 : 59 : 55.292	2000 ± 800	-23 ± 5	54 ± 5	5.99	DTH78, HLK04, HLA93
J2022+2854	20 : 22 : 37.0671	+28 : 54 : 23.104	2703^{+1297}_{-662}	-4.4 ± 0.5	-23.6 ± 0.3	2.87	FSS73, HLK04, BBGT02
J2022+5154	20 : 22 : 49.8730	+51 : 54 : 50.233	2000^{+326}_{-246}	-5.23 ± 0.17	11.5 ± 0.3	2.74	DL70, HLK04, BBGT02
J2046-0421	20 : 46 : 00.157	-04 : 21 : 26.0	2800 ± 1050	9 ± 16	-7 ± 8	16.7	MLT78, HLK04, HLA93
J2048-1616	20 : 48 : 35.640637	-16 : 16 : 44.55350	952^{+28}_{-26}	113.16 ± 0.02	-4.60 ± 0.28	2.84	TV68, DTBR09, CBV09. HI K04
J2055+3630	20 : 55 : 31.3521	+36 : 30 : 21.469	5882^{+1261}_{-882}	1.04 ± 0.04	-2.46 ± 0.13	9.51	DBTB82, HLK04. CBV09
J2113+2754	21 : 13 : 04.3895	+27 : 54 : 02.29	1700 ± 350	-23 ± 2	-54 ± 3	7.27	SKK80, HLK04, HLA93

Table B.1: - Continued. -

PSR	lpha [h:m:s]	δ [°:':']	<i>d</i> [рс]	μ^*_{lpha} [mas/yr]	μ_{δ} [mas/yr]	<i>⊤_{char}</i> [Myr]	Ref.
J2116+1414	21 : 16 : 13.752	+14 : 14 : 21.04	4300 ± 150	8 ± 15	-11 ± 5	24.1	MLT78, HLA93, HLK04
J2157+4017	21 : 57 : 01.8495	+40 : 17 : 45.986	3571^{+974}_{-630}	16.13 ± 0.10	4.12 ± 0.12	7.04	FSS73, CBV09, HLK04
J2219+4754	22 : 19 : 48.139	+47 : 54 : 53.93	2500 ± 150	-12 ± 8	-30 ± 6	3.09	TH69, HLK04, LAS82
J2225+6535 ^e	22 : 25 : 52.721	+65 : 35 : 35.58	2000 ± 1000	144 ± 3	112 ± 3	1.12	DLS73, YWML10, HLA93
J2305+3100	23 : 05 : 58.324	+31:00:01.76	3800 ± 200	2 ± 2	-20 ± 2	8.63	LAN69, BFG03, HLK04
J2308+5547	23 : 08 : 13.822	+55 : 47 : 36.03	2300 ± 150	-15 ± 8	0 ± 27	37.7	DLS72, HLK04, HLA93
J2313+4253	23 : 13 : 08.6209	+42 : 53 : 13.043	1075^{+88}_{-75}	24.15 ± 0.10	5.95 ± 0.13	49.3	DTH78, CBV09, HLK04
J2321+6024	23 : 21 : 55.213	+60:24:30.71	3000 ± 700	-17 ± 22	-7 ± 19	5.08	DLP70, HLK04
J2330-2005	23 : 30 : 26.885	-20:05:29.63	440 ± 50	74.7 ± 1.9	5 ± 3	5.62	LL76, HLK04, BFG03
J2337+6151	23 : 37 : 05.762	+61 : 51 : 01.53	2800 ± 300	-1 ± 18	-15 ± 16	0.0406	DTWS85, YMW10, HLK04
J2354+6155	23 : 54 : 04.724	+61 : 55 : 46.79	3370 ± 60	22 ± 3	6 ± 2	0.92	DBTB82, HLA93, HLK04

^a Crab Pulsar, ^b Geminga, ^c Vela Pulsar, ^d RBS 1223, ^e Guitar Pulsar

 $^{\rm f}$ The parallax of PSR J1900-2600 is $\pi=0.5\pm0.6\,{\rm mas},$ hence the error is larger than the value itself. Therefore, no upper distance limit can be obtained.

Dispersion measured distances by [479]; Table compiled using the ATNF Pulsar database [338].

References: ANTT94 – [10], BBGT02 – [57], BCKF06 – [58], BDP03 – [66], BFG03 – [59], BMK90a – [17], BMK90b – [18], BTGG03 – [60], CBV09 – [80], CCL01 – [83], CCR07 – [70], CCV04 – [84], CL86 – [93], CL97a – [94], CLM98 – [75], CLS68 – [103], CP68 – [95], DBT09 – [129], DBTB82 – [108], DL70 – [114], DLP70 – [115], DLRM03 – [138], DLS72 – [116], DLS73 – [117], DML02 – [139], DSB98 – [111], DTBR09 – [130], DTH78 – [109], DTWS85 – [131], E11 – [150], FCWA95 – [166], FGBC99 – [164], FGML97 – [165], FSS73 – [155], FWA07 – [156], GH09 – [189], GTWR86 – [203], HAB07 – [204], HBP68 – [219], HCB07 – [215], HH92 – [207], HHSS02 – [208], HHV10 – [227], HLA93 – [211], HLK04 – [222], HMB97 – [205], HT69 – [235], HTG68 – [236], IMS04 – [242], JH05 – [243], KAC73 – [279], KCB88 – [285], KKK03 – [262], KKV02 – [261], KLH03 – [282], KSM06 – [283], KV05a – [263], KVA07 – [264], LAN69 – [287], LAS82 – [315], LBM87 – [316], LL76 – [317], LPS93 – [319],LVM68 – [288], LVW68 – [289], LVW69a – [290], LVW69b – [291], MCN71 – [354], MDT85 – [337], MLD96 – [339], MLT78 – [340], MPH07 – [378], MPH09 – [379], MPK10 – [368], MTH72 – [342], NMC81 – [390], NR06 – [392], PHBC68 – [411], PKB08 – [400], PPH07 – [421], SHA10 – [449], SHHM05 – [446], SKK80 – [451], SMB71 – [475], SMD93 – [452], SR68 – [466], TH69 – [480], TM07 – [493], TV68 – [508], VAZS69 – [523], VBC09 – [522], VK08 – [516], VL70 – [519], VL72 – [520], VLW69 – [521], WEL10 – [526], WM97 – [528], WP07 – [542], YMW10 – [555], YWML10 – [556], ZBCG08 – [558], WMZ01 – [530], ZHW05 – [561].

PSR J0034-0721 PSR J0454+5543 PSR J0630-2834 PSR J0633+1746 (= Geminga, "3M") PSR J0659+1414 ("3M") RX J0720.4-3125 ("M7") PSR J0820-1350 PSR J0826+2637 PSR J0835-4510 (= Vela Pulsar) PSR J0953+0755 PSR J1136+1551 PSR J1239+2453 PSR J1509+5531 RX J1605.3+3249 ("M7") RX J1856.5-3754 ("M7") PSR J1932+1059 (PSR B1929+10) PSR J2048-1616 PSR J2225+6535 (Guitar Pulsar) PSR J2313+4253 PSR J2330-2005

Table B.2: The subsample of neutron stars investigated in great detail.

C The Catalogue of Young Runaway Hipparcos Stars

C.1 Young Hipparcos Stars

Table C.1: Ages τ_{\star} (in Myr), masses M_{\star} (in solar masses) and spectral types (SpT) for 6300⁶⁶ potentially young stars (sorted by their HIP number). τ_{\star} and M_{\star} are medians obtained from different evolutionary models (see Section 2.1). For 2466 stars, only the spectral type is given as models infer a larger age; however, these are possibly also young (as inferred from the spectral type and luminosity class).

HIP	other D	mass [M⊙]	age [Myr]	SpT	HIP	other ID	mass [M⊙]	age [Myr]	SpT
32	HD 224756	30 ± 00	10.0 + 6.8	B8	1209	HD 1057			K211
89	HD 224837	5.0 ± 0.0	10.0 ± 0.0	K2	1272	HD 1160	2.1 ± 0.0	58.8 ± 33.7	A0
106	HR 9083			G7 -	1310	HD 1192	6.8± 0.7	55.2 ± 7.3	G 5
124	HR 9085	$7.7\pm~0.3$	$38.5\pm~3.8$	F0	1319	* 36 Psc			G811-111
137	HR 9086			B9⊞p Mn	1331	HR 61	3.9 ± 0.1	22.6 ± 2.3	B6111/IV
139	V* V747 Cep	15.0 ± 1.1	$2.7\pm~3.4$	B0	1367	HD 1281	6.3 ± 0.9	63.1 ± 29.8	K5
145	* 29 Psc			B7 - V	1372	HR 62			B7III
167	HD 224957	2.5 ± 0.1	70.8 ± 28.8	B9	1377	HD 1290	1.9 ± 0.0	25.1 ± 13.1	A2
174	HD 240475			G 911-111	1415	V* AO Cas	$17.7\pm~2.5$	$3.5\pm~1.1$	O9IIInn
183	* zet Scl	5.5 ± 0.5	39.8 ± 19.7	B4V	1419	HD 1397			K0:Ib
232	HD 225047	2.0 ± 0.0	34.0 ± 18.4	AOV	1421	HR 67			K0II
274	V* V639 Cas	10.0 ± 1.7	22.6 ± 4.4	B3la Dolla	1428	HD 1334	6.2 ± 0.2	1.2 ± 0.9	B2.5V
278	HD 225095	9.8 ± 0.2	20.6 ± 1.7	B2IVne+	1429	V* BVV Psc			MI411-111
247	UD 225100	9.7 ± 0.9	25.1 ± 2.9	A IIII	1459		62⊥ 0°	621 1 22 2	Gon
355	* 3 Cet	0.7 ± 0.4 87 ± 13	24.1 ± 3.0 20.0 ± 7.1	K3lbyar	1479	BD-702 5	0.2 1 0.0	03.1 ± 23.3	K7 ab
365	ADS 30	0.7 ± 1.5	29.0 1 1.1	B9III	1505	BD+67 17	26 ± 01	70 ± 29	B8
377	HR 9108			B8111	1590	HD 236378	2.0 1 0.1	1.0 <u>T</u> 2.0	B5
398	CCDM	10.0 ± 0.5	20.0 ± 1.2	B3V	1602	HD 1585	9.3 ± 0.6	25.6 ± 3.2	K0
	J00049+5832AB				1621	HD 232161			B3
410	HD 225292			G 811	1728	V* T Cet			M5/M6Ib/II
439	HD 225213	$0.3\pm~0.1$	38.4 ± 15.4	M2V	1733	HD 1709	$1.9\pm~0.0$	43.1 ± 29.9	A2
477	HD 91	$1.4\pm~0.0$	35.8 ± 5.6	A9/F0V	1762	HD 1778			F3
483	HD 56	2.0 ± 0.0	31.6 ± 19.2	A 0	1769	HD 1794	$6.4\pm~1.0$	60.5 ± 10.6	K5
505	HD 108	$32.2\pm~9.6$	2.0 ± 0.4	Обре	1803	V* BE Cet	$1.1\pm~0.0$	29.1 ± 7.2	G 3V
531	* 10 Cas			B9111	1805	V* V745 Cas	$12.0\pm~0.8$	$0.1\pm~0.0$	B0IV
544	V* V439 And	1.0 ± 0.0	20.1 ± 5.4	K0V	1819	HD 232172	4.0 ± 0.0	15.7 ± 13.7	В5
575	BD+64 1899	2.7 ± 0.1	7.0 ± 2.9	B8	1910	HIP 1910	0.8 ± 0.2	5.2 ± 5.0	M1
582	BD+61 2594	2.0 ± 0.0	20.1 ± 9.3	AOV	1921	V* V746 Cas	5.9 ± 0.2	63.1 ± 14.5	B5IV
635	* 4 Cet	10 01	107 0 0 0	B8111sp	1960	* 12 Cas		20.1 0.4	B9111
638	BD+20 4	1.9 ± 0.1	12.7 ± 2.5	A2	1979		2.0 ± 0.0	20.1 ± 8.4	AU
744	HD 480			B5V	2036		0.8 ± 0.2 125 ± 1.2	1.2 ± 0.0	B1V
779	V* KN Cas			Milbney	2030	HD 2193	20 ± 00	20.1 ± 0.7	A0
115	• • • • • • • • • • • • • • • • • • • •			comp	2063	HD 2152	6.2 ± 0.6	63.7 ± 14.6	K0
803	HD 545	6.2 ± 0.4	63.7 ± 14.6	К2	2071	HD 2263			A3 / p
805	HD 563			K1	2084	BD+60 50	$6.2\pm~0.9$	63.5 ± 24.2	K5 .
841	* 22 And			F2	2191	HD 2329	$6.0\pm~0.1$	$10.0\pm~2.5$	B3V
857	HR 28	3.5 ± 0.1	38.6 ± 5.0	B7IV	2198	HD 2370	2.0 ± 0.1	20.1 ± 9.3	A 0
860	HD 593	12.0 ± 0.5	$8.0\pm~2.8$	B1V	2200	HD 2389	$1.9\pm~0.1$	15.8 ± 4.5	A2
871	V* SX Cas			B7111e+K3111	2227	HD 2455			K1
890	BD+64 7	$4.7\pm~0.3$	$39.8\pm~3.5$	B5	2328	CCDM	$3.0\pm~0.2$	$10.0\pm~6.8$	B8
905	HD 669	1.8 ± 0.0	12.0 ± 1.9	A2		J00297+5855AB			
926	HD 711	7.2 ± 0.6	45.8 ± 8.0	K0	2347	V* DL Cas			G1 bvar
940	HD 698	9.2 ± 0.8	22.6 ± 2.1	B5II: SB	2377	HR 113		144 1 10	B9IIIn
951	HD 725	6.9 ± 0.7	47.1 ± 2.8	F516-11	2409	HD 2654	9.0 ± 0.3	14.4 ± 1.9	B2V
1000		7.9 ± 0.7	37.4 ± 7.0 16.2 \pm 2.2		2407		2.5 ± 0.0	4.3 ± 1.0	AZV
1050	V* gam Peg	9.1 ± 0.2 8.9 ± 0.1	10.2 ± 3.3 185 ± 1.6	B2V B2IV	2525	HD 2789	67+03	249 ± 10	B3Vne
1077	BD+64 13	6.3 ± 0.2	2.3 ± 1.0	B2.5V	2525	HD 2825	9.0 ± 0.3	27.2 ± 4.2	K2
1115	HD 955	5.0 ± 0.0	8.4 ± 5.3	B4V	2578	HR 136	2.1 ± 0.1	6.3 ± 0.7	A0V
1118	HD 936			G 811	2580	HD 2970			G3/G5
-					2583	HR 134			, G 8
					2599	V* kap Cas	21.1 ± 3.2	$4.2\pm~0.3$	B1 a
					2644	V* ZZ Cas			B3
					2707	* 16 Cas			B9
					2710	HD 3126	1.5 ± 0.0	17.3 ± 4.3	F2

⁶⁶Note that this number is much smaller than the 7663 possible young stars published with the first version of the runaway star catalogue (Tetzlaff et al. 2011 [486]). Many stars were a priori removed in the updated version due to very uncertain ages.

Table C.1: - Continued. -

HIP	other D	mass [M _☉]	age [Myr]	ЅрТ	HIP	other D	mass [M⊙]	age [Myr]	ЅрТ
2729	HD 3221	09+00	91+ 17	K5V	4778	HD 5989	62 ± 05	637 ± 146	к0
2791	HD 236471	4.0 ± 0.0	16.8 ± 7.4	Ар	4869	HD 6446	0.2 1 0.0	00.1 ± 11.0	K2 CNp
2796	HD 3147	9.8 ± 1.3	22.6 ± 1.4	K2 b-	4897	HD 6048			B811
2807	BD+45 149	$2.0\pm~0.1$	20.1 ± 9.3	A0	4902	HD 6084	$7.6\pm\ 0.3$	39.8 ± 4.4	B5
2816	HD 3191	10.0 ± 1.0	$10.1\pm~1.8$	B1 V:nn	4919	HD 6148	$6.0\pm~0.5$	$50.1\pm~6.9$	B5
2826	BD+75 26	2.9 ± 0.3	10.0 ± 6.8	B8	4961	HD 6147	6.3 ± 0.8	63.1 ± 23.3	K5
2838	HD 3162	6.5 ± 1.2	53.6 ± 20.4	K5	4962	HR 292	6.5 ± 0.4	47.9 ± 1.6	FOIL
2050	HD 3239 HR 144	1.9 ± 0.0	21.4 ± 0.4	AZ B7111	4973	HD 6226	81 + 03	172 ± 41	B2IV-V
2859	HD 3250			K0 -	5013	HD 6238	0.1 ± 0.5	17.2 1 4.1	G8 -
2860	HD 3264	$7.6\pm~0.3$	2.8 ± 1.5	B2V	5015	HD 6209			B811
2865	V* PY And			B8111MNp	5023	HIP 5023			В
2876	HR 146	$8.7\pm~0.3$	29.8 ± 3.1	A4111	5055	HD 6328	8.2 ± 0.5	31.9 ± 5.9	K2
2903	V* AG Psc	7.2 ± 0.0	21.9 ± 1.4	B2.5IV	5062	HR 302	$7.0\pm~0.1$	28.2 ± 2.4	B3V
2912	* 29 And	5.9 ± 0.2	63.1 ± 13.8	B5V	5081	* 72 Psc	74 - 06		F4 -
2920	™ zet Cas	9.1 ± 0.2	19.8 ± 1.5	B2IV	5100	HD 6327	7.4 ± 0.6 7.1 ± 0.2	4.0 ± 2.1	
2957	HD 3366	71 ± 01	295 ± 20	B3	5171	HD 6578	7.1 ± 0.2	59.0 ⊥ 4.0	G811/111
3013	BD-15 115	1.1 2 0.1	2010 1 210	B2	5191	HD 6569	0.9 ± 0.1	33.5 ± 15.6	K1V
3083	HR 164	$7.8\pm~0.7$	35.9 ± 4.4	K5	5208	BD+67 95	4.0 ± 0.0	$10.6\pm~8.9$	В5
3179	SCHEDAR			K0 - var	5251	HR 318	7.5 ± 0.6	40.3 ± 8.7	K0
3190	HD 3822			G811/111	5285	HD 6665	$3.5\pm~0.5$	$0.4\pm~0.2$	G 5
3288	HD 3979			G811/111	5307	HD 6581	3.2 ± 0.1	50.0 ± 6.8	B8
3300	* ksi Cas	10.0 ± 0.1	25.1 ± 1.9	B2.5V	5363		1.7 ± 0.1	9.5 ± 1.0	A9V
3334 3360	HR 181			R311 111	5372	JU1080-4040AB			K211 111
3381	CD-38 222	2.6 ± 0.1	7.0 ± 2.9	B8	5388	HD 6756	2.9 ± 0.0	31.6 ± 19.3	B8
3383	BD+63 82	4.6 ± 0.4	29.7 ± 4.3	B5	5391	V* OX Cas			B1Vv SB
3478	HR 189	5.0 ± 0.0	52.9 ± 3.6	B5V	5434	* phi And	6.2 ± 0.1	63.1 ± 15.6	B7111
3504	* omi Cas			B5111	5477	HR 350			G611/111
3517	HD 4332			K411/111CNV:	5482	HD 6832			B9111
3532	HD 4179	6.3 ± 0.3	68.6 ± 22.9	K0	5533	HD 6962	7.7 ± 0.5	39.8 ± 6.2	K2 B7UUW
3585	GJ 3054 HD 4312	0.3 ± 0.0	2.5 ± 0.0	K511	5569	HD 236644			B7III-IV B5
3604	HR 205			B9.5111MNp	5609	HD 236650	4.6 ± 0.4	36.3 ± 10.2	B5
3649	HR 207	$7.2\pm~0.7$	43.3 ± 5.7	G0IB	5635	HD 7329			F2
3675	* 58 Psc			G8II	5657	BD+65 142	6.1 ± 0.3	$50.1\pm~7.8$	B5
3692	HD 4479	$6.9\pm~0.4$	43.3 ± 5.7	K0	5680	HD 236658			K1 -
3693	V* zet And			K1II	5768	HD 7252	11.9 ± 0.6	9.8 ± 1.1	B1V SB
3721	* 23 Cas	76 ± 10	30.0 ± 0.8	R3	5778	* 87 Psc HD 7598			B9111 K1/K211/111
3801	* 25 Cas	1.0 1 1.0	JJ.J ⊥ J.O	B9111	5832	HD 7371	2.0 ± 0.0	20.1 ± 9.3	A0
3869	HD 4760	$6.8\pm~0.4$	$50.1\pm~6.5$	К2	5863	HD 7370			B811
3881	* 35 And	$5.9\pm~0.2$	63.1 ± 16.6	B5V SB	5884	HD 7529	$6.9\pm~0.3$	47.9 ± 2.1	K2
3886	V* XY Cas			F6lb-G2lb	5904	HD 236677	$3.1\pm~0.1$	32.2 ± 27.3	B8
3887	HD 4694	9.2 ± 1.0	22.5 ± 3.6	B3la	5912	HD 7507	6.6 ± 0.7	52.8 ± 13.6	K5
4059		1.9 ± 0.0	39.8 ± 26.8		5926	V* V762 Cas	16.9 ± 2.5	10.0 ± 1.8	RIV
4214	BD+33 126	3.1 ± 0.1	35.7 ± 30.6	B8	6016	HD 7637	6.2 ± 0.7	63.7 ± 14.6	K2
4279	V* BM Cas			F0la	6027	HD 7636	9.9 ± 0.4	19.8 ± 1.1	B2111ne+
4281	BD+67 77	$4.0\pm~0.1$	15.9 ± 3.1	B5	6073	HD 7734	$6.9\pm~0.5$	$50.1\pm~6.5$	K2
4315	HD 5292	$2.0\pm~0.0$	$20.1\pm~8.4$	A0	6087	HR 376	$7.9\pm~0.5$	38.5 ± 5.6	K0
4347	HD 5424			G811	6109	HD 7720			B5
4367	HD 5374	2.0 ± 0.0	20.1 ± 9.3	A0	6137	HD 8001	6.3 ± 1.0	58.5 ± 16.0	K3
4382 4427		193 ± 01	80+ 05	B0IV evar	6224	HD 7862 HD 7842	8.7 ± 0.4 20 ± 00	30.3 ± 4.0 11.0 ± 0.9	κ2 Δ0
4421	J00567+6043AB	19.5 ± 0.1	0.0 ± 0.5	Dorviera	6399	HD 8159	5.0 ± 0.4	51.7 ± 7.8	Allab
4449	HD 5392	$6.9\pm~0.2$	46.0 ± 2.5	F4lab:	6401	HD 8209			B5
4477	HD 5492	$9.3\pm~0.8$	$26.4\pm~5.4$	K2	6402	HD 8267			G 811
4532	HD 236589	$7.6\pm~0.4$	1.3 ± 0.3	B1	6485	HD 8558	1.0 ± 0.0	31.5 ± 7.1	G6V
4541	V*W Tuc	$1.4\pm~0.0$	35.8 ± 5.6	A8.7:	6492	HR 397	6.3 ± 0.7	63.1 ± 27.7	K5
4548	HD 5773			F2 /	6500	BD+68 97	$3.1\pm~0.1$	35.7 ± 30.6	B8
45// 4600	v⊤ait Sci HD 5754	60+ 00	50.1 ± 12.6	В7Шр К2	0552 6562	vт в⊎ Нуі НD 8372	624 06	63.7 ± 14.2	FUII/III KO
4624	HD 5780	0.9 ± 0.8	JU.I <u>T</u> 12.0	™4 K5 -	6571	HD 8397	0.2 ± 0.0 7.1 ± 0.4	42.4 ± 10.4	K5
4674	HD 5747			G811	6595	HR 411	0.4		K1
4683	HD 232344			В5	6617	HD 8507			G 511
4744	HD 5882	6.3 ± 0.3	2.6 ± 2.3	B2.5Vn	6676	HD 8861			K0 /
4769	HIP 4769			В	6773	HD 8791			K3

Table C.1: - Continued. -

			14	DIC C.1.	Contin	ucu.			
HIP	other D	mass [M⊙]	age [Myr]	ЅрТ	HIP	other D	mass [M _☉]	age [Myr]	ЅрТ
6775	HD 236737	6.5 ± 0.2	22.8 ± 1.2	В3	9017	BD+55 441			B1V:pe
6811	HD 8701	8.9 ± 1.3	29.8 ± 9.5	K2 :p	9026	BD+64 263			B5
6856	V* CC Phe	0.8 ± 0.0	54.6 ± 6.8	K1V	9042	V* V391 Cas	11.5 ± 1.1	17.7 ± 1.7	M4
6861	HD 9067			G311/111	9048	HD 236912	$5.4\pm~0.4$	10.0 ± 1.0	B3
6867	V* gam Phe			K5 -	9077	HD 11773	$7.5\pm~0.8$	42.4 ± 10.5	K5
6923	HD 236756	3.2 ± 0.1	32.2 ± 22.2	B8	9140	HD 12603			F3
7003	HD 9098	$1.9\pm~0.1$	12.0 ± 1.9	A2	9144	BD+44 391	$3.2\pm~0.1$	50.1 ± 43.2	B8
7147	HK 438			B7IIIMINP	9149	HR 584			G8II/III
7192		30+00	27 + 03	BTV	9150	HR 502 HD 11884	70+03	433± 51	POILI
7195	HD 9487	5.0 1 0.0	2.7 ± 0.5	A3 / (m)	9105	HD 11859	1.0 ± 0.5	45.5 ± 5.1	B9111
7234	HD 9393	2.0 ± 0.0	11.0 ± 0.9	A0p	9220	HR 561			B5111
7251	HR 439	7.9 ± 0.7	37.4 ± 8.1	К0ІЬ+	9221	BD+37 442	15.0 ± 1.1	0.2 ± 0.1	sdO:
7253	HD 9366			K3 b	9355	V* DE Psc	7.9 ± 1.0	38.4 ± 9.4	K5
7255	HD 9493			G811-111	9362	HD 12431			K011/111CN.
7265	HD 9510	$1.9\pm~0.1$	36.0 ± 23.2	A2	9445	BD+49 524	$7.6\pm~0.6$	43.3 ± 6.3	A0
7310	BD-12 290	$3.9\pm~0.1$	$1.4\pm~0.4$	А	9456	HD 12633			K3 /
7374	HD 9638			K211	9470	HD 12390	$6.9\pm~0.4$	45.8 ± 8.0	K0
7423	BD+65 180	$3.1\pm$ 0.1	$10.0\pm~6.8$	B8	9505	* g Per			B8111
7436	* 101 Psc			B9.5III	9534	HD 12561	$3.7\pm~0.0$	17.9 ± 7.0	B6V
7512	V* V769 Cas			B8III	9538	HD 12302	9.9 ± 0.1	7.5 ± 4.3	B1:V:pe
7576	V* EX Cet	1.0 ± 0.0	40.7 ± 6.6	G5	9549	HD 12707	4.4 ± 0.4	21.1 ± 7.0	B5V
7588		$(.9 \pm 0.3)$	37.3 ± 4.5	ВЗУр	9556	HD 12342	3.2 ± 0.2	28.0 ± 11.5	B/IV B/IV
7593	HD 9811	7.2 ± 0.6	44.7 ± 5.2	Ablab	9572	HR 608	70 00		KUII/III
7617	HR 461	8.4 ± 0.5	31.9 ± 5.0	G 511	9573	* 53 Cas	7.9 ± 0.3	37.4 ± 4.7	BOIL
7650	HD 236810	7.0 ± 0.2	18.0 ± 1.8	Gell Illvar	9575	HD 12340	204 00	2°1⊥ 76	Balli
7663	40 Cas			A 011	9000	HR 611	2.0 ± 0.0	20.1 1 7.0	K5lab
7668	HD 10006			K111	9640	ADS 1630 ABC	237 ± 0.0	65 ± 01	B8V
7678	BD+63 212	57 ± 03	63.1 ± 16.0	B5	9703	HD 236940	23.1 ± 0.0	0.5 1 0.1	B2
7745	HD 10063	0.7 ± 0.0	00.1 ± 10.0	B8 ab	9765	HD 12567	11.9 ± 0.9	6.8 ± 4.3	B0.5
7818	* tau And			B8III	9795	HD 12650			G211
7873	HD 10747	$5.4\pm~0.4$	$5.8\pm~4.8$	B3V	9817	HD 12709	$6.8\pm~0.4$	$34.8\pm~3.0$	B4IV
7908	HD 10286			F0	9886	HD 236947			M2 a0-a
7939	V* V772 Cas			B8⊞p (Si)	9890	HD 12844	$2.4\pm~0.0$	53.6 ± 12.8	B9
7955	HR 497			K1 /	9892	HD 13183	$1.0\pm~0.0$	$32.4\pm~6.9$	G5V
7958	HD 10970			F0 /	9980	HD 12928			B8111
7963	HR 482			B8III	9987	HD 13280			K1/K2
7989	HD 10332			K2	9990	V* V472 Per	$12.0\pm~0.6$	16.1 ± 1.0	A1 a
7999	HR 500			K3 -	10105	HD 13732			G811/111
8006	BD+69 115	3.0 ± 0.1	39.8 ± 30.5	B8	10130	HD 13247	2.3 ± 0.1	13.8 ± 3.5	B9V
8020	HR 488			B7II Bollin	10137	HD 13928			FUII/III
8040	* 44 Cas	62 - 00	60 1 ± 21 0	D8IIIN KE	10141	V* V784 Cas	40±00	12.0 ± 11.1	F 511 P 5
8066	HD 10229	0.5 ± 0.9	00.1 ± 21.0	A 711	10173	4D 13355	4.0 ± 0.0 2.7 ± 0.1	70 ± 20	BS
8068	V* phi Per	10.0 ± 0.7	215 ± 20	B2Vne	10222	HD 13333	2.7 ± 0.1	1.0 1 2.9	B8III
8134	HD 10698	6.3 ± 0.5	63.7 ± 13.7	K0	10324	* 65 Cet			G8II:
8235	HD 232522	7.6 ± 0.3	1.7 ± 0.7	B1	10334	HD 13565			K0
8242	HD 232525	$12.0\pm~0.8$	$0.1\pm~0.0$	B0	10354	HD 13437			G511
8244	HD 10292	$6.3\pm~0.3$	63.1 ± 14.8	K5	10361	HD 13519	12.0 ± 0.6	20.0 ± 5.0	K5
8310	HD 10968			K0 /	10364	BD+68 154	5.0 ± 0.1	50.1 ± 3.9	B5
8321	HD 10806			G9lb	10396	HD 13763	$6.2\pm~0.6$	63.7 ± 14.0	K0
8415	HD 10898	11.9 ± 0.9	15.8 ± 1.0	B2lb	10463	HD 13661	$8.1\pm~0.4$	$17.6\pm~2.2$	B2IV-Ve
8466	HD 11060	$2.0\pm~0.0$	31.6 ± 19.2	A0	10527	HD 13716	$10.0\pm~0.0$	$5.1\pm$ 5.3	B0.5III
8585	HD 236891	2.7 ± 0.2	10.0 ± 6.8	B8	10549	HD 13935	$2.0\pm~0.0$	22.5 ± 10.7	A0
8632	BD+64 244	4.5 ± 0.4	34.6 ± 11.9	B5	10557	HD 13686		001	КЗІЬ
8693	V" V//5 Cas	3.1 ± 0.1	39.8 ± 34.5	BIEV	10564	HD 14111	2.0 ± 0.0	20.1 ± 9.3	AUm
8704	V™ V436 Per	10.0 ± 0.5	10.9 ± 0.8	B1.5V	10585		2.4 ± 0.1	31.8 ± 10.6	89V
0125 8720	HD 232552	20.0± 0.0 12.0⊥ 0.0	0.1 ± 0.0 0.1 + 0.0	Bûne	10619	HD 13725	2.0 ± 0.0	20.1 ± 9.3 573 ± 04	AU K/11
8767	HD 11668	12.0 ± 0.8	0.1 _ 0.0	RUII	106/1	V* V357 Dav	0.2 ± 0.0 69 ± 0.2	31.3 ± 0.4 30.4 ± 1.2	R216
8855	BD+47 521	27+02	10.0 ± 6.8	B8	10653	BD+57 530	0.9 1 0.2	JU.7⊥ 1.2	M0lab-b
8886	* eps Cas	9.2 + 0.1	15.6 ± 3.0	B2pvar	10731	HD 14155	1.9 + 0.0	50.1 + 36 3	A3
8926	HD 11650	3.2 1 0.1		K1 -	10786	HD 14706	1.2 ± 0.0	27.2 ± 4.5	GOV
8950	HD 11577			A011	10806	HD 15532	0.0		K0 /
8979	HD 11053	$6.2\pm~0.6$	63.1 ± 20.2	K5	10829	V* T Per			, M2 ab:var
	HD 11606	9 E ± 0 4	10.3 ± 2.5	B 21/n e	10849	HD 1/220	70 ± 0.0	0.9 ± 0.6	B21/
8980	110 11000	0.5 ± 0.4	10.5 ± 2.5	DZVIIE	10045	110 14220	1.0 ± 0.0	0.5 ± 0.0	D2 V
8980 9008	HD 11815	2.0 ± 0.1	20.1 ± 9.3	A0	10851	V* AA For	1.0 1 0.0	0.5 1 0.0	M411

HIP	other D	mass [M⊙]	ag e [Myr]	SpT	HIP	other ID	mass [M _☉]	age [Myr]	Sp⊤
10873	HD 14210			B9	12226	HD 16185	2.8 ± 0.0	10.0 ± 6.8	А
10904	V* V605 Cas			M2Iab	12249	HD 16159			B9111
10924	HR 679			B5V	12293	BD+60 526	10.0 ± 1.1	13.7 ± 4.5	B2
10951	V* V436 And	2.9 ± 0.1	15.8 ± 12.2	Ар	12297	HD 16066			F211
10954	HD 14479			K1 -	12326	CCDM	$1.5\pm~0.0$	10.0 ± 1.1	F8IV/V +
10969	HD 14346	76 0 0 0	101 00	K0II D2	10077	J02387-5257AB		27.4 15.5	G/K
11002	BD+07 195	7.0 ± 0.3 3.0 ± 0.1	1.9 ± 0.9 28.4 \pm 10.0	B2 A	12377	HD 10507 V* del Cet	2.4 ± 0.1 8.7 ± 0.2	37.4 ± 15.5 18.4 ± 2.2	B9 B2IV
11002	HD 14536	2.0 ± 0.0	31.6 ± 19.2	A0	12307	* eps Hvi	0.7 ± 0.2	10.4 1 2.2	B9111
11060	V* V474 Per	10.5 ± 2.3	25.1 ± 4.1	A2la	12404	HD 16899			K0
11080	BD+66 205			B9 b	12452	HD 16580			A011
11099	HD 14633	$17.8\pm~2.7$	0.2 ± 0.1	08.5V	12484	* zet Hor	2.0 ± 0.0	$5.4\pm~0.8$	F4IV
11101	BD+68 165	2.7 ± 0.2	10.0 ± 6.8	B8	12492	BD+46 603	$4.0\pm~0.2$	31.1 ± 19.6	B5
11115	HD 14542	$7.9\pm~0.4$	37.4 ± 6.6	B8la	12513	HD 16494			B9111
11126	HD 14738			F6 B7	12557	V* W Iri HD 16440			MI4IIvar D7II
11140	V* V440 Per	78 ± 03	398 + 57	E7lb	12565	BD+62 444	48 ± 03	395 + 58	B5
11201	HD 14722	5.0 ± 0.0	52.2 ± 3.1	B5	12637	HD 16661	2.0 ± 0.0	20.1 ± 9.3	A0
11210	HD 14617			K2 -	12653	LTT 1322	$1.1\pm~0.1$	$18.5\pm~4.7$	G3IV
11226	HD 14797	$5.9\pm~0.6$	65.4 ± 15.9	M0111	12675	HD 17005			G011
11242	HD 14920	$6.9\pm~1.2$	50.1 ± 13.3	K5	12686	HR 787			K0 -
11279	V* V554 Per	$15.5\pm~1.5$	11.1 ± 1.1	B2la	12692	* 11 Per			B7IIIp
11282	HD 14949			K2II	12719	* 35 Ari	5.8 ± 0.2	5.5 ± 4.2	B3V
11294	HD 14794				12724	HD 232702	78+05	30.8 + 3.2	B5 A215
11347	HD 14870	6.8 ± 0.2	2.4 ± 1.4	B1lb	12768	* 14 Per	1.0 1 0.5	J9.0 ⊥ J.2	GOIL
11372	BD+54 544			B8lab	12776	HD 16968			B5
11391	V* V475 Per	12.5 ± 0.8	11.6 ± 1.4	B2la	12793	HD 16799			A511
11394	HD 14947	15.0 ± 10.0	2.3 ± 2.2	06e	12911	HD 17102	2.4 ± 0.1	45.3 ± 17.8	B9
11396	BD+44 493	$6.8\pm~0.1$	$0.4\pm~0.3$	B2	12985	HD 17293	2.0 ± 0.0	11.0 ± 0.9	А
11407	* kap Eri			B5IV	12991	HD 17259	$3.0\pm~0.0$	43.6 ± 18.1	B8
11413	HD 15039			K1II/III E8lbyar	12992	HIP 12992 BD±65 201	26 ± 01	70 ± 20	в
11420	HD 15000			F5II	13009	HD 17249	2.0 ± 0.1 2.0 ± 0.0	31.6 ± 19.2	A0
11436	HD 15151	$2.0\pm~0.0$	61.5 ± 38.5	A0	13098	HD 17234			K0
11460	HD 15022			K3	13127	HD 17683	$2.0\pm~0.0$	$20.1\pm~9.3$	A0V
11473	HD 15137	15.0 ± 1.1	0.2 ± 0.1	O9.5V	13132	HD 17877			K2
11484	* 73 Cet			B9	13160	HD 17346	6.3 ± 0.7	58.7 ± 10.2	G911
11487	HD 15124		50.1 4 0.0	B5	13187	HD 232716	7.0 ± 0.4	25.7 ± 5.4	B3
11494	HD 15243	6.9 ± 0.5	50.1 ± 9.9	KU C 811	13268	™ eta Per	8.0 ± 0.4	37.8± 0.0	K316 comp
11607	HD 15238	5.0 ± 0.0	38.9 ± 2.8	B5V	13276	V* V794 Cas			B9111
11625	HD 15316			A3lab	13284	HD 17648	$7.4\pm~1.0$	43.6 ± 15.2	K5
11631	HD 15332			A011	13322	BD+46 647	2.8 ± 0.3	$10.0\pm~6.8$	B8
11663	HD 15418	$6.3\pm~0.3$	68.6 ± 22.2	K0	13335	HD 18119			K2 /
11722	HD 15450	$8.6\pm~0.5$	$0.8\pm~0.6$	B1 e	13367	V* SU Cas			F5:Ib-II
11754	BD+64 331			B5	13402	V* EP Eri	$0.9\pm~0.1$	34.3 ± 17.0	K1V
11/0/	V* alt UIVII	0.9 ± 0.4	50.0 ± 9.0	SB	13440	V* V796 Cas			B7III G5lah
11792	BD+60 498	15.0 ± 1.1	0.2 ± 0.1	09V	13553	BD+60 587			B6111
11799	HD 16078			K1 /	13567	HD 18145			G811
11837	HD 15570	$37.1\pm~7.2$	$1.7\pm~0.5$	O 4	13587	HD 18042	2.0 ± 0.0	48.1 ± 35.4	A0
11841	HD 15620	$6.1\pm~0.4$	$50.1\pm~6.4$	B8lab	13598	HD 18175			K0
11856	BD+60 505			A211	13622	HD 18088	6.2 ± 0.5	63.7 ± 14.6	K0
11857	HD 16667			KUII K1/K2II/III	13628	HD 18103	2.0 ± 0.0	11.0 ± 0.9	
11801	HD 15629	80+48	46 ± 21	05e	13682	HD 18271	20 ± 0.0	201 + 93	
11894	V* V788 Cas	6.6 ± 0.1	26.3 ± 3.6	B3	13696	HD 18261	2.0 1 0.0	20.1 ± 9.5	K0
11896	HD 16334			K2 /	13700	HR 861	$9.6\pm~0.9$	$25.1\pm~1.6$	K3lbvar
11901	HD 15832			КЗІЬ	13736	HD 18076	10.2 ± 0.3	$0.2\pm\ 0.1$	B0 -
11933	HD 15883			K0	13746	HD 18523			K1 /
11962	HD 16005	2.0 ± 0.0	20.1 ± 9.3	A0	13752	HD 18309	$2.0\pm~0.0$	20.1 ± 9.3	A0
12001	BD + 58 488	9.6 ± 0.4	6.3 ± 5.3	B0.5V	13765	HD 18369			A5lb B0III
12000	BD+05 2/0 V* V700 Car	2.0± 0.1 73± 03	20.1 ± 9.3 71 + 27	AU B1lab	1302/	v* v/9/ Cas HD 18326	20.0 + 0.0	01+00	D7V
12009	HD 15784	1.3 ± 0.3	1.1 _ 2.1	F4	13924	* am Cet	20.0 ± 0.0	0.1 _ 0.0	B6111
12152	HD 16040			B9	13962	HD 18391	10.6 ± 1.0	$19.8\pm~5.2$	G0la
12216	HD 16107			B8III	14060	* 8 Eri			K0
12218	HR 760	5.0 ± 0.0	31.5 ± 16.0	B5V	14131	* tet Hyi			B8111/1V

Table C.1: - Continued. -

HIP	other ID	mass [M⊙]	age [Myr]	ЅрТ	HIP	other D	mass [M _☉]	age [Myr]	SpT
14168	* 9 Eri			K0 -	15863	V* alf Per	$7.8\pm~0.1$	45.9 ± 3.9	F5lb
14203	HD 18917	7.1 ± 0.5	45.8 ± 7.4	K0	15890	V* CQ Cam	12.1 ± 0.5	16.3 ± 0.9	M011
14216	HIP 14216	4.6 ± 0.4	24.9 ± 10.3	B5	15941	HD 20898	9.3 ± 0.8	19.8 ± 1.8	B2111
14225	HD 18859	7.5 ± 0.7	39.8 ± 4.2	K2	15981	HD 20959	6.3 ± 0.1	40.5 ± 5.7	B3 P0
14207	HD 18984	2.0 ± 0.0 2.4 ± 0.1	20.1 ± 9.3 26.9 ± 18.5	B9	16001	HD 21085	2.0 1 0.1	10.0 1 0.0	A3
14307	HD 19330	1.2 ± 0.0	16.3 ± 1.2	G1V	16019	HD 21037	$6.5\pm~0.6$	57.9 ± 9.4	K5
14312	HD 19017	2.0 ± 0.0	$20.1\pm~9.3$	A0	16047	HD 21117	$2.9\pm~0.1$	22.5 ± 8.0	B8
14313	CD-51 706	1.2 ± 0.0	12.9 ± 2.9	K0	16100	HD 237141	4.0 ± 0.1	15.2 ± 6.5	B5
14350	* k Per	8.0 ± 1.1	37.4 ± 10.4	K0 -	16129	HR 1034	0.2 ± 0.5	03.7 ± 13.7	B5V
14417	HR 881	$7.5\pm~0.3$	47.4 ± 2.5	F7IV comp	16165	HD 21346	$7.1\pm~0.3$	45.8 ± 9.5	K0
				SB	16194	HD 21901			K1
14482	HD 19089			K0	16195	HD 21212	$9.6\pm~0.3$	19.0 ± 1.7	B2V:e
14514 14521	V* UVV Ari V* BN Hvi	7.6 ± 0.3	1.7 ± 1.4	B1.5V F211-111	16203	HD 21363 HD 21483	78 ± 04	332 ± 60	KUII-III B3III
14552	HD 19359	$2.3\pm~0.1$	$10.0\pm~2.8$	B9	16228	V* CS Cam	12.0 ± 0.5	16.1 ± 0.9	B9la
14558	BD+61 523			A511	16244	* 34 Per	6.9 ± 0.0	28.2 ± 3.1	B3V
14566	HR 930	$5.0\pm~0.0$	$54.9\pm~5.7$	B5V	16281	V* CE Cam	15.5 ± 1.7	11.6 ± 1.1	A0la SB:
14578	HD 19344	170 24	61 09	B5	16283	HD 21355	3.2 ± 0.1	22.5 ± 18.4	A
14620	HD 19243 HD 19341	17.0 ± 3.4	0.1 ± 0.8	B8III	16307	HD 21207 HD 21465	2.9 ± 0.0 6.8 ± 0.6	31.0 ± 22.7 47.5 ± 11.0	во K5lab:
14677	* 55 Ari			Balli	16333	HD 22069	0.0 1 0.0	11.0 1 11.0	FOIL
14700	V* CP Oct			F2/F3Ib/II	16361	HD 21550	2.0 ± 0.0	31.6 ± 19.2	A0
14701	HD 19456	$2.0\pm~0.0$	11.0 ± 0.9	A0	16367	HD 21588	$1.9\pm~0.1$	35.7 ± 23.0	A2
14742	HD 19540	6.3 ± 0.6	57.1 ± 7.5	G5 B0	16369	*†lau	46 - 04	24.0 + 5.4	K0 - R5
14777	HD 19750	6.9 ± 0.6	50.1 ± 10.7	K2	16410	BD+27 515B	1.8 ± 0.0	13.9 ± 3.6	A3V
14833	HD 19536			A211	16466	HD 21996			B4V
14845	HD 19624			B5	16470	V* V396 Per			B8⊞p Mn
14869	HD 19749	2.0 ± 0.0	20.1 ± 9.3	A0	16476	HD 275501			G811
14887	HR 950 HD 20001	5.0 ± 0.0 9.8 ± 0.6	34.0 ± 8.8 10.2 + 3.1	B4V B3V	16489 16400	HR 965 HD 21771			G3 p K3
14030	HD 20071	6.3 ± 0.5	19.2 ± 3.1 60.2 ± 11.6	K1 CN	16516	V* KP Per	8.1 ± 0.2	17.6 ± 4.4	B2IV
14969	CCDM			B2 V+	16518	HR 1074	12.6 ± 1.3	10.6 ± 1.2	B1V
	J03130+4417AB				16553	HD 22287			G811
14979	HD 20557			B9111p	16556	BD+45 783	2.9 ± 0.2	15.8 ± 12.2	B8
15024	HR 974 HD 20232	20 ± 0.0	31.6 ± 10.2	Δ2/Δ3III/IV	16566	V* V577 Per CD-26 1339	1.0 ± 0.0 15.0 ± 1.1	17.0 ± 1.2 0.2 ± 0.1	K2
15044	HD 19892	2.0 ± 0.0 2.0 ± 0.0	20.1 ± 8.4	A0	16608	HD 22204	13.0 1 1.1	0.2 1 0.1	A7/A8 /
15063	V* CC Cas	17.8 ± 2.3	3.9 ± 0.4	O9IV	16615	HD 22061	5.6 ± 0.9	63.5 ± 17.3	K5
15105	HD 20023			B9	16643	HD 22060	1.8 ± 0.0	12.7 ± 2.5	A2
15114	HD 20017	7.9 ± 0.6	29.0 ± 6.4 12.0 \pm 11.0	B5Ve B5III	16735	BD+42 786C	2.7 ± 0.2	7.0 ± 3.2	B8 B0
15180	HD 20340	7.0 ± 0.3	12.9 ± 11.0 25.1 ± 0.6	B3V	16803	V* EG Eri	5.0 ± 0.0	47.7 ± 0.5	B8/B9
15192	HR 964	$11.6\pm~0.4$	17.3 ± 1.7	A0la	16820	HD 22135			, К5
15219	HR 969			G511	16826	* psi Per	$6.2\pm~0.1$	63.1 ± 14.6	B5Ve
15230	HD 20356	7.4 ± 0.7	42.4 ± 8.6	K5	16842	HD 22492	2.9 ± 0.2	10.0 ± 6.8	B8
15239 15270	HD 20484	1.9 ± 0.0 7.2 ± 0.1	13.0 ± 1.8 22.0 + 0.1	A3V B2 5IV-V	16034	BD+69 219 HD 22545	12.0 ± 0.8 7.2 ± 0.7	0.1 ± 0.0 45.0 ± 7.2	B0 K2
15285	HD 20368	6.2 ± 0.9	63.1 ± 24.9	K5	16941	HD 22298	9.6 ± 0.3	17.4 ± 3.4	B2Vne
15353	HR 1014	1.9 ± 0.0	11.1 ± 5.7	A3V	16976	HD 22297			F
15373	HD 20573	1.7 ± 0.0	25.1 ± 11.3	A6V	17037	HD 22613	1.8 ± 0.0	$13.7\pm~3.5$	A3
15404	* 29 Per	6.8 ± 0.0	26.3 ± 4.9	B3V K2U	17064	HD 21990	6.3 ± 1.1	57.9 ± 27.7	К5 К2
15410	HD 20295	1.0 ± 0.5	47.0 1 7.4	B5	17106	HD 237163	0.2 1 0.8	03.7 ± 14.0	A3
15444	* 31 Per			B5V	17167	V* FY Eri			B9IIIp Si
15520	HR 985	7.6 ± 0.2	$31.6\pm\ 4.8$	B2.5Vn e	17200	HD 232819	$7.7\pm~0.6$	9.3 ± 3.1	B2V
15530	V* UZ Per			M5 - var	17212	HD 23033			K1
15535	HD 21012 HR 999			взіv/V К211-111	17280	HD 23147 HD 232822	2.3 ± 0.1 20 + 00	7.5± 0.7 201+ 0.3	89V 89V
15623	HD 20547	$5.0\pm~0.0$	12.6 ± 6.1	B3111	17287	HD 25254	2.0 ± 0.0	20.1 1 9.5	F3 /
15627	V* tau01 Ari	5.0 ± 0.0	54.9 ± 5.7	B5IV	17304	* del For	$5.9\pm~0.1$	63.1 ± 15.2	, B5III
15702	HD 20965			K2	17313	* o Per	12.5 ± 0.3	$11.8\pm\ 1.2$	B0.5V
15718	HD 21034			K3 /	17342	HR 1112	6.9 ± 0.4	45.3 ± 1.3	K4lb
157705	v≖ v 5/5 Per HD 20762			85V K011-111	17362	™ del Per HD 23027	1.0 ± 0.3	50.1 ± 0.3 14.0 ± 3.7	вэнн SB Д
15836	HD 21208			K1 /	17387	HD 23060	9.3 ± 0.3	15.8 ± 2.7	B2Vp
15850	HD 21051	2.3 ± 0.9	$0.1\pm\ 0.0$	K0 - V	17394	HD 23672	-		K0 /
15853	HD 20798	6.7 ± 0.3	$1.8\pm~1.6$	B2 - V					

Table C.1: - Continued. -

$ \begin{array}{c} 1744 \\ 1747 \\ 1746 \\ 1747 \\ 1746 \\ 1747 \\ 1747 \\ 1746 \\ 1747 \\ 1746 \\ 1747 \\ 1746 \\ 1747 \\ 1746 \\ 1748 \\ 1$	HIP	other D	mass [M _☉]	ag e [Myr]	SpT	HIP	other D	mass [M _☉]	age [Myr]	SpT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17434	HD 23082	63+ 09	63 1 + 27 3	K5	18817	HD 25663			E2/E3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17447	V* EU Eri	0.5 ± 0.9	05.1 ± 27.5	M1 b/	18838	HD 25195			B5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17448	V* omi Per	15.6 ± 1.7	10.0 ± 1.2	B1	18871	HD 25132	$6.6\pm~0.2$	25.3 ± 5.9	B3V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17465	HD 281159	4.6 ± 0.4	25.2 ± 8.7	B5V	18873	HD 25246	1.8 ± 0.0	12.7 ± 2.5	A2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17499	ELECTRA			B6111	18884	HD 25090	12.6 ± 1.3	$9.5\pm~1.1$	B0.5III
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17529	* 41 Per			F5∥var	18904	HD 25256	1.9 ± 0.1	40.2 ± 28.1	A2
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	17561	HD 281157 * T	62 01	12.0 2.0	B5 D3V	18926	HR 1258	6.1 ± 0.1	11.7 ± 2.3	B3V
1756 HD 2.6.4 0.0 3.9.4 1.6 6.8 13972 HD 2.6.4 0.1 3.9.4 2.6 BIV Comp 17567 HR 1730 HD 1730 HD 1730 HD 1.0 1.0 1.0 1.2 2.5 HS HS 1.0 1.0 1.0 1.2 2.5 HS HS 1.0 1.0 1.0 1.2 2.5 HS HS 1.0	17503	·u τau ΜΔΙΔ	0.2 ± 0.1	12.9 ± 2.0	BBIII	18940	N# V1133 Tau	5.1 ± 0.1 6.6 ± 0.0	50.1 ± 40.1 24.6 ± 6.6	B3V
JP367 HR 1129 7.9 ± 01 9.9 ± 4.0 8.9 ± 4.0 A.3 ± 2.5 ± B.9 1753 HD 2479 - 0.0 2.5 ± 0.1 3.9 ± 4.0 8.3 ± 2.5 ± 0.0 13.2 ± 0.1 6.3 ± 2.5 ± 0.0 13.2 ± 0.1 6.3 ± 2.5 ± 0.0 13.2 ± 0.1 6.3 ± 2.5 ± 0.0 13.0 ± 0.0 13.0 ± 0.0 13.2 ± 0.0 13.0 ± 0.0 13.2 ± 0.0 13.0 ± 0.0 13.2 ± 0.0 13.0 ± 0.0 13.2 ± 0.0 13.2 ± 0.0 13.2 ± 0.0 1	17586	HD 23465	2.6 ± 0.0	3.9 ± 1.6	B8	18972	HD 25487	3.0 ± 0.1	39.8 ± 23.6	B8Vev
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17587	HR 1129	$7.9\pm~0.1$	39.8 ± 4.6	A3V					comp
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17620	HIP 17620	4.9 ± 0.2	$50.1\pm~6.0$	B5	18983	HD 25606	$2.4\pm~0.1$	43.2 ± 25.4	B9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17624	HD 24579			B7III	19008	HD 25348	9.1 ± 0.1	0.2 ± 0.0	B1Vnnpe
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17631	HD 23478	5.0 ± 0.0	32.6 ± 1.3	B3IV	19018	HR 1242	8.7 ± 0.2	27.8 ± 3.3	F0
	17661	HD 23757 HD 23278			6811	19020	HD 20045 HR 1267			K1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17686	HD 23254			B5	19039	HD 25539	5.9 ± 0.2	7.3 ± 3.7	B3V
17694 HD 25410 2.0 ± 0.0 53.4 ± 31.1 A0 1908 HD 25749 CPI-III A71///III 17725 HR 1163 7.7 ± 0.2 19.6 ± 0.9 B2.5 W 1910 HD 25552 18.4 0.0 12.0 ± 1.9 A2 17775 HD 262012 18.4 0.0 12.7 ± 2.5 A2 1913 BD+67.734 30.0 21.0 0 ± 6.8 B8 17774 HT 107010 2.0 ± 0.1 2.0 ± 0.1 2.0 ± 0.1 2.0 ± 0.1 2.0 ± 0.1 2.0 ± 0.1 2.0 ± 0.1 2.0 ± 0.1 2.0 ± 0.1 2.0 ± 0.1 2.0 ± 0.0 2.0 ± 0.	17687	BD+82 94	$2.9\pm~0.2$	$10.0\pm~6.8$	B8	19057	V* RX Cam			G0lavar
17720 ALCYONE 57/11 1968 HD 25674 77/14 $(2 + 10 + 10)$ $(2 + 10 + 10)$ $(2 + 10 + 10)$ $(2 + 10 + 10)$ $(2 + 10 + 10)$ $(2 + 10 + 10)$ $(2 + 10$	17694	HD 23610	2.0 ± 0.0	53.4 ± 31.1	A0	19085	HD 25749			G9 -
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17702	ALCYONE			B7III	19088	HD 26074			A7 /
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17735	HR 1163 * T	7.7 ± 0.2	19.6 ± 0.9	B2.5V	19101	HD 25582	1.8 ± 0.1	12.0 ± 1.9	A2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17775	* e ⊺au HD 282012	0.0 ± 0.1 1 8 ± 0.0	7.3 ± 4.9 12.7 ± 2.5	B3V A2	19110	HIP 19110 BD±67 304	2.0 ± 0.0 3.0 ± 0.2	20.1 ± 9.3 10.0 ± 6.8	AU B8
17474 ATLAS BIII 1976 HD 284149 13± 0.1 17.1 ± 5.4 Få 17878 V * V128 Tau 1.5 ± 0.1 9.7 ± 1.7 G 19178 HD 28934 HD 28934 HD 17.1 ± 5.4 Få 17952 HD 248107 KIII 1921 V * A G Par BSV B	17841	HD 279010	2.0 ± 0.0	20.1 ± 9.3	A0	19131	V* V1135 Tau	5.0 ± 0.2	10.0 1 0.0	S4.2v
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17847	ATLAS			B8111	19176	HD 284149	$1.3\pm~0.1$	17.1 ± 5.4	F8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17878	V* V1128 Tau	$1.5\pm~0.1$	9.7 ± 1.7	GO	19178	HD 25799	$6.3\pm~0.1$	17.8 ± 2.0	B3V
	17884	V* BE Cam			M1	19197	HD 25834			K1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17921	HR 1185	$3.2\pm~0.0$	56.6 ± 7.2	B8III	19201	V* AG Per			B5V:p SB
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17952	HD 24107	100 00	10.2 1.6	K1II	19218	CD-31 1701	20.0 ± 0.0	0.1 ± 0.0	08
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18081	HD 23800 HR 1191	10.0 ± 0.3 0.8 \pm 0.2	10.3 ± 1.0 8.3 ± 4.0	BIV	19240	HD 281537	2.0 ± 0.0 7.0 ± 0.1	20.1 ± 9.3 3.0 ± 3.4	AU B2V
	18088	HD 23894	6.7 ± 0.3	57.1 ± 10.6	K0	19204	HIP 19276	1.5 1 0.1	J.9 J.4	B3V
18111 HD 24190 6.9 ± 0.1 0.3 ± 0.2 B2V 19341 HD 26031 CBI CBI 18117 BD+11 533 1.3 \pm 0.1 17.6 ± 5.7 F8 19343 *c Per 7.6 ± 0.2 31.6 ± 4.8 B3Ve 18161 V* CY Cam 9.2 ± 0.5 4.3 ± 2.6 B1II 19364 HD 281510 2.9 ± 0.3 10.0 ± 6.8 B3Ve 18166 HD 24177 2.3 ± 0.5 4.5 ± 2.6 B1II 19364 HD 281510 2.9 ± 0.3 10.0 ± 6.8 B6V 18177 HD 23982 B5 19404 V* GQ Cam 6.6 ± 0.5 30.8 ± 4.5 B6(a 18178 HD 243051 5.0 ± 0.0 47.1 ± 2.8 B6/B7V 19464 HD 26323 2.4 ± 0.1 50.0 ± 34.8 B9 18230 HD 24399 C811 11.2 0.1 18.6 ± 6.7 G5V 19676 HD 26323 2.4 ± 0.1 50.0 ± 34.8 B9 18264 V*V1289 Tau 1.1 ± 0.1 18.6 ± 6.7 G5V molto Eri K11.11 118.9 K11.11 K11.11 K11.11 K11.11	18089	* 31 Tau	5.7 ± 0.3	63.1 ± 14.6	B5V	19286	BD+48 1048	$6.3\pm~0.9$	$53.4\pm~3.5$	A2
18117 8D+11 533 1.3 \pm 0.1 17.6 \pm 5.7 F6 1934 * e Per 7.6 \pm 0.2 31.6 \pm 4.8 B3ve 18151 V* CY Cam 9.2 \pm 0.5 4.3 \pm 2.6 B111 19364 HD 281610 2.9 \pm 0.3 10.0 \pm 6.8 B8 18161 W D 24177 2.3 \pm 0.2 4.6 \pm 3.3 B9 1938 V* GU Eri B5 19404 V* GU Eri B6 18175 HD 24757 5.0 \pm 0.0 4.9 \pm 1.6 De 10.2 \pm 0.1 0.6 \pm 1.9414 HR 1270 C G81 18213 * i Eri 4.0 \pm 0.0 47.1 \pm 2.8 B6/B/B/V 19466 HD 26323 2.4 \pm 0.1 50.0 \pm 3.4 \pm 8 B9 18213 * i Eri 4.0 \pm 0.0 3.8 \pm 1.3 \pm 5.5 12.6 \pm 1.9 B119 19787 HR 1266 2.0 \pm 0.1 3.1.6 \pm 2.8 B9 18234 * i Eri 4.0 \pm 0.3 3.8 \pm 1.7 \pm 2.8 B6/B 19797 HR 1260 2.0 \pm 1.4 \pm 0.7 G811 19252 HR 1260 2.0 \pm 1.4 \pm 0.7 E21.11 1.1 \pm 0.1 1.6 \pm 6.7 G811 19262 2.0	18111	HD 24190	$6.9\pm~0.1$	0.3 ± 0.2	B2V	19341	HD 26081			G811
	18117	BD+11 533	$1.3\pm~0.1$	17.6 ± 5.7	F8	19343	* c Per	7.6 ± 0.2	$31.6\pm~4.8$	B3Ve
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18151	V* CY Cam	9.2 ± 0.5	4.3 ± 2.6	B1	19364	HD 281610	$2.9\pm~0.3$	$10.0\pm~6.8$	B8
	18166	HD 24177	2.3 ± 0.2	46.2 ± 33.7	B9 D5	19398	V* GU Eri		20.0 / 4.5	B5IV
Bits HD 24757 50.± 10.± 0.±	18175	HD 23982	15.0 ± 1.1	02 ± 01	DD Oe	19404	HD 26256	0.0 ± 0.5 24 + 00	39.0 ± 4.3 48.3 ± 18.9	B01a B9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18183	HD 24757	5.0 ± 0.0	49.1 ± 6.2	B6V	19412	HR 1270	2.4 1 0.0	40.0 ± 10.0	G811
18216 V* tau08 Eri 5.0 ± 0.0 32.8 ± 13.5 B5V 19498 BD+64 426 3.0 ± 0.1 31.6 ± 26.8 B8 18230 HD 24399 5.5 ± 0.5 12.6 ± 1.9 Bib 19578 HD 26610 2.0 ± 0.0 20.1 ± 8.4 AOV 18263 V* V1289 Tau 1.1 ± 0.1 18.6 ± 6.7 $G5IV$ 19578 HV 26610 2.0 ± 0.0 20.1 ± 8.4 AOV 18263 V* V1289 Tau 1.1 ± 0.1 18.6 ± 6.7 $G5IV$ 19578 HV 26610 2.0 ± 0.0 20.1 ± 8.4 AOV 18270 HD 24352 2.7 ± 0.2 7.0 ± 4.0 B8 19679 HD 26928 $A04$ 30.3 ± 3.7 KO 18314 HD 24298 1.9 ± 0.0 50.8 ± 27.3 A3 19724 HD 26928 $A0 \pm 0.0$ 51.9 ± 16.0 B5IV 18330 HR 1209 15.0 ± 1.1 0.2 ± 0.1 $09.5 pe$ 19811 * fPer G5II G5IV 18330 HD 24431 17.7 ± 2.4 2.1 ± 0.6 $09!V-V$ 19812 * 51 Per G5IV G5IV <t< td=""><td>18213</td><td>* i Eri</td><td>4.0 ± 0.0</td><td>47.1 ± 2.8</td><td>B6/B7V</td><td>19466</td><td>HD 26323</td><td>$2.4\pm~0.1$</td><td>50.0 ± 34.8</td><td>В9</td></t<>	18213	* i Eri	4.0 ± 0.0	47.1 ± 2.8	B6/B7V	19466	HD 26323	$2.4\pm~0.1$	50.0 ± 34.8	В9
18230 HD 24399 G811 1952 HR 1286 K11 - 1 18264 * zet Per 15.5 \pm 0.5 12.6 \pm 1.9 B1b 19578 HD 26510 2.0 \pm 0.0 20.1 \pm 8.4 AOV 18263 V* V1289 Tau 1.1 \pm 0.1 18.6 \pm 6.7 G5IV 19587 V* omiol Eri F21 - 1 B911/sp SG11/sp	18216	V* tau08 Eri	$5.0\pm~0.0$	32.8 ± 13.5	B5V	19498	BD+64 426	3.0 ± 0.1	31.6 ± 26.8	B8
18264 * zet Per 15.5 \pm 0.5 12.6 \pm 1.9 B1b 1957 HD 26610 $2.0 \pm$ 0.0 $20.1 \pm$ 8.4 A0V 18263 V* V1289 Tau $1.1 \pm$ 0.1 18.6 \pm 6.7 G5IV 19587 V* win012 Eri F211-111 B911/sp 18270 HD 24352 $2.7 \pm$ 0.2 $7.0 \pm$ 4.0 B8 19679 HD 26526 $8.8 \pm$ 0.4 $30.3 \pm$ 3.7 K0 18314 HD 24352 $2.7 \pm$ 0.2 $7.0 \pm$ 4.0 B8 19679 HD 26526 $8.8 \pm$ 0.4 $30.3 \pm$ 3.7 K0 18339 V* DO Eri	18230	HD 24399			G 811	19525	HR 1286			K1 -
13250 V* V479 Tau F2/F-III 16.5 \pm 0.7 GSIV 1952 V* Sm01 Eri F2/F-III F2/F-III 13265 V* V479 Tau F3/F-III 11062 V* V1137 Tau BIIIsp F2/F-III 18270 HD 24352 $2.7 \pm$ 0.2 $7.0 \pm$ 4.0 B8 19679 HD 26526 $8.8 \pm$ 0.4 $30.3 \pm$ 3.7 KO 18314 HD 24298 $1.9 \pm$ 0.0 50.8 ± 27.3 A3 19724 HD 26526 $8.8 \pm$ 0.4 $30.3 \pm$ 3.7 KO 18334 HD 24352 $2.7 \pm$ 0.2 $7.0 \pm$ 4.0 09.5pe 19724 HD 26328 A0± 0.0 $51.9 \pm$ 1.0 BSIV 18350 HR 1209 15.0 \pm 1.1 $0.2 \pm$ 0.1 09.5pe 19811 * f Per GSII comp 18333 HD 24395 A7II 19856 HD 26994 T GSIV 18434 HR 1215 $8.9 \pm$ 0.1 14.4 \pm 3.7 B15V 19856 HD 26194 T T 18442 HIP 18442 15.0 \pm 1.1 $0.2 \pm$ 0.1 B 19860 * 49 Tau $6.7 \pm$ 0.1 $3.0 \pm$ 1.3<	18246	* zet Per	15.5 ± 0.5	12.6 ± 1.9	B1b	19578	HD 26610	2.0 ± 0.0	20.1 ± 8.4	AOV
18270HD 24352 2.7 ± 0.2 7.0 ± 4.0 B819679HD 26526 8.8 ± 0.4 $3.0.3 \pm 3.7$ K018314HD 24298 1.9 ± 0.0 50.8 ± 27.3 A3 19724 HD 26526 8.8 ± 0.4 30.3 ± 3.7 K018334HD 24298 1.9 ± 0.0 50.8 ± 27.3 A3 19724 HD 26526 8.8 ± 0.4 30.3 ± 3.7 K018339V* DO Eri P $P725$ V* GY Eri 4.0 ± 0.0 51.9 ± 16.0 B5I/V18350HR 1209 15.0 ± 1.1 0.2 ± 0.1 09.5p19811* f PerG5II comp18333HD 24431 17.7 ± 2.4 2.1 ± 0.6 O9IV-V19812* 51. PerG0Ib18333HD 24395A71I19855V* V891 Tau 1.0 ± 0.0 39.4 ± 14.5 G5IV18434HR 1215 8.9 ± 0.1 1.4 ± 3.7 B15V19856HD 26994B718444HIP 18442 15.0 ± 1.1 0.2 ± 0.1 B19960* 49 Tau 6.7 ± 0.1 35.9 ± 5.2 B3IV18448HR 1205K3I-HI19968HR 1305 4.0 ± 0.0 56.6 ± 26.0 B5Vn18818484HR 1205K3I-HI19972HD 26857 10.4 ± 0.8 17.0 ± 2.1 K218504HR 1222 6.2 ± 0.5 63.7 ± 13.3 O7.5lab:2007HD 26659 2.9 ± 0.1 2.0 ± 0.8 18704HD 25055 2.0 ± 0.0 17.9 ± 14.1 B820037HD 26659 2.9 ± 0.1 2.2 ± 0.4	18265	V* V1289 Tau V* V479 Tau	1.1 ± 0.1	10.0 ± 0.7	G5IV F3II-III	19567	V* V1137 Tau			F211-111 B9111sp
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18270	HD 24352	2.7 ± 0.2	7.0 ± 4.0	B8	19679	HD 26526	8.8± 0.4	30.3 ± 3.7	K0
18339 V* DO Eri Ap 19725 V* GY Eri 4.0 ± 0.0 51.9 ± 16.0 B5IV 18350 HR 1209 15.0 ± 1.1 0.2 ± 0.1 $09.5pc$ 1961 * f Per 1.0 ± 0.0 7.0 ± 1.1 K2 EA 18370 HD 24431 17.7 ± 2.4 2.1 ± 0.6 $09.5pc$ 19811 * f Per Gollb 18383 HD 24395 A7II 19855 V* V891 Tau 1.0 ± 0.0 39.4 ± 14.5 GSIV 18444 HR 1215 8.9 ± 0.1 14.4 ± 3.7 B1.5V 19866 $#4.9 Tau$ 6.7 ± 0.1 35.9 ± 5.2 B3IV 18478 BD+67 298 2.6 ± 0.1 7.0 ± 2.9 B8 19960 $*4.9 Tau$ 6.7 ± 0.1 35.9 ± 5.2 B3IV 18478 BD+67 298 2.6 ± 0.1 7.0 ± 2.9 B8 19960 HD 281818 3.1 ± 0.1 4.0 ± 0.35 86 18488 HR 1222 6.2 ± 0.5 63.7 ± 13.7 K0 19972 HD 27230 1.9 ± 0.0 13.0 ± 1.8 $A2m$ 18532 V* eps Per 12.5 ± 0.8 1	18314	HD 24298	$1.9\pm$ 0.0	50.8 ± 27.3	A3	19724	HD 26928			A511/111
SrEu(Cr)19762HD 283447 1.0 ± 0.0 7.0 ± 1.1 K2 EA18350HR 1209 15.0 ± 1.1 0.2 ± 0.1 $09.5 \mu e$ 19811 * f PerGSII comp18370HD 24431 17.7 ± 2.4 2.1 ± 0.6 $09 V \cdot V$ 19812 * $51 Per$ GOIb18383HD 24395ATII 19855 V* V891 Tau 1.0 ± 0.0 39.4 ± 14.5 GSII18434HR 1215 8.9 ± 0.1 14.4 ± 3.7 B1.5V 19856 HD 26994BTIII18442HIP 18442 15.0 ± 1.1 0.2 ± 0.1 B 19960 * 49 Tau 6.7 ± 0.1 35.9 ± 5.2 B3IV18478BD+67 298 2.6 ± 0.1 7.0 ± 2.9 B8 19914 HD 281818 3.1 ± 0.1 45.0 ± 35.3 B818488HR 1205K3I-II 19960 HR 1305 4.0 ± 0.0 56.6 ± 26.0 B5Vn18508HR 1222 6.2 ± 0.5 63.7 ± 13.7 KO 19972 HD 2730 1.9 ± 0.0 13.0 ± 1.8 $A2m.$ 18532V* eps Per 12.5 ± 0.8 15.4 ± 0.8 B0.5V 19986 HD 26857 10.4 ± 0.8 17.0 ± 2.1 K218614Menkhib 24.3 ± 0.8 4.4 ± 0.3 $07.5 Iab:$ 20017 HD 27262K1III18704BD+41 790 2.9 ± 0.0 17.9 ± 14.1 B8 20037 HD 26659 2.9 ± 0.1 20.0 ± 8.2 B818724V* Iam Tau 8.1 ± 0.2 33.2 ± 4.8 B3V + AK7VeK7VeK7Ve <td>18339</td> <td>V* DO Eri</td> <td></td> <td></td> <td>Ap</td> <td>19725</td> <td>V* GY Eri</td> <td>4.0 ± 0.0</td> <td>51.9 ± 16.0</td> <td>B5IV</td>	18339	V* DO Eri			Ap	19725	V* GY Eri	4.0 ± 0.0	51.9 ± 16.0	B5IV
18350HR 120915.0 \pm 1.10.0 \pm 0.10.9. \pm 0.00.9. \pm 0.10.9.					SrEu(Cr)	19762	HD 283447	$1.0\pm~0.0$	7.0 ± 1.1	K2 EA
1330HD 2443117.1 \pm 2.42.1 \pm 0.60.9 IV-V19612 4.5 1 Per 10.110.1 \pm 0.039.4 \pm 14.5G0 IB13383HD 24395A7119855V* V891 Tau1.0 \pm 0.039.4 \pm 14.5G5 IV18434HR 12158.9 \pm 0.114.4 \pm 3.7B 1.5V19856HD 26994B118442HIP 1844215.0 \pm 1.10.2 \pm 0.1B19860* 49 Tau6.7 \pm 0.135.9 \pm 5.2B3 IV18478BD+67 2982.6 \pm 0.17.0 \pm 2.9B819914HD 2818183.1 \pm 0.145.0 \pm 35.3B818488HR 1205K3I-II19968HR 13054.0 \pm 0.056.6 \pm 26.0B5 Vn18508HR 12226.2 \pm 0.563.7 \pm 13.7K019972HD 272301.9 \pm 0.013.0 \pm 1.8A2m18508HR 12226.2 \pm 0.563.7 \pm 13.7K019972HD 272301.9 \pm 0.013.0 \pm 1.8A2m18508HR 12226.2 \pm 0.563.7 \pm 13.7K019972HD 272001.9 \pm 0.013.0 \pm 1.8A2m18508HR 12226.2 \pm 0.563.7 \pm 13.7K019972HD 272301.9 \pm 0.013.0 \pm 1.8A2m18503V* CZ CamB519992V* V585 Per7.0 \pm 0.447.6 \pm 9.1K218704BD+41 7902.9 \pm 0.017.9 \pm 14.1B820037HD 26692.9 \pm 0.120.0 \pm 8.2B818715HD	18350	HR 1209	15.0 ± 1.1	0.2 ± 0.1	O9.5pe	19811	*fPer * == D			G5∥ comp Coll⊧
18334HR 1215 8.9 ± 0.1 14.4 ± 3.7 B1.5V19856HD 26994B711118442HIP 18442 15.0 ± 1.1 0.2 ± 0.1 B19856HD 26994B711118478BD+67 298 2.6 ± 0.1 7.0 ± 2.9 B819914HD 281818 3.1 ± 0.1 45.0 ± 35.3 B818488HR 1205K3I-1119968HR 1305 4.0 ± 0.0 56.6 ± 26.0 B5Vn18508HR 1222 6.2 ± 0.5 63.7 ± 13.7 K019972HD 27230 1.9 ± 0.0 13.0 ± 1.8 A2m18503V* cz CamB519992V* V585 Per 7.0 ± 0.4 47.6 ± 9.1 K218614Menkhib 24.3 ± 0.8 4.4 ± 0.3 O7.5 lab:20017HD 27262K11118704BD+41 790 2.9 ± 0.0 17.9 ± 14.1 B820037HD 26659 2.9 ± 0.1 20.0 ± 8.2 B818715HD 25205 2.0 ± 0.0 20.1 ± 9.3 A020097HD 283518 1.2 ± 0.1 2.2 ± 0.4 K3Ve-18727BD+55 838 6.7 ± 0.6 34.8 ± 7.0 B31b20160HD 281934 0.9 ± 0.1 21.6 ± 9.1 K3Ve-18795HD 25056 6.2 ± 0.6 60.8 ± 12.2 G01b 20214 HD 27507 2.4 ± 0.1 50.4 ± 37.5 B9V18796HD 25392 1.4 ± 0.0 41.9 ± 29.6 A8/A91Vw 20234 HR 1333 10.0 ± 0.3 17.1 ± 2.4 B1.51V18805HR 1243E5V20300HD 26684 <td>18383</td> <td>HD 24431 HD 24395</td> <td>17.7 ± 2.4</td> <td>2.1 ± 0.0</td> <td>09IV-V 4711</td> <td>19812</td> <td>* 51 Per V* V891 Tau</td> <td>10 ± 0.0</td> <td>39.4 ± 14.5</td> <td>GOID GSIV</td>	18383	HD 24431 HD 24395	17.7 ± 2.4	2.1 ± 0.0	09IV-V 4711	19812	* 51 Per V* V891 Tau	10 ± 0.0	39.4 ± 14.5	GOID GSIV
18442HIP 1844215.0 \pm 1.10.2 \pm 0.1B19860* 49 Tau6.7 \pm 0.135.9 \pm 5.2B3IV18478BD+67 2982.6 \pm 0.17.0 \pm 2.9B819914HD 2818183.1 \pm 0.145.0 \pm 35.3B818488HR 1205K3I-II19968HR 13054.0 \pm 0.056.6 \pm 26.0B5Vn18508HR 12226.2 \pm 0.563.7 \pm 13.7K019972HD 272301.9 \pm 0.013.0 \pm 1.8A2m18503V* eps Per12.5 \pm 0.815.4 \pm 0.8B0.5V19986HD 2685710.4 \pm 0.817.0 \pm 2.1K218593V* CZ CamB519992V* V585 Per7.0 \pm 0.447.6 \pm 9.1K218614Menkhib24.3 \pm 0.84.4 \pm 0.307.5 lab:20017HD 27262K1II18704BD+41 7902.9 \pm 0.017.9 \pm 14.1B820037HD 266592.9 \pm 0.120.0 \pm 8.2B818715HD 252052.0 \pm 0.020.1 \pm 9.3A020097HD 2835181.2 \pm 0.12.2 \pm 0.4K3Ve-18727BD+55 8386.7 \pm 0.634.8 \pm 7.0B31b20160HD 2819340.9 \pm 0.121.6 \pm 9.1K3Ve-18788* 35 Eri4.5 \pm 0.428.0 \pm 21.0B5VM0Ve(T)16.9 \pm 10.150.4 \pm 37.5B9V18796HD 253921.4 \pm 0.041.9 \pm 2.6G1b20214HD 275072.4 \pm 0.150.4 \pm 37.5B9V18805	18434	HR 1215	8.9 ± 0.1	14.4 ± 3.7	B1.5V	19856	HD 26994	1.0 1 0.0	55.4 <u>1</u> 14.5	B7
18478BD+67 298 2.6 ± 0.1 7.0 ± 2.9 B819914HD 281818 3.1 ± 0.1 45.0 ± 35.3 B818488HR 1205K3I-II19968HR 1305 4.0 ± 0.0 56.6 ± 26.0 B5Vn18508HR 1222 6.2 ± 0.5 63.7 ± 13.7 K019972HD 27230 1.9 ± 0.0 13.0 ± 1.8 A2m18532V* eps Per 12.5 ± 0.8 15.4 ± 0.8 B0.5V19986HD 26857 10.4 ± 0.8 17.0 ± 2.1 K218593V* CZ CamB519992V* V585 Per 7.0 ± 0.4 47.6 ± 9.1 K218614Menkhib 24.3 ± 0.8 4.4 ± 0.3 O7.5 lab:20017HD 27262K1II18704BD+41 790 2.9 ± 0.0 17.9 ± 14.1 B820037HD 26659 2.9 ± 0.1 20.0 ± 8.2 B818715HD 25205 2.0 ± 0.0 20.1 ± 9.3 A020097HD 283518 1.2 ± 0.1 2.2 ± 0.4 K3Ve-18727BD+55 838 6.7 ± 0.6 34.8 ± 7.0 B3Ib20160HD 281934 0.9 ± 0.1 21.6 ± 9.1 K3Ve-18788* 35 Eri 4.5 ± 0.4 28.0 ± 21.0 B5VM0Ve(T)M0Ve(T)18795HD 25056 6.2 ± 0.6 60.8 ± 12.2 G0Ib 20214 HD 27507 2.4 ± 0.1 50.4 ± 37.5 B9V18796HD 25392 1.4 ± 0.0 41.9 ± 29.6 A8/A9IVw 20234 HR 1333 10.0 ± 0.3 17.1 ± 2.4 B1.5IV18805HR 1243L	18442	HIP 18442	15.0 ± 1.1	0.2 ± 0.1	В	19860	* 49 Tau	$6.7\pm~0.1$	35.9 ± 5.2	B3IV
18488HR 1205K3I-II19968HR 1305 4.0 ± 0.0 56.6 ± 26.0 B5Vn18508HR 1222 6.2 ± 0.5 63.7 ± 13.7 K019972HD 27230 1.9 ± 0.0 13.0 ± 1.8 $A2m$ 18532V* eps Per 12.5 ± 0.8 15.4 ± 0.8 $B0.5V$ 19986HD 26857 10.4 ± 0.8 17.0 ± 2.1 K218533V* CZ CamB519992V* V585 Per 7.0 ± 0.4 47.6 ± 9.1 K218614Menkhib 24.3 ± 0.8 4.4 ± 0.3 O7.5 lab:20017HD 27262K1II18704BD+41 790 2.9 ± 0.0 17.9 ± 14.1 B820037HD 26669 2.9 ± 0.1 20.0 ± 8.2 B818715HD 25205 2.0 ± 0.0 20.1 ± 9.3 A020097HD 283518 1.2 ± 0.1 2.2 ± 0.4 K3Ve-18727BD+55 838 6.7 ± 0.6 34.8 ± 7.0 B3Ib20160HD 281934 0.9 ± 0.1 21.6 ± 9.1 K3Ve-18727BD+55 838 6.7 ± 0.4 28.0 ± 21.0 B5VMOVe(T)MOVe(T)18795HD 25056 6.2 ± 0.4 28.0 ± 21.0 B5VMOVe(T)18795HD 25392 1.4 ± 0.4 41.9 ± 29.6 $A8/A9IVw$ 20234 HR 1333 10.0 ± 0.3 7.1 ± 2.4 B1.5IV18805HR 1243EB5V 20271 HR 1363 10.4 ± 0.4 50.9 ± 3.2 B5III18805HR 1243EB5V 2030 HD 26684 5.0 ± 0.0 50.9 ± 3.2 B5III	18478	BD+67 298	2.6 ± 0.1	$7.0\pm~2.9$	B8	19914	HD 281818	$3.1\pm~0.1$	45.0 ± 35.3	B8
18508HR 1222 6.2 ± 0.5 63.7 ± 13.7 K019972HD 27230 1.9 ± 0.0 13.0 ± 1.8 A2m18532V* eps Per 12.5 ± 0.8 15.4 ± 0.8 $B0.5V$ 19986HD 26857 10.4 ± 0.8 17.0 ± 2.1 K218533V* CZ CamB519992V* V585 Per 7.0 ± 0.4 47.6 ± 9.1 K218614Menkhib 24.3 ± 0.8 4.4 ± 0.3 O7.5 lab:20017HD 27262K1II18704BD+41 790 2.9 ± 0.0 17.9 ± 14.1 B820037HD 26669 2.9 ± 0.1 20.0 ± 8.2 B818715HD 25205 2.0 ± 0.0 20.1 ± 9.3 A020097HD 283518 1.2 ± 0.1 2.2 ± 0.4 K3Ve-18724V* lam Tau 8.1 ± 0.2 33.2 ± 4.8 B3V + AK7VeK7Ve18727BD+55 838 6.7 ± 0.6 34.8 ± 7.0 B3lb20160HD 281934 0.9 ± 0.1 21.6 ± 9.1 K3Ve-18788* 35 Eri 4.5 ± 0.4 28.0 ± 21.0 B5VM0Ve(T)M0Ve(T)18795HD 25056 6.2 ± 0.6 60.8 ± 12.2 G0Ib 20214 HD 27507 2.4 ± 0.1 50.4 ± 37.5 B9V18796HD 25392 1.4 ± 0.0 41.9 ± 29.6 A8/A9IVw 20234 HR 1333 10.0 ± 0.3 17.1 ± 2.4 B1.5IV18805HR 1243E5V20271HR 1363E0.5 \pm 0.0 50.9 ± 3.2 B5	18488	HR 1205			K3I-II	19968	HR 1305	4.0 ± 0.0	56.6 ± 26.0	B5Vn
18532 V* eps Per 12.5 \pm 0.8 15.4 \pm 0.8 B0.5V 19986 HD 26857 10.4 \pm 0.8 17.0 \pm 2.1 K2 18533 V* CZ Cam B5 19992 V* V585 Per 7.0 \pm 0.4 47.6 \pm 9.1 K2 18614 Menkhib 24.3 \pm 0.8 4.4 \pm 0.3 O7.5 lab: 20017 HD 27262 K1 18704 BD+41 790 2.9 \pm 0.0 17.9 \pm 14.1 B8 20037 HD 26669 2.9 \pm 0.1 20.0 \pm 8.2 B8 18715 HD 25205 2.0 \pm 0.0 20.1 \pm 9.3 A0 20097 HD 283518 1.2 \pm 0.1 2.2 \pm 0.4 K3Ve- 18727 BD+55 838 6.7 \pm 0.6 34.8 \pm 7.0 B31b 20160 HD 281934 0.9 \pm 0.1 21.6 \pm 9.1 K3Ve- 18788 * 35 Eri 4.5 \pm 0.4 28.0 \pm 21.0 B5V MOVe(T) 18795 HD 25056 6.2 \pm 0.6 60.8 \pm 12.2 G0Ib 20214 HD 27507 2.4 \pm 0.1 50.4 \pm 37.5 B9V 18795 HD 25392 1.4 \pm 0.0 41.9 \pm 29.6 A8/A9IVw 20234 HR 1333 <td>18508</td> <td>HR 1222</td> <td>6.2 ± 0.5</td> <td>63.7 ± 13.7</td> <td>K0</td> <td>19972</td> <td>HD 27230</td> <td>1.9 ± 0.0</td> <td>13.0 ± 1.8</td> <td>A2m</td>	18508	HR 1222	6.2 ± 0.5	63.7 ± 13.7	K0	19972	HD 27230	1.9 ± 0.0	13.0 ± 1.8	A2m
18531993V* U2 CamK118614Menkhib 24.3 ± 0.8 4.4 ± 0.3 O7.5lab:20017HD 27262K1II18704BD+41 790 2.9 ± 0.0 17.9 ± 14.1 B820037HD 27262K1II18704BD+41 790 2.9 ± 0.0 20.1 ± 9.3 A020097HD 283518 1.2 ± 0.1 20.0 ± 8.2 B818715HD 25205 2.0 ± 0.0 20.1 ± 9.3 A020097HD 283518 1.2 ± 0.1 2.2 ± 0.4 K3Ve-18724V* lam Tau 8.1 ± 0.2 33.2 ± 4.8 B3V + AK7VeK3Ve-18727BD+55 838 6.7 ± 0.6 34.8 ± 7.0 B3lb20160HD 281934 0.9 ± 0.1 21.6 ± 9.1 K3Ve-18788* 35 Eri 4.5 ± 0.4 28.0 ± 21.0 B5VMOVe(T)MOVe(T)18795HD 25056 6.2 ± 0.6 60.8 ± 12.2 G0Ib 20214 HD 27507 2.4 ± 0.1 50.4 ± 37.5 B9V18796HD 25392 1.4 ± 0.0 41.9 ± 29.6 A8/A9IVw 20234 HR 1333 10.0 ± 0.3 17.1 ± 2.4 B1.5IV18805HR 1243E5V20271HR 1363E5VS0.4 \pm 0.0 50.9 ± 3.2 B5	18532	V* eps Per	12.5 ± 0.8	15.4 ± 0.8	B0.5V	19986	HD 26857	10.4 ± 0.8	17.0 ± 2.1	K2
18704 BD+41 790 2.9 ± 0.0 17.9 ± 14.1 B8 20037 HD 26669 2.9 ± 0.1 20.0 ± 8.2 B8 18705 HD 25205 2.0 ± 0.0 20.1 ± 9.3 A0 20037 HD 26669 2.9 ± 0.1 20.0 ± 8.2 B8 18715 HD 25205 2.0 ± 0.0 20.1 ± 9.3 A0 20097 HD 283518 1.2 ± 0.1 2.2 ± 0.4 K3Ve- 18727 BD+55 838 6.7 ± 0.6 34.8 ± 7.0 B3lb 20160 HD 281934 0.9 ± 0.1 21.6 ± 9.1 K3Ve- 18788 * 35 Eri 4.5 ± 0.4 28.0 ± 21.0 B5V $D214$ HD 27507 2.4 ± 0.1 50.4 ± 37.5 B9V 18795 HD 25392 1.4 ± 0.0 41.9 ± 29.6 A8/A9IVw 20234 HR 1333 10.0 ± 0.3 17.1 ± 2.4 B1.5IV 18805 HR 1243 B5V 20300 HD 26684 5.0 ± 0.0 50.9 ± 3.2 B5	18593 18614	v≖ C∠ Cam Menkhib	243 + 08	44+ 03	07 5 ab	20017	v ** v 585 Per HD 27262	7.0± 0.4	41.0± 9.1	κ∠ K1⊞
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18704	BD+41 790	2.9 ± 0.0	17.9 ± 14.1	B8	20037	HD 26669	2.9 ± 0.1	20.0 ± 8.2	B8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18715	HD 25205	2.0 ± 0.0	20.1 ± 9.3	A0	20097	HD 283518	1.2 ± 0.1	2.2 ± 0.4	K3Ve-
18727 BD+55 838 6.7 ± 0.6 34.8 ± 7.0 B3lb 20160 HD 281934 0.9 ± 0.1 21.6 ± 9.1 K3Ve-M0Ve(T) 18788 * 35 Eri 4.5 ± 0.4 28.0 ± 21.0 B5V 50.4 ± 0.1 50.4 ± 37.5 B9V 18795 HD 25392 1.4 ± 0.0 41.9 ± 29.6 A8/A9IVw 20214 HD 27507 2.4 ± 0.1 50.4 ± 37.5 B9V 18796 HD 25392 1.4 ± 0.0 41.9 ± 29.6 A8/A9IVw 20234 HR 1333 10.0 ± 0.3 17.1 ± 2.4 B1.5IV 18805 HR 1243 EV 20300 HD 26684 5.0 ± 0.0 50.9 ± 3.2 B5	18724	V* am Tau	$8.1\pm~0.2$	$33.2\pm~4.8$	B3V + A					K7Ve
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18727	BD+55 838	$6.7\pm~0.6$	34.8 ± 7.0	ВЗІЬ	20160	HD 281934	0.9 ± 0.1	21.6 ± 9.1	K3Ve-
18/95 HD 25000 6.2 ± 0.6 60.8 ± 12.2 GUIb 20214 HD 27507 2.4 ± 0.1 50.4 ± 37.5 B9V 18796 HD 25392 1.4 ± 0.0 41.9 ± 29.6 A8/A9IVw 20234 HR 1333 10.0 ± 0.3 17.1 ± 2.4 B1.5IV 18805 HR 1243 B5V 20271 HR 1363 5.0 ± 0.0 50.9 ± 3.2 B5	18788	* 35 Eri	4.5 ± 0.4	28.0 ± 21.0	B5V	00000			F0 4 / 07 5	M0Ve(T)
10150 115 2532 1.4 ⊥ 0.0 41.9 ⊥ 29.0 A6/A91VW 20234 HR 1353 10.0 ± 0.3 17.1 ± 2.4 B1.51V 18805 HR 1243 B5V 20271 HR 1363 B5111 20330 HD 26684 5.0 ± 0.0 50.9 ± 3.2 B5	18795	HD 25056	6.2 ± 0.6	60.8 ± 12.2	GUID A 8 / A 011/	20214	HD 27507 HR 1222	2.4 ± 0.1	50.4 ± 37.5	
20330 HD 26684 5.0 ± 0.0 50.9 ± 3.2 B5	18805	HR 1243	1.4 ± 0.0	41.9 <u>T</u> 29.0	B5V	20234 20271	HR 1363	10.0 ± 0.3	11.1 ± 2.4	B1.5IV B5III
						20330	HD 26684	$5.0\pm~0.0$	50.9 ± 3.2	B5

Table C.1: - Continued. -

HIP	other D	mass	age	SnT	HIP	other D	mass	age	SnT
		[M _☉]	[Myr]	- 6 -			[M _☉]	[Myr]	- 6 -
20354	V* V469 Per	$6.0\pm~0.1$	47.9 ± 8.5	B4IV	21776	HIP 21776			B5
20362	BD+62 674	$3.9\pm~0.1$	12.0 ± 1.8	B5	21813	HD 29647			B8111
20378	HD 27908	1.3 ± 0.1	11.7 ± 2.3	G1V	21852	HD 283798	1.2 ± 0.0	16.5 ± 1.7	G2V
20381	HD 232939	4.7 ± 0.3	39.5 ± 3.5	B5	21867	HD 30253			K2 /
20387	HD 283571	$1.6\pm~0.1$	8.7 ± 1.6	F8Ve-	21881	*tau Tau	$6.4\pm~0.1$	$20.9\pm~3.7$	B3V
				K1Ve(T)	21972	HR 1493			B9111
20388	HD 283572	1.9 ± 0.1	4.3 ± 1.9	G2III	22000	V* RZ Eri			Am comp
20390	HD 284419	1.7 ± 0.3 6.7 ± 1.1	0.5 ± 0.1 50.1 \pm 0.6	MOUL	22015	HD 31230	20 ± 0.0	73.2 ± 23.5	3D A 1V
20417	104224+2049AB	0.7 ± 1.1	50.1 <u>-</u> 9.0	WOTT	22015	HD 29976	18 ± 0.0	13.2 ± 23.3 12.3 ± 2.2	A1V A2
20426	HD 27596	7.9 ± 0.9	37.4 ± 10.5	K5	22061	HD 30112	5.7 ± 0.3	4.5 ± 3.5	B2.5V
20513	V* V1142 Tau	7.8 ± 1.6	35.6 ± 11.8	М	22065	HD 30240			K1
20533	* 62 Tau	$7.1\pm~0.1$	30.5 ± 2.6	B3V	22075	HD 29846	4.0 ± 0.0	56.6 ± 26.0	В5
20554	HD 28107	3.6 ± 0.1	4.9 ± 3.6	B6V	22084	HD 30124	1.9 ± 0.0	31.6 ± 19.2	A2
20588	HD 281952	$3.1\pm~0.1$	31.6 ± 26.8	B8	22104	HD 29934	$2.0\pm~0.0$	20.1 ± 9.3	A0
20675	HD 28102	8.8 ± 0.8	25.1 ± 3.6	K5	22109	V* mu. Eri			B5IV
20683	HD 27846	8.1 ± 0.4	9.5 ± 1.3	B1.5V	22112	HD 30123			B8111
20689	HD 27858	6.3 ± 1.0	63.1 ± 29.8	K5 D0	22114	HD 30424	2.0 ± 0.0	39.8 ± 26.8	A2V R5III
20092	HD 28159	2.9 1 0.0	51.0 1 7.1	M111	22120	HD 30222	20 ± 0.0	20.1 ± 0.3	۵0 ۵0
20776	HR 1317	6.3 ± 0.5	63.7 ± 22.7	G6[]]:	22185	HD 284839	2.0 ± 0.0	20.1 ± 5.5	B9111
20777	HD 283654	0.6 ± 0.0	23.6 ± 3.7	M0-	22192	V* EX Eri	$2.0\pm~0.0$	28.4 ± 16.1	A2IV/V
				M3Ve(T)	22261	HD 30178			M2 b
20778	HD 28190	2.0 ± 0.0	39.8 ± 26.8	A0	22345	HD 29909	$6.4\pm~0.3$	55.2 ± 6.9	G5
20780	HD 28150	$2.0\pm~0.1$	$8.1\pm~1.5$	A0	22356	HD 284820	2.7 ± 0.1	$7.0\pm~4.0$	B8
20793	HD 28261	2.0 ± 0.0	$20.1\pm$ 8.4	A0	22453	* 1 Aur			K411
20803	HD 27968			А	22461	HD 30677	12.3 ± 0.7	12.6 ± 2.1	B1 - n
20812	HD 28170	2.0 ± 0.0	35.7 ± 23.0	A1	22524	HD 30738	1.3 ± 0.1	16.2 ± 5.2	F8
20860	HR 1289		26 20	B2V	22527	HD 30675	6.2 ± 0.1	16.3 ± 1.8	B3V B3ULEB
20004	HD 28134	3.0 ± 0.0 4.0 ± 0.1	3.0 ± 2.0 27.2 ± 6.7	B5	22549	HD 31244	70 ± 0.4	13.4 ± 0.0 48.4 ± 4.8	Δ2/Δ3
20922	* 228 Eri	10.0 ± 0.7	20.0 ± 1.3	B2V∶ne	22597	HR 1553	1.0 ± 0.1	40.4 ± 4.0	B5V
20928	HD 27623	2.0 ± 0.0	20.1 ± 9.3	A0	22605	HD 31004	$2.0\pm~0.0$	$11.0\pm~0.9$	A0V
20958	V* V1145 Tau			M311	22648	BD+62 710	$2.7\pm~0.2$	$7.0\pm~2.9$	B8
20963	V* V1144 Tau	5.0 ± 0.0	47.4 ± 5.1	B5V	22663	V* AN Dor	8.5 ± 0.3	11.2 ± 2.0	B2/B3V
20974	HD 27932	6.3 ± 0.5	63.7 ± 19.0	K0	22745	HD 31072	$7.4\pm~0.9$	42.4 ± 10.8	K5
21013	HD 28482			B8III	22761	HD 31341			K0
21042	HR 1439	76 00	001 11	K0II	22767	HD 31086	2.0 ± 0.0	23.4 ± 12.4	N
21060	* del Cae	7.6 ± 0.2	8.8 ± 1.1	B2IV-V	22797	V* pi.05 Ori	12.5 ± 0.8	15.8 ± 0.2	B2111 SB E211 / 111
21005		32 ± 02	50.6 ± 24.8	R8	22014	104545 6025AB			F211/111m
21139	* 45 Eri	5.2 ± 0.2	55.0 <u>1</u> 24.0	K3 -	22840	HR 1574	5.0 ± 0.0	52.1 ± 2.9	B5V
21159	HD 283677	$4.0\pm~0.0$	12.5 ± 10.7	B5V	22910	HD 31293	2.4 ± 0.1	4.5 ± 1.4	A0pe
21179	V* V1147 Tau	$0.9\pm~0.0$	$51.2\pm~4.8$	K0	22917	HD 31195	$3.3\pm~0.1$	35.9 ± 9.1	B7V
21182	BD+44 970	2.8 ± 0.1	$7.0\pm~4.0$	B8	22925	HD 282624	1.9 ± 0.1	3.8 ± 0.7	G2111evar
21192	V* DZ Eri			B9111	22928	V* V408 Aur			М0 Ь
21289	HD 28747	6.3 ± 0.6	51.6 ± 6.2	B9	22954	HD 31503	2.0 ± 0.0	20.1 ± 9.3	A0
21291	HD 28832	2.0 ± 0.1	20.1 ± 9.3	A0	22964	HD 282635	3.0 ± 0.1	45.0 ± 33.4	B8
21310	HD 29082	2.0 ± 0.0	11.0 ± 0.9	AU	23015		6.9 ± 0.5	45.7 ± 9.1	K 3 IIvar
21305	HD 232977	4.7 ± 0.3	41.7 ± 5.2	RUII	23024	HR 1595	2.0 ± 0.0 85 ± 0.3	20.1 ± 9.3 11.8 ± 2.7	B2V
21404	HR 1455			G5 - +	23098	HD 31748	1.8 ± 0.1	12.7 ± 2.7	A2V
21419	HD 28516	$1.9\pm~0.1$	$12.7\pm\ 2.5$	A2	23102	HD 31724	1.8 ± 0.0	14.0 ± 3.7	A3
21428	HR 1462			B7!!!	23123	* 10 Ori	$6.3\pm~0.5$	60.4 ± 15.9	K2∐var
21435	HD 28987	7.7 ± 0.2	39.8 ± 4.6	F	23130	HD 31799	$2.4\pm~0.1$	25.1 ± 16.8	B9
21444	V*nu Eri	$8.8\pm~0.2$	24.9 ± 3.0	B2 SB	23143	HD 31648	2.0 ± 0.0	$7.0\pm~0.8$	A2
21476	* 58 Per	$6.7\pm~0.2$	$50.1\pm~6.3$	G8∐ comp	23151	V* V1061 Tau	$4.0\pm~0.1$	18.0 ± 9.1	B5
21507	HD 29093	$3.9\pm~0.1$	6.3 ± 4.9	B5	23200	V* V1005 Ori	0.8 ± 0.2	7.6 ± 7.0	M0.5Ve
21517	VT SZ Tau RD 144.005	69 06	47.9 0.2	FSID	23228	HD 31806	3.2 ± 0.1	20.4 ± 8.7	B/V KAL-L
21520	HD 29507	0.0 ± 0.0 1.9 + 0.0	$+1.0 \pm 9.3$ 25.1 + 13.1	A2/A3W	23200	HD 32018			B2IV
21568	HD 28816	3.1 + 0.1	32.2 ± 27.3	B8	23353	HD 32112	7.1 ± 0.5	45.7 ± 8.0	K2
21601	HD 29060	7.1 ± 0.4	43.3 ± 6.3	K0	23359	HD 31895			КЗ∣Ь
21602	HD 29309	10.0 ± 0.1	20.0 ± 2.3	B2V	23360	V* RX Aur			GOIV
21626	HD 29441	7.8 ± 0.3	22.3 ± 3.6	B2.5Vne	23364	* psi Eri	$7.1\pm~0.1$	31.6 ± 1.0	B3V
21632	HD 29615	1.1 ± 0.0	29.7 ± 1.7	G3V	23375	HD 31894	7.9 ± 0.1	13.4 ± 3.0	B2IV-V
21650	HD 286935	2.0 ± 0.1	20.1 ± 9.3	A0	23451	HD 32297	2.0 ± 0.0	20.1 ± 9.3	A0
21697	V* V584 Aur	$1.5\pm~0.0$	$2.3\pm~0.5$	K2	23453	V* zet Aur			K4∏ comp
21734	BD+54 792	2.0 ± 0.0	40.4 ± 27.3	A0	23490	HD 32470	$2.0\pm~0.0$	$20.1\pm~9.3$	A0V
21735	HD 29589	$3.5\pm~0.1$	1.5 ± 0.7	BRIA	23522	* bet Cam			GUIB

Table C.1: - Continued. -

HIP	other D	mass [M _☉]	ag e [Myr]	SpT	HIP	other D	mass [M _☉]	age [Myr]	SpT
23551	HR 1640	$8.9\pm~0.1$	19.7 ± 0.8	B2IV	24898	HD 34576	8.7 ± 0.3	13.0 ± 1.5	B2V
23571	HD 32541	2.0 ± 0.0	51.3 ± 37.5	A0	24914	HR 1720	$7.4\pm~0.6$	42.1 ± 3.9	K4lab:
23582	HR 1587	$8.4\pm~0.5$	31.9 ± 5.1	K0	24916	HD 34881			A
23583	HR 1626	10 00	0E 1 12 1	K0 -	24922	HD 34859	$2.8\pm~0.1$	7.0 ± 2.9	B8V
23505	HD 32481	1.9 ± 0.0 7.0 ± 0.2	25.1 ± 13.1 30.4 ± 2.5	B3V	24925	HD 34626	7.7 ± 0.5	1.8 ± 0.9	B1.5 Vnp
23602	V* UX Ori	1.9 ± 0.1	8.1 ± 1.7	A2e	25007	HR 1772			B5 /
23603	HD 32328	2.7 ± 0.1	10.0 ± 6.8	B8V	25011	HR 1761			B5Vp
23643	HR 1646			B5IV	25014	HD 35042	6.3 ± 0.3	43.2 ± 10.1	B5111
23692	BD+52 913	15.0 ± 1.1	0.2 ± 0.1	DAw	25028	HR 1764	7.1 ± 0.1	31.6 ± 1.0	B3V
23099	HD 32656			B5	25041	* o Ori	12.0 ± 0.2 8.9 ± 0.1	10.0 ± 0.7 19.8 ± 2.2	B2IV-V
23714	HD 32816	$2.9\pm~0.1$	$10.0\pm~6.8$	B8V	25048	* rho Aur	0.5 1 0.1	10:0 1 2:2	B5V
23734	* 11 Cam	7.8 ± 0.3	25.0 ± 2.2	B2.5Ve	25053	HR 1769			B811
23745	HD 32884	2.9 ± 0.0	25.1 ± 15.1	B8V	25066	HD 35079	$7.0\pm~0.1$	29.5 ± 2.0	B3V
23755	V* TU Lep		20.0 0.5	B811	25088	HD 35123	$2.0\pm~0.0$	$20.1\pm~9.3$	A0
23757	HD 32807 HR 1624	3.0 ± 0.0	39.8 ± 8.5	88V K511	25092 25118	8D-20 1071	20 ± 0.0	39.8 ± 26.8	54, I Δ0
23767	* eta Aur	$6.5\pm~0.1$	$20.5\pm~4.3$	B3V	25110	* 23 Ori	12.5 ± 0.0 12.5 ± 1.1	10.3 ± 0.8	B1V
23774	HD 32672	10.0 ± 0.7	15.9 ± 1.0	B2IV	25145	HD 35148	$6.9\pm~0.2$	27.3 ± 2.4	B3Vn
23799	HR 1644			F2 p	25147	HD 35225	$2.0\pm~0.0$	14.2 ± 3.8	A0
23833	V* TU Pic	4.5 ± 0.4	47.8 ± 13.9	B5111	25177	HD 35308	2.0 ± 0.0	53.4 ± 20.2	AOV
23843	HD 33038 * 105 Tau	2.7 ± 0.1 11.0 ± 0.3	7.0 ± 2.9 15.8 ± 0.4	B8V B2Ve	25179	HD 35203	3.9 ± 0.1 75 ± 0.7	25.1 ± 19.7	B0V K5
23900	* 103 Tau	11.9 ± 0.3 11.9 ± 1.1	15.4 ± 1.4	B2Ve	25202	* 8 Lep	10.0 ± 0.7	21.7 ± 2.5	B2IV
23905	HD 33177	2.0 ± 0.0	20.1 ± 9.3	A0	25223	HR 1781	$8.5\pm$ 0.4	$5.4\pm$ 5.2	B1.5V
23919	HD 33190	3.0 ± 0.0	50.1 ± 17.2	B8V	25226	HD 34853			K0 -
23933	HD 33034	6.3 ± 0.8	$50.1\pm~6.5$	A2	25235	V* V1156 Ori	$6.3\pm~0.2$	$15.1\pm~4.6$	B3vw He
23946	HD 33090	5.0 ± 0.0	48.9 ± 4.0	B5	25241		25 0.0	F2 0 12 0	
23955	V* lam Eri	1.4 ± 0.0 9.3 ± 0.2	41.9 ± 25.0 20.1 ± 1.5	B2IVn	25241	HD 35305	3.5 ± 0.2 4.0 ± 0.0	53.9 ± 13.0 11.2 ± 1.3	B0.51V-V B5
23987	HD 33713	2.4 ± 0.1	48.9 ± 24.5	B9V	25281	V* eta Ori	14.7 ± 1.1	10.0 ± 0.4	B1V + B2
24060	HD 33742			B9111/1V	25284	V* V425 Aur	6.2 ± 0.2	$50.1\pm~6.4$	B5
24072	HR 1669	14.7± 0.9	11.1 ± 1.4	B2II: comp	25288	HR 1786	$6.3\pm~0.2$	48.8 ± 4.8	B4IVn
24229	HD 33662	6.6 ± 0.5	60.8 ± 12.2	K0 Ravi	25291	HR 1776	11.0 0.2	100 0 0 5	B9111
24238 24297	HD 33461 HD 33819	10.0 ± 0.5 2.0 ± 0.1	15.0 ± 2.5 20.1 \pm 0.3	B2:V:nne A0V	25302 25327	* 25 Ori HD 35502	11.9± 0.3	10.0 ± 2.5	BIV:pe B5V
24342	HD 33917	2.0 ± 0.0 2.0 ± 0.0	11.0 ± 0.9	AOV	25336	BELLATRIX	$8.8\pm~0.2$	22.6 ± 3.0	B2111
24394	HR 1710			A911/111	25337	HD 35395	12.5 ± 0.1	8.0 ± 1.0	B0.5III:
24436	V* bet Ori	19.2 ± 0.0	8.3 ± 0.1	B8la	25338	HD 35549	$2.0\pm~0.0$	20.1 ± 9.3	A0
24458	HD 34120	$3.0\pm~0.1$	31.6 ± 26.8	B8V	25339	HD 35949	71 05	471 29	F3 b/
24474	HD 34358 HD 34295			A411	25363 25368	HD 35527 HD 35575	7.1 ± 0.5 5.0 + 0.0	47.1 ± 2.8 7.1 ± 6.0	F2 B3V
24549	V* UX Aur			M4Ilvar	25378	HR 1803	6.9 ± 0.1	29.3 ± 3.5	B2.5V
24552	HD 34282	2.0 ± 0.0	20.1 ± 9.3	A0	25386	HD 35304	6.3 ± 1.0	63.1 ± 29.4	K5
24575	HD 34078	15.7	$0.2\pm~0.1$	O9.5Vvar	25410	* 113 Tau	$6.8\pm~0.2$	$0.3\pm~0.2$	B2Vn
24612	CCDM	$5.1\pm~0.1$	7.0 ± 3.2	B3	25428	ELNATH		20.1 \ 0.4	B7III
24618	HR 1731	79 ± 01	51 ± 18	B2V	25447	HD 34603 V* psi Ori	2.0 ± 0.0 10.0 + 0.4	20.1 ± 0.4 22.5 ± 1.9	B2IV
24642	HD 34250	6.8 ± 0.7	50.0 ± 5.7	FO	25477	HD 35730	5.0 ± 0.0	50.1 ± 4.4	В5р
24649	HD 34513			F0	25480	HD 35777	6.8 ± 0.1	0.3 ± 0.2	B2V
24667	HD 242211			B3	25492	HR 1804			B9lb
24674	* tau Ori	6.2 ± 0.0	63.1 ± 14.5	B5 B5V	25493	HD 35762	7.2 ± 0.3	1.4 ± 0.5	B2V B3V
24709	V* V1057 Ori	4.0 ± 0.1	10.0 ± 2.0	ызу M2II-III	25490 25499	* 115 Tau	5.9 ± 0.1 5.0 ± 0.0	7.3 ± 2.3 54.8 + 5.6	B5V
24725	HD 35093			K1 /	25500	V* V362 Aur			M1lb
24744	V* EO Aur	6.6 ± 0.4	25.1 ± 2.5	B3V +	25508	HD 278199			B8lb
				B3V	25522	HD 35885	$2.0\pm~0.1$	20.1 ± 9.3	A0
24776	HD 34453	$1.9\pm~0.1$	42.9 ± 29.7	A2	25539	* o Tau	7.0 ± 0.0	22.0 ± 2.5	B2.5IV
24780	HD 34799 HD 34425	4.0 ± 0.0	10.7 + 9.0	B5	25540	HD 35929 HD 35899	3.0 ± 0.3 4.5 ± 0.5	1.1 ± 0.9 27.6 ± 5.0	85V
24796	HD 34426	2.7 ± 0.1	7.0 ± 3.2	B8	25558	HD 35653	15.6 ± 1.3	7.7 ± 1.5	B0.5V
24811	HD 34672	3.0 ± 0.1	35.7 ± 28.5	B8V	25560	HD 35573	6.9 ± 0.9	50.1 ± 12.6	K2
24817	* 21 Ori		10.0.1	F5llvar	25563	HD 35670	3.0 ± 0.0	63.1 ± 15.6	B8
24825	V*YZLep V*DVCom	$5.0\pm~0.0$	48.9 ± 9.9	851V/V 85V	25565	V* IU Aur HD 35891	5.0 ± 0.0	1.0 ± 0.6 15.8 \pm 12.2	B3Vnne B8V
24845	* lam Lep	$12.3\pm~0.4$	$6.8\pm~2.3$	B0.5IV	25582	HR 1820	2.3 ± 0.1 8.4 ± 0.3	9.9 ± 1.3	B2V
24847	HR 1748	7.9 ± 0.2	0.2 ± 0.1	B1.5Vn	25606	NIHAL			G511
24879	* 19 Aur	7.9 ± 0.3	34.6 ± 4.9	A 5 I Ivar	25643	HD 36032	$3.0\pm~0.2$	10.0 ± 6.8	B8
24897	HD 34670	3.9 ± 0.1	$10.0\pm~8.4$	А					

Table C.1: - Continued. -

HIP	other ID	mass [M _☉]	age [Myr]	Sp⊤	HIP	other D	mass [M⊙]	age [Myr]	SpT
25648	HD 36013	6.0 ± 0.2	7.6 ± 2.2	B3V:n	26235	* 43 Ori	15.7	0.2 ± 0.1	O9.5Vpe
25655	HD 36012			B5Vn e	26237	* c Ori	11.9 ± 0.9	6.8 ± 1.3	B2111
25689	HD 244138	25 ± 0.3	14 + 11	G5.8Ve	26241	* iot Ori	28.3 ± 10.7	34 ± 03	09111
25712	HD 36151	5.6 ± 0.4	1.7 ± 1.1 63 1 ± 14 6	B5V	26243	V* WW Lep	50 ± 10.7	34.0 ± 14.1	B5IV /V
25712	HD 36115	3.0 ± 0.4 2.0 ± 0.1	11.3 ± 8.0	B8	26245	НО 36810	5.0 ± 0.0	34.0 ± 14.1 21.0 ± 6.1	B2 51V
25725	HD 35094	2.9 ± 0.1 2.4 ± 0.1	11.3 ± 0.0 2.4 ± 1.2	EGUU	26251	HD 37212	3.9 ± 0.1	21.0 ± 0.1	BOIN
25730		2.4 ± 0.1	3.4 ± 1.3		20251	HD 37313	2.5 ± 0.1	40.7 ± 20.7	
25733		12.0 ± 0.8	0.1 ± 0.0	09.511	20257	HR 1898	7.2 ± 0.2	21.1 ± 0.8	B2.5IV
25740	V* AS Cam	2.9 ± 0.1	25.1 ± 20.4	B8A + B8	26258	HD 37061	13.5 ± 1.5	0.1 ± 0.1	BIV
25751	HR 1833	9.3 ± 0.3	17.1 ± 3.5	B2V	26263	V* V1377 Ori	7.0 ± 0.2	38.5 ± 4.4	B3IV
25752	HD 36165	3.0 ± 0.1	2.7 ± 0.4	B7V	26264	V* iot Men			B8111
25777	HD 36113	$5.0\pm~0.0$	39.3 ± 8.9	B5	26291	HR 1878	6.3 ± 0.3	68.6 ± 22.2	K0
25786	HR 1840	$9.9\pm~0.1$	20.9 ± 2.3	B2IV-V	26304	V* V1179 Ori	$2.9\pm~0.0$	31.6 ± 14.5	B8V
25793	HD 36112	$3.0\pm~0.1$	$2.1\pm~0.6$	A3	26309	HR 1915	$1.8\pm~0.0$	31.6 ± 19.2	A2111/IV
25813	CCDM	$5.0\pm~0.0$	22.7 ± 6.3	B5V	26311	V* eps Ori	36.3 ± 6.2	$3.3\pm~0.3$	B0 a
	J05308+0557AB				26314	HR 1906	$6.4\pm~0.1$	21.3 ± 5.0	B3Vvar
25818	HD 36312	$3.0\pm~0.0$	63.1 ± 16.7	B8	26345	HR 1911	$12.0\pm~0.2$	6.8 ± 1.2	B1V
25844	HD 36262	5.2 ± 0.1	0.7 ± 0.4	B3V	26354	BD+34 1113	6.8 ± 0.0	0.3 ± 0.2	B2Ve
25848	HD 244354	15 ± 01	98 ± 12	G0	26355	HD 37327	20 ± 00	251 ± 131	AUV
25850	HD 36340	76 ± 0.1	16 ± 12	B2\/	26364	HD 36040	62 ± 0.6	63.7 ± 14.6	KU VIGI
25050	* ens Col	7.0 ± 0.0	7.0 _ 7.2	K10/00	26365	HD 2/5380	28 + 02	10.0 ± 6.9	B8
25059	CCDM	0.2 1 0.2	163 - 29	B1 5V	20303	CD 49 1002	2.0 ± 0.2	10.0 ± 0.0	K6\/^
∠0001		9.2 ± 0.3	10.3 ± 2.8	DT.3A	20309		0.7 ± 0.1	23.4 ± 12.0	KOVE
	J05313+0318AB				26373	V* UY Pic	1.0 ± 0.0	23.1 ± 8.8	KUV
25865	BD-15 1067	2.0 ± 0.0	20.1 ± 9.3	AU	26386	HR 1908			K4II SB
25869	HR 1848	$10.0\pm~0.4$	$18.7\pm~2.5$	B2V	26395	HR 1919	$1.9\pm~0.0$	13.0 ± 2.3	A2V
25877	V* V428 Aur	$6.3\pm~0.9$	63.1 ± 29.8	K5	26397	HD 37032	10.2 ± 0.3	$0.2\pm~0.1$	B0.5V
25881	HD 36392	$5.0\pm~0.0$	$1.0\pm~0.6$	B3V	26405	HD 37272	5.9 ± 0.4	56.9 ± 10.5	B5V
25886	HD 36337	$5.0\pm~0.0$	43.1 ± 4.6	B5	26414	HR 1913	$7.7\pm~0.2$	12.5 ± 0.8	B2IV-V
25897	HD 36429			B5V	26426	* 20 Cam			G811-111
25898	HD 36487			B5V	26427	HR 1918	$9.7\pm~0.3$	$5.1\pm~1.8$	B1Vvar
25902	HD 36457	6.6 ± 0.3	55.2 ± 7.3	G5	26439	CCDM	6.3 ± 0.5	39.8 ± 4.4	B4V
25906	HD 36212	7.0 ± 0.4	31.5 ± 4.7	B3		J05376-0125AB			
25923	* ups Ori	21.7 ± 3.0	5.5 ± 1.1	B0V	26442	V* V1378 Ori	7.8 ± 0.2	2.7 ± 0.1	B1.5V
25030	V* del Ori	19.4 ± 0.1	65 ± 0.5	09.51	26449	HD 245546	26 ± 0.1	70 ± 20	BS
25043	HD 36280	10.4 ± 0.1	0.3 ± 0.3	B0 51\/n	26451	* zet Tau	10.0 ± 1.1	22.0 ± 0.0	BAIIIn
25945	11D 30200	10.0 ± 0.3	177 0.1	MOL	20451		10.0 1 1.1	160 ± 40	5411p
25945		12.1 ± 0.4	17.7 ± 0.0		20455		1.5 ± 0.0	10.9 ± 4.0	FSV
25954				B7111	26464	V* V1379 Ori	4.0 ± 0.0	11.2 ± 9.5	BSV
25969	HD 36374			B2	26471	HD 37331	1.9 ± 0.0	39.8 ± 25.8	A2
25979	HD 36549	3.6 ± 0.3	10.0 ± 7.0	B6Vwp	26477	HR 1923	9.8 ± 0.1	21.2 ± 2.5	B2IV-V
25980	HR 1861	12.1 ± 0.5	12.8 ± 0.9	B1IV	26481	HD 37342			B5V
25985	ARNEB	12.2 ± 0.7	16.1 ± 0.6	F01b	26487	HR 1920			B8111
26020	HR 1863	$5.9\pm~0.1$	37.8 ± 8.7	B4Vn	26508	HD 37397	8.4 ± 0.3	9.7 ± 1.7	B2V
26048	V* V1107 Ori	$3.4\pm~0.2$	$1.6\pm~0.6$	B6Vwp	26527	HD 245637			B3
26057	HR 1846			B9 p	26535	HR 1933	$8.4\pm~0.3$	17.9 ± 3.4	B1.5 V
26062	HD 36546	$2.7\pm~0.0$	$7.0\pm~2.8$	B8	26551	2MASS			B0
26063	V* VV Ori	$12.5\pm~0.1$	11.8 ± 1.4	B1V		J05384561-			
26064	* 120 Tau	10.0 ± 0.8	22.5 ± 3.4	B2IV-Ve		0235588			
26066	HD 37227			F011	26566	HD 245770			Bpe
26069	V* bet Dor	7.3 ± 0.3	43.3 ± 4.3	F6 a	26579	HD 37525	4.0 ± 0.0	13.4 ± 9.5	B5V
26070	HD 36710	7.1 ± 0.4	47.6 ± 9.7	К2	26581	HD 37526	5.9 ± 0.2	7.3 ± 2.5	B3V
26085	HD 36854			A311/111	26594	* ome Ori	12.0 ± 3.0	0.1 ± 0.1	B3 e
26003	* 35 Ori	50+00	73 + 61	B3V	26500	HD 37387	62 + 07	63.1 ± 22.1	K11b
26000	HR 1871	75 + 0.0	1.5 ± 0.1 1.7 ± 1.4	B2\/	26602	HR 1944	68 + 04	425 ± 25	R4
20090	HR 1073	7.5 ± 0.5	1.1 T 1.4	B2 5\/	20002	\/* \//22 A	0.0 ± 0.4	72.0 ± 3.0	BOILT
20100		1.1 ± 0.1	9.3 _ U.I	D2.3V	20000		9.1 ± 0.2	21.0 <u>-</u> 3.0	
20110		2.4 ± 0.0	51.5 ± 24.5	BA	20011		15.0 ± 1.1	1.2 ± 1.2	09.57
20120	HD 30827	5.0 ± 0.0	39.5 ± 1.0	85	20621	HD 37852	2.0± 0.0	7.0 ± 2.9	Bank
26132	HD 36776	$2.8\pm~0.3$	10.0 ± 6.8	B8	26640	* 125 Tau	$5.0\pm~0.0$	32.6 ± 1.3	B3IV
26154	HD 36841	$20.0\pm~0.0$	$0.1\pm~0.0$	08	26683	HD 37674	$5.0\pm~0.0$	$1.0\pm~0.7$	B3Vn
26176	Lamb da Ori X-5	15.3 ± 0.5	$7.2\pm~0.4$	B0IV	26687	HD 37659	$2.0\pm~0.0$	11.0 ± 0.9	A0
26182	V* V1045 Ori			B8 p	26712	HR 1938			B9.5 - Vp
26188	HD 36898			В5	26713	HR 1950	$9.4\pm~0.3$	$8.4\pm~2.4$	B1.5V
26197	HR 1886	15.5 ± 1.6	10.0 ± 0.4	B1Vvar	26718	V* NO Aur			M2SIab
26199	HR 1887	15.6 ± 0.0	9.5 ± 1.0	B0.5V	26727	CCDM	$14.6\pm~5.1$	5.6 ± 1.3	09.5Ib SB
26207	CCDM	26.6 ± 4.7	3.4 ± 0.6	O		J05408-0156AB			
20207	J05351+0956AB				26728	V* V1051 Ori			B9.5///p_Si
20207			180 ± 37	B2IV-V	26736	HR 1952	8.5 + 03	18.4 + 2.5	B2IV-V
26207	HD 36895	81 ± 113			20100		0.5 ± 0.5	10.7 <u>1</u> 2.J	
26217 26212 26213	HD 36895	8.1 ± 0.3 6.2 ± 0.1	14.0 ± 0.0	B3V	26742		67 + 02	16 + 14	B2IV
26217 26212 26213	HD 36895 HD 36954	8.1 ± 0.3 6.2 ± 0.1	14.9 ± 0.9	B3V	26742	V* V901 Ori	6.7 ± 0.3	1.6 ± 1.4	B2IV
26212 26213 26215	HD 36895 HD 36954 HR 1883	8.1 ± 0.3 6.2 ± 0.1	14.9 ± 0.9	B3V B9111MNp	26742 26743	V* V901 Ori HD 37777	6.7 ± 0.3 7.1 ± 0.5	1.6 ± 1.4 45.7 ± 5.3	B2IV K2
26207 26212 26213 26215 26226	HD 36895 HD 36954 HR 1883 HD 37063	8.1 ± 0.3 6.2 ± 0.1 2.0 ± 0.0	10.0 ± 0.1 14.9 ± 0.9 11.0 ± 0.9	B3V B9IIIMNp A0	26742 26743 26752	V* V901 Ori HD 37777 HD 37806	$\begin{array}{rrrr} 6.7 \pm & 0.3 \\ 7.1 \pm & 0.5 \\ 3.7 \pm & 0.3 \\ \end{array}$	$\begin{array}{rrrr} 1.6 \pm & 1.4 \\ 45.7 \pm & 5.3 \\ 1.2 \pm & 0.9 \\ \end{array}$	B2IV K2 A0
26212 26213 26215 26226 26233	HD 36895 HD 36954 HR 1883 HD 37063 HR 1890	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rcl} 10.0 \pm & 0.1 \\ 14.9 \pm & 0.9 \\ 11.0 \pm & 0.9 \\ 3.8 \pm & 2.7 \\ \end{array} $	B3V B9IIIMNp A0 B1.5V	26742 26743 26752 26755	V* V901 Ori HD 37777 HD 37806 HD 37949	$\begin{array}{rrrrr} 6.7 \pm & 0.3 \\ 7.1 \pm & 0.5 \\ 3.7 \pm & 0.3 \\ 3.0 \pm & 0.1 \end{array}$	$\begin{array}{rrrr} 1.6 \pm & 1.4 \\ 45.7 \pm & 5.3 \\ 1.2 \pm & 0.9 \\ 20.0 \pm 16.0 \end{array}$	B2IV K2 A0 B8V

Table C.1: - Continued -

			101						
HIP	other D	mass [M _☉]	ag e [Myr]	SpT	HIP	other D	mass [M⊙]	age [Myr]	Ѕр⊤
26777	* 126 Tau	66 ± 01	35.1 ± 4.8	B3IV	27850	HD 248753	99+ 01	51 ± 53	B1Vnne
26785	HD 37889	7.5 ± 0.4	1.5 ± 0.5	B2V	27884	HD 39716	4.6 ± 0.4	36.2 ± 3.1	B5
26803	HD 37614	7.6 ± 0.3	19.7 ± 0.8	B2	27900	HR 2048	6.9 ± 0.2	50.1 ± 9.1	G911
26816	HD 37903	7.9 ± 0.1	0.4 ± 0.1	B1.5V	27929	HR 2058	8.5 ± 0.4	2.2 ± 1.5	B1.5V
26821	HR 1962	$6.7\pm~0.2$	$50.1\pm~6.4$	B4/B5III	27937	HR 2089	$6.8\pm~0.1$	26.3 ± 4.9	B3V
26845	HD 246338	$7.0\pm~0.3$	$28.4\pm~2.9$	в	27941	HD 39680	15.0 ± 10.0	$2.3\pm~2.2$	O6:pe SB
26872	HD 37657	$7.9\pm~0.4$	28.8 ± 4.8	B3Vn e	27954	HD 39526	$6.2\pm~0.5$	63.7 ± 14.6	К0
26875	HD 246417	4.0 ± 0.0	10.0 ± 0.8	B5	27965	* 57 Ori	10.0 ± 0.2	18.7 ± 2.3	B2V
26889	HD 37737	10.2 ± 0.3	0.2 ± 0.1	B011:	27989	V* alf Ori	$9.1\pm~0.4$	29.1 ± 3.8	M2Ib
26939	HD 38087			B5V	28008	CD-28 2561	15.1 ± 9.9	$2.2\pm~2.2$	G:
26943	HD 38354			B8/B9III	28049	BD+47 1213	4.8 ± 0.2	44.9 ± 10.9	B5
26954	HD 246803	1.8 ± 0.0	12.7 ± 2.5	A2	28069	HD 40009	2.0 ± 0.0	20.1 ± 9.3	A0
26955	HD 38120	$2.7\pm~0.2$	$2.6\pm~1.3$	A0	28072	HD 249218	$3.1\pm~0.1$	45.0 ± 35.3	B8
26964	HR 1961	$7.8\pm~0.2$	$23.2\pm$ 4.0	B2.5Ve	28089	HD 40068	$2.0\pm~0.0$	$20.1\pm~9.3$	A0
26993	HD 246706	$2.7\pm~0.2$	$10.0\pm~6.8$	B8	28142	V* V1384 Ori	$7.8\pm~0.4$	$5.0\pm~3.8$	B2V
26998	V* V1165 Tau	$11.4\pm~0.7$	$4.4\pm~2.2$	B1Vpe	28199	* gam Col	$8.9\pm~0.1$	$25.4\pm~2.7$	B2.5IV
27039	HD 38034	$5.0\pm~0.1$	$56.6\pm~7.2$	B5	28202	HD 40114	2.3 ± 0.1	45.1 ± 32.6	B9
27059	V* V351 Ori	$1.7\pm~0.1$	$11.0\pm~2.7$	A7IIIvar	28211	HD 40355	$3.0\pm~0.0$	38.3 ± 12.9	B8IV
27103	HD 38426	$6.5\pm~0.2$	$25.1\pm$ 4.2	B3V	28220	HD 249590	$4.8\pm~0.2$	42.4 ± 13.4	B5
27117	HD 38352	$2.0\pm~0.0$	20.1 ± 9.3	A0	28237	* 139 Tau	10.0 ± 1.3	22.5 ± 3.4	B1lb
27172	HD 38232			F511	28244	HD 40110			B911
27180	HD 38233	2.4 ± 0.1	39.7 ± 27.5	B9	28261	HD 40317	$2.0\pm~0.0$	20.1 ± 8.4	A0
27192	HR 1974	1.9 ± 0.0	50.1 ± 36.3	АЗе	28287	HR 2117			G8II
27198	HD 247149	5.1 ± 0.1	5.2 ± 3.9	B3	28361	HD 249845	7.4 ± 0.3	0.9 ± 0.6	B2:V:nn
27204	HR 1996	11.2 ± 1.0	12.6 ± 3.2	B1IV/V	28364	HD 40160			B5
27224	HD 38188	4.6 ± 0.4	31.6 ± 2.2	B5V	28370	HR 2109			B8IIIn
27227	HD 37856	7.9 ± 0.7	37.4 ± 6.6	K0	28404	V*pi.Aur			M3Ilvar
27243	HR 2008			K0/K1	28431	HD 40570			КЗІЬ
27265	* 129 Tau			B8IIIMNp	28453	HD 40728	2.9 ± 0.1	12.6 ± 9.2	B8
27287	HD 38477	6.2 ± 0.7	63.7 ± 14.6	KU	28469	HD 40530			F2II
27300	HD 38376	2.0 ± 0.0	20.1 ± 9.3	AU	28474		1.0 ± 0.0	41.5 ± 14.1	G8V
27303	HR 2005	4.0 ± 0.3	51.5 ± 22.5	BOIII	28489				Б9Шр С.Е., I
27309	* bot Die	4.0 ± 0.0	13.7 ± 0.5 9.1 ± 1.7	A 3\/	28500	UD 2111	71 - 10	447 - 00	Sr⊑u+ B0lob
27321		1.9 ± 0.1 1.9 ± 0.0	35.0 ± 22.4	A3V A2	28513	HD 250200	7.1 ± 1.0 8.0 ± 0.7	44.7 ± 9.0 23.8 ± 3.3	BBIL
27337	HD 39675	1.9 ± 0.0	35.9 ± 22.4	AZ KE	20515	HD 200290	3.9 ± 0.7	23.0 ± 3.3	A01/
27364	* 133 Tau	7.9 ± 1.0 7.4 ± 0.1	44 ± 38	B2IV-V	28562	HR 2105	63 ± 0.0	63.7 ± 20.9	KU AOV
27366	SAIPH	15.5 ± 1.0	11.1 ± 0.6	B0.5 avar	28574	CCDM	5.9 ± 0.1	63.1 ± 14.5	B5111
27368	HD 38755	3.6 ± 0.1	2.5 ± 1.3	B6V		J06018-1036AB			
27375	HD 37866	2.0 ± 0.0	20.1 ± 9.3	A0	28607	V* E∣ Cam	8.8 ± 0.9	28.2 ± 7.2	K5
27380	HD 38503			F8 b-	28675	HR 2140			K311/111CNv
27390	HD 38672	$5.0\pm~0.0$	47.4 ± 1.6	В5	28702	HD 41368			B5III/IV
27395	HD 38800	$2.8\pm~0.1$	15.8 ± 8.2	B8	28711	HIP 28711	$15.0\pm~1.1$	$0.2\pm~0.1$	O9V
27438	HD 38868	2.0 ± 0.0	20.1 ± 9.3	A0	28716	V* chi02 Ori	13.7 ± 1.4	$15.4\pm~0.5$	B2 avar
27447	HD 38658	$5.6\pm~0.5$	42.5 ± 3.2	B3	28718	HD 41253			B5
27452	HD 38856	3.0 ± 0.0	39.8 ± 15.4	B8	28724	HD 41670			G811
27465	HD 247901			G0/G1 e	28739	HD 41383			B9.5III
27478	HD 38750			K2	28744	HR 2142	12.5 ± 1.2	14.4 ± 0.9	B2Vne+
27505	HD 39235			B5V	28756	* 72 Col	$8.6\pm~0.2$	13.5 ± 6.6	B2V
27512	HR 2032	$8.8\pm~0.4$	28.5 ± 5.2	K1	28769	HD 41701			G8 b/
27532	HD 39353	$2.9\pm~0.1$	20.0 ± 11.4	Ар	28783	HD 40978	$8.0\pm~0.3$	27.7 ± 4.3	B3Ve
27536	HD 39034	$2.0\pm~0.0$	20.1 ± 9.3	A0	28802	HD 41285	$4.0\pm~0.0$	10.0 ± 8.4	B5
27545	HD 39033	2.4 ± 0.1	59.5 ± 18.2	B9	28809	HD 41434	2.4 ± 0.0	61.8 ± 34.0	B9
27548	HD 38852	4.7 ± 0.3	38.2 ± 17.1	B5	28920	HD 41418	2.4 ± 0.1	56.2 ± 31.2	B9V
27607	HD 38775	3.0 ± 0.1	39.8 ± 22.6	B8	28921	HD 41842	0.8 ± 0.0	60.4 ± 12.4	K1V
27634	CCDM	7.2 ± 0.5	39.8 ± 2.0	F8	28923	HD 41883	3.0 ± 0.1	31.6 ± 26.8	B8/B9V
	J05510+6545AB				28930	V* V394 Aur			M3II comp
27642	HD 39097	6.9 ± 0.2	50.1 ± 0.5	KU	28939	HD 41455	3.0 ± 0.0	59.4 ± 15.5	B8V
27658	* 55 Ori	8.5 ± 0.3	18.2 ± 3.5	B2IV-V	28949	HR 2154	60 01	142 14	BOIN
27005	HD 39378	2.4 ± 0.1	44.3 ± 34.7	BAA	28973	V* XZ Lep	0.2 ± 0.1	14.3 ± 1.4	BJV
21083 27600	HD 240434			D В	20901	11D 41/30			ыр МЗП/Ш
27099 27750	* 56 0411	704 05	177± 7°	ы К2Шмат	20984 20002	v i⊺ ∟ep HR 2170	61-01	501+ 00	B/Vnr
2113U 27772		1.0 ± 0.5	41.1 ± 1.8	r∖∠⊓var G6∐ !!!	20992	HD 41676	0.4± 0.1 76± 00	30.1 ± 0.9 38.5 ± 7.6	64 V NN K 2
21113 27778	HR 2028			M2III	29000	* 67 Ori	7.0 ± 0.9 6.6 ± 0.1	30.3 ± 1.0 25.3 ± 5.0	R3IV
27800	HD 39304			B8111	29030	HD 41969	20 ± 0.1	20.1 ± 0.3	A0
27810	V* Jam Col	40+00	56.6 ± 26.0	B5V	29062	HD 41541	56 ± 0.0	63.1 ± 15.4	B5
27841	HD 39455	4.0 <u>1</u> 0.0	50.0 <u>1</u> 20.0	F511	29092	HD 44187	2.0 ± 0.4	11.0 ± 0.9	A0/A1V
27842	HD 39557			B5	29106	V* V916 Ori	7.4 ± 0.0	13.9 ± 3.7	B2.5V
2.042				20.11	29126	CCDM	9.1 + 0.1	0.2 + 0.1	B1V
						J06084+1358AB	0.1	0.1	

Table C.1: - Continued. -

					_				
HIP	other D	mass [M⊙]	age [Myr]	ЅрТ	HIP	other D	mass [M _☉]	age [Myr]	SpT
29129	HR 2187			B8	30019	V* V1155 Ori			B9 sp
29131	HD 42447	3.0 ± 0.1	15.8 ± 12.5	B8IV	30034	V* AB Pic	$1.0\pm~0.0$	19.6 ± 6.1	К2V
29148	HD 41940	7.5 ± 0.5	4.0 ± 3.8	B2V	30046	V* LU Gem	19.2 ± 1.1	5.8 ± 0.9	B011
29177	HD 42204			B5	30049	* 12 Gem	$7.0\pm~0.6$	43.3 ± 3.2	A011
29188	HD 41994			G511	30073	* 7 Mon	$7.7\pm~0.1$	19.8 ± 2.7	B2.5V
29196	HR 2169	$7.3\pm~0.7$	$39.8\pm~3.5$	K4111	30099	HR 2269			КЗІЬ
29201	HD 42259	$12.0\pm~0.8$	$0.1\pm~0.0$	B0V	30122	* zet CMa	$7.4\pm~0.2$	$32.3\pm~6.9$	B2.5V
29213	HD 42918	$5.5\pm~0.4$	$34.4\pm~4.5$	B4V	30133	HD 44290	$1.9\pm~0.1$	12.0 ± 1.9	Ар
29216	HD 42088	$15.1\pm~9.9$	$2.2\pm~2.2$	O6	30140	HD 44322	$2.0\pm~0.0$	20.1 ± 9.3	A0Vn
29258	HD 42334	$3.1\pm~0.1$	57.3 ± 28.0	B8	30143	HR 2288	$12.1\pm~0.3$	14.5 ± 0.7	B3V
29263	V* AF Col			M211/111	30169	HR 2276	$7.5\pm~0.9$	29.0 ± 7.2	B5111
29276	V* del Pic	$7.9\pm~0.1$	39.8 ± 4.4	B0.5IV	30207	HD 44485			B7/B8III
29310	HD 42352	$10.0\pm~1.3$	12.6 ± 1.5	B1	30214	HR 2284	11.9 ± 0.1	$9.0\pm~2.2$	B1Vpe SB
29317	HD 41689	$9.5\pm~0.5$	$2.5\pm~2.5$	B1Vn	30275	HD 43771	$1.9\pm~0.0$	39.8 ± 26.8	A2
29321	V* V1388 Ori	$9.8\pm~0.6$	15.8 ± 1.2	B2V	30277	* del Col			G711
29326	HR 2184			K1	30314	HD 45270	$1.1\pm~0.0$	27.3 ± 1.5	G1V
29360	HD 42379	$9.0\pm~0.1$	12.4 ± 1.4	B1	30324	V* bet CMa	12.5 ± 0.1	14.9 ± 1.3	B1 /
29362	HD 42680			K2 /	30331	HD 44391			КОІЬ
29364	HD 42456			G5Ib	30341	HD 44638	$6.7\pm~0.3$	60.8 ± 12.2	K0
29387	HD 42748	$5.0\pm~0.0$	4.3 ± 3.1	B3V	30351	V* IM Mon			B5V
29392	HD 42601	$2.0\pm~0.0$	41.5 ± 28.3	A0	30363	HD 44585	$3.0\pm~0.0$	$2.7\pm~0.3$	B7V
29416	V* TV Gem	7.3 ± 1.1	44.1 ± 9.2	M1:lavar	30382	HR 2292	$6.4\pm~0.1$	19.1 ± 3.7	B3V
29417	HR 2205	$10.0\pm~0.1$	20.0 ± 2.1	B2V	30393	HD 44597	$15.0\pm~1.1$	$0.2\pm~0.1$	09V
29426	* ksi Ori	$6.6\pm~0.1$	34.6 ± 4.9	B3IV	30407	V* V721 Mon	$9.2\pm~0.6$	27.4 ± 5.0	K5
29434	* 69 Ori			B5Vn	30418	HD 45098	$5.9\pm~0.2$	63.1 ± 15.4	B5V
29435	HD 42454			G2Ib	30420	HR 2303	$6.3\pm~0.6$	60.3 ± 13.9	K2/K3
29446	HD 42655	$7.1\pm~0.1$	$0.7\pm~0.4$	B2V	30426	V* IU CMa			B8111
29464	HD 43071	$7.5\pm~0.3$	31.6 ± 5.4	B3Vn	30432	HD 44474	$6.5\pm~1.2$	53.6 ± 19.5	K5
29465	HD 42849			B9.5111	30433	HD 44738			A2Ib
29470	HD 42915	$1.8\pm~0.0$	$14.0\pm~3.7$	A3V	30438	CANOPUS	$9.2\pm~0.3$	$26.8\pm~3.3$	F0Ib
29488	V* IP CMa			B5 /	30444	HR 2316			K1 /
29490	* 36 Cam			K2 -	30446	HD 256413			B5111
29522	HD 42758			B8111	30468	HR 2309	$6.0\pm~0.1$	41.6 ± 5.9	B4V
29539	HD 43088	$2.6\pm~0.1$	50.7 ± 13.6	B9111/1V	30484	HD 44633	$7.6\pm~0.5$	$39.8\pm~3.3$	K0
29563	HD 42908	$8.9\pm~0.3$	$14.7\pm~2.0$	B2Ve	30518	HR 2297			B8IIIn
29581	HD 42767	$6.2\pm~0.2$	63.1 ± 15.5	K5	30520	V* psi01 Aur	14.6 ± 1.8	11.8 ± 1.7	K5 abvar
29603	HD 43293	$2.0\pm~0.0$	$20.1\pm~9.3$	A0V	30538	HD 45142			B8/B911
29606	HD 42736	$2.0\pm~0.0$	$20.1\pm$ 8.4	A0	30541	V* T Mon			K1 abv SB
29629	HR 2224	$5.0\pm~0.0$	27.3 ± 14.3	B5V	30580	HD 45153	$3.4\pm~0.1$	39.1 ± 9.3	B7V
29636	HD 43044	$3.0\pm~0.1$	35.7 ± 26.7	B8V	30597	HD 43810	$6.8\pm~0.9$	63.7 ± 18.6	K2
29639	HD 42527	$6.2\pm~0.6$	63.7 ± 13.7	K0	30660	HR 2325	$7.8\pm~0.1$	24.9 ± 3.7	B2.5V
29665	HD 43080	$1.8\pm~0.0$	25.1 ± 13.1	А	30675	HR 2328	$2.0\pm~0.0$	11.0 ± 0.9	A0Vn
29678	HR 2222	$9.9\pm~0.1$	$7.6\pm~3.4$	B1V	30700	* 9 Mon	$5.5\pm~0.4$	31.6 ± 9.8	B4V
29681	HD 42782	$5.8\pm~0.6$	56.9 ± 7.9	B5	30715	HD 45495			B8/B9III
29687	V* LR Gem	$12.0\pm~0.8$	0.1 ± 0.0	B0IV	30717	HR 2334			K1
29694	HD 43152			К51Ь	30725	HD 257546	$1.9\pm~0.1$	12.3 ± 1.2	A2
29703	HD 43415	$5.0\pm~0.2$	5.4 ± 4.2	B4:Vn	30738	HD 45207			F8
29705	HR 2237			B9111	30743	HD 45566	$5.6\pm~0.4$	37.8 ± 3.8	B4V
29713	HD 43286	5.0 ± 0.0	40.3 ± 9.2	B5	30754	HD 45515	2.8 ± 0.1	12.6 ± 9.2	B8
29715	HD 43301	4.0 ± 0.0	28.2 ± 15.4	B5	30772	* 10 Mon	$9.7\pm~0.2$	17.6 ± 2.8	B2V
29731	HD 43185	$7.9\pm~0.8$	37.4 ± 8.4	K2111	30776	HD 45629			B9111
29736	* 73 Ori		00 G .	B9 -	30788	*∣am CMa	5.6 ± 0.4	39.8 ± 5.0	B4V
29739	HR 2232	6.1 ± 0.1	28.9 ± 3.0	B3IV	30800	HD 45677	7.4 ± 1.6	0.4 ± 0.2	Bpe (shell)
29744	HD 43208	$4.5\pm~0.3$	22.2 ± 9.0	B5	30840	HR 2364	5.9 ± 0.1	39.9 ± 9.4	B5IV
29763	HD 42721	·		G8 -	30844	HD 45165	3.2 ± 0.1	57.3 ± 40.9	A
29771	HR 2249	7.2 ± 0.2	0.3 ± 0.2	B2/B3V	30863	HD 45674	7.6 ± 0.5	44.7 ± 1.4	FO
29798	HR 2235			K511	30867	ADS 5107 ABC	8.7 ± 0.2	28.9 ± 4.2	B3Ve
29807	* kap Co			G8	30883	* 18 Gem			B6111
29839	HR 2248			B7	30943	HD 45623		00 A 1	B5V
29849	HD 43496			B811	30955	HD 45389	$2.0\pm~0.0$	20.1 ± 9.3	A0
29856	HD 43480		/	G5	30957	HD 45981			A3 /
29890	HD 43331	$6.3\pm~0.8$	$51.0\pm~3.0$	K5	30961	HD 45789	6.1 ± 0.2	28.4 ± 3.1	B2.5 V-V
29900	HD 43861			B5IV/V	30986	HR 2367	$6.5\pm~0.3$	60.8 ± 11.0	K0
29901	V* V452 Aur	$10.0\pm~0.9$	25.1 ± 4.7	K2	31011	HD 45975	3.0 ± 0.0	39.8 ± 8.4	B8V
29941	HR 2266	$7.3\pm~0.1$	$14.2\pm~1.5$	B2/B3V	31024	HR 2373	$8.2\pm~0.5$	26.4 ± 3.5	B2111
29990	HR 2281			G2Ib	31028	HD 46131	$5.0\pm~0.0$	$12.6\pm~3.6$	B4V
30004	HD 44102			B8111/1V	31031	HD 45800			G811
30011	HR 2271	7.6 ± 0.3	39.8 ± 4.6	B3 /	31037	HR 2380	7.9 ± 0.1	25.8 ± 4.1	B3 V /V
00011									'

Table C.1: - Continued. -

HIP	other D	mass [M _☉]	ag e [Myr]	SpT	HIP	other D	mass [M _☉]	age [Myr]	ЅрТ
31066	HR 2370	9.2 ± 0.3	15.2 + 2.4	B2V:nne	31884	HD 47904			B8
31068	V* AE Pic	7.0 ± 0.1	30.4 ± 2.5	B3V	31901	CD-27 3180	$4.8\pm~0.2$	48.5 ± 1.5	B5
31088	HD 46185	$5.9\pm~0.1$	20.1 ± 1.1	B2/B311:	31929	HD 48559			B6111
31107	HR 2374			B6	31935	HD 47993			A511
31125	V* ksi01 CMa	12.5 ± 0.8	$15.4\pm~0.8$	B1	31939	V* V641 Mon	$6.3\pm~0.1$	20.5 ± 1.3	B3Vnn
31178	HD 46446			B2	31945	HR 2454			B8111
31184	HD 259264			A711	31959	HD 48165	6.3 ± 0.2	21.9 ± 0.6	B3V
31190	HR 2397	10.0 ± 0.9	22.5 ± 3.4	B2V B2	31962	HD 48402	5.0 ± 0.1	6.4 ± 3.4	B2111
31190	HD 40339	0.0 ± 0.1	10.0 ± 1.6	B2V/ne	31085		20.0 ± 0.0	0.2 ± 0.1 50.1 ± 12.0	K3
31216	* 13 Mon	12.1 ± 0.7	16.9 ± 2.0		31903	HR 2461	0.0 ± 0.5	50.1 ± 12.0	B8111
31225	HD 46603	2.0 ± 0.0	20.0 ± 8.2	A1IV/V	32007	HR 2475	6.1 ± 0.1	43.0 ± 6.6	B4V
31235	HD 259431	$3.5\pm~0.1$	$1.8\pm~0.5$	Вбре	32019	* 25 Gem			G5Ib
31236	HD 46264			Be	32030	HD 47961	$7.5\pm~0.4$	$1.7\pm~0.7$	B2V
31278	HR 2395			B5Vn	32031	HD 48240			B811
31287	HD 46277			K0	32053	HD 48055			B5V
31339	HD 46646	3.0 ± 0.1	39.8 ± 8.1	B8	32054	HD 48632			F3
31344	HD 46644	7.1 ± 0.3	47.6 ± 9.7	K2	32067	HR 2467	28.3 ± 5.4	2.2 ± 0.4	
313/1	V* V730 Ivion	4.0 ± 0.4	32.8 ± 2.0	B 9 V	32009	HD 48287	50± 00	2404 62	B8/B9III
31303	HD 46833	2.0 ± 0.1 2.8 ± 0.1	3.9 ± 1.0 3.0 ± 0.6	BBIII	32080	HD 48282	5.0 ± 0.0 6.9 ± 0.3	34.0 ± 0.2 39.8 ± 4.6	B3III
31395	HD 46852	2.4 ± 0.1	40.5 ± 28.3	B9V	32094	HD 48144	7.5 ± 0.7	42.4 ± 9.6	K5
31407	HR 2435	7.9 ± 0.2	37.4 ± 4.5	B9	32104	* 26 Gem	2.0 ± 0.0	50.1 ± 36.3	A2V
31446	HR 2409			B8lb	32108	HD 49339	$5.0\pm~0.1$	41.4 ± 1.5	B5V
31463	HD 47061	$4.5\pm~0.4$	31.1 ± 2.7	B5V	32112	HD 48425	$7.7\pm~0.2$	31.6 ± 5.6	B3V
31470	HD 46889	2.0 ± 0.0	20.1 ± 8.4	A 0	32148	HD 48857	$6.3\pm~0.1$	$50.1\pm~6.5$	B5V
31485	V* V459 Aur	$3.0\pm~0.0$	39.8 ± 19.8	B8	32156	HD 48945	$3.7\pm~0.1$	$8.5\pm$ 5.6	B6/B7V
31496	HD 46952	2.0 ± 0.0	20.1 ± 9.3	A0	32193	HD 48574	4.5 ± 0.4	22.7 ± 6.3	B5V
31498	HD 46319	2.0 ± 0.0	20.1 ± 8.4	A0 Dô	32196	HD 48347	2.4 ± 0.1	45.4 ± 32.9	B9V
31501	HD 46397	2.3 ± 0.0	45.9 ± 27.9	B8/B0111	32220	HD 262677	175 - 25	64 - 11	B0111
31515	HD 46868	3.0 ± 0.1 27 + 01	2.8 ± 0.4 7 0 + 2 9	B8	32220	* ens Gem	17.5 ± 2.5 19.2 ± 0.0	0.4 ± 1.1 83+ 01	A3mA6-A9
31519	HD 46641	1.9 ± 0.0	13.0 ± 1.8	A2	32259	HD 48757	10.2 1 0.0	0.0 1 0.1	B9
31537	HD 291907	3.0 ± 0.2	10.0 ± 6.8	B8	32260	HD 262936	$1.9\pm~0.0$	12.0 ± 1.9	A2
31541	HD 47209			G8	32269	HD 49219	$4.6\pm~0.4$	31.9 ± 24.6	B5/B6V
31542	HD 46883	11.9 ± 0.9	10.0 ± 1.2	B0.5:V	32278	HD 48774	2.0 ± 0.0	20.1 ± 9.3	A0V
31558	HD 47139	$2.4\pm~0.0$	23.7 ± 15.5	B9IV/V	32288	HD 48616	$6.9\pm~0.3$	47.1 ± 2.8	F5lb
31577	HD 260537			B5	32292	* 10 CMa	$17.4\pm~2.6$	$8.3\pm~0.5$	B2V
31593	HR 2433	$6.4\pm~0.1$	20.9 ± 3.9	B3V	32300	HD 48691	9.7 ± 0.3	7.8 ± 3.3	B0.5IV
31603	HK 2445	28 02	100 69	KUII Bo	32310	HD 48872	4.5 ± 0.5	44.7 ± 9.0	B5111/1V
31613	BD+35 1454 HIP 31613	2.8 ± 0.3 2.0 ± 0.0	10.0 ± 0.8 20.1 \pm 0.3	Δ0	32330	HD 49201 HD 49234	3.1 ± 0.1 4.0 ± 0.0	35.7 ± 30.0 10.0 ± 1.7	B4111
31622	HD 47072	2.0 1 0.0	20.1 ± 9.5	F0	32354	HD 49260	6.5 ± 0.1	2.8 ± 1.7	B3V
31642	HD 47601			B5	32355	HD 48807	7.0 ± 0.3	43.3 ± 6.4	B7 ab
31649	HD 47369	$3.3\pm~0.1$	25.9 ± 5.5	B7111/1V	32356	HD 49259	$5.0\pm~0.0$	$9.3\pm~3.3$	B3IV/V
31658	HD 260860	2.0 ± 0.0	20.1 ± 9.3	A0	32369	HD 48640			K2:Ib
31670	HD 47600	4.5 ± 0.5	$5.2\pm~3.9$	B4111	32375	HR 2513			G3lb
31678	V* AP Men			M511/111	32385	HR 2501	$9.2\pm~0.4$	$23.8\pm~2.3$	В+
31685	HR 2451			B8III SB	32397	V* V505 Mon			B5lb
31700	* 8 C Ma V* A K Pia	11 - 00	25.0 - 5.1	KUII/III G1/G2V	32402	HR 2515	6.2 ± 0.1	63.9 ± 14.0	K3III R9V
31766	V* V689 Mon	1.1 ± 0.0 17.1 ± 2.5	25.9 ± 5.1 57 ± 0.4	09.50	32417	HD 49100 HR 2507	5.0 ± 0.2 57 ± 0.2	25.1 ± 20.0 37.8 ± 7.4	B4Vne
31773	HD 47805	3.5 ± 0.1	57.3 ± 7.5	B7/B8V	32420	HD 49067	5.2 ± 0.3	36.1 ± 4.1	B3 /
31784	HD 47924	4.0 ± 0.0	22.0 ± 10.8	B5V	32426	HD 49126			B8111
31786	HD 47719	$3.0\pm~0.0$	$2.7\pm~0.4$	B7IV	32433	HD 48587	$6.9\pm~0.3$	$50.1\pm~6.5$	K0
31787	HD 47417	15.2 ± 1.0	5.7 ± 1.6	B0IV	32434	HR 2510	$7.2\pm~0.1$	31.6 ± 0.6	B3Vne
31789	* 52 Aur			B8	32453	HD 49594	$1.9\pm~0.1$	25.1 ± 13.1	A2/A3111
31790	HR 2441			B8IIIn	32455	HD 49183			G811
31795	HD 47397	2.0 ± 0.1	20.1 ± 8.4	A1IV	32458	HD 55914	2.0 ± 0.0	20.1 ± 9.3	A1IV/V
31807	HD 47099	6.6 ± 1.3	55.3 ± 21.7	K5	32463	* 16 Mon	7.0 ± 0.1	7.2 ± 5.0	B2.5V
31821	V* V 350 Civia HD 47851	1.1 ± 0.0 7 3 ± 0.4	10.5 ± 4.8 20.0 ± 3.5	KIV B2V	32471	HD 49254 * 11 CMa			B9/11/1V
31827	HR 2450	7.5 ± 0.4 75 ± 0.6	29.0 ± 3.5 40.1 ± 8.5	K2111	32492	HR 2523			K111/111n+G
31852	CCDM	110 1 010	10.1 1 0.0	B7III	32504	V* HK CMa			B7 /
	J06396+2816AB				32558	HR 2508			м ı п́
31853	HD 47376	2.0 ± 0.0	11.0 ± 0.9	A 0	32561	HD 49485			B811
31874	HD 47663	6.9 ± 0.3	50.1 ± 6.5	K0	32584	HD 49370	2.8 ± 0.0	10.0 ± 6.8	B8
31875	HD 48150	$6.3\pm~0.1$	17.8 ± 0.1	B3V	32586	HD 49330	12.0 ± 0.8	$0.1\pm\ 0.0$	B0:nnpe
31878	2MASS	$0.8\pm~0.2$	$12.0\pm~8.1$	M1V	32602	HD 49798	15.0 ± 10.0	2.3 ± 2.2	06
	J06395003-								
	012041/				-				

Table C.1: - Continued. -

HIP	other ID	mass [M⊙]	age [Myr]	ЅрТ	HIP	other D	mass [M _☉]	age [Myr]	ЅрТ
32616	HD 49574	$2.8\pm~0.1$	$10.0\pm~6.8$	B8V	33376	HD 51361			B9 b/
32627	V* V613 Mon			S5,1	33377	HR 2568			B8111
32629	HD 49547	$2.0\pm~0.0$	45.4 ± 33.2	A1/A2	33391	HD 51360			B7111
32631	HD 49367			K1	33398	HD 52097			K0 /
32637	HD 49573			B811/111	33400	HD 51967		171 . 04	B8II
32048	HD 50099	624 00	62 F ± 22 F	F211/111	33410	HD 51575	2.5 ± 0.0 2.0 ± 0.1	17.1 ± 9.4	B811/111
32669	HD 49793	68 ± 12	482 ± 80	K4111	33438	HD 51544	J.0 ⊥ 0.1	05.1 ± 10.1	A011/111
32696	HD 49699	5.0 ± 0.1	63.1 ± 14.9	B5:(ne)	33442	HD 51826	4.0 ± 0.0	58.6 ± 9.6	B4IV
32698	HR 2521			B8 n	33447	V* HH CMa	$8.1\pm~0.4$	$19.8\pm~3.3$	B2111/IV
32717	HD 49715	$2.6\pm~0.1$	3.9 ± 1.6	B8	33463	HD 51511	2.7 ± 0.2	10.0 ± 6.8	B8
32740	V* ∣S Gem			K3	33465	HR 2597	$6.9\pm~0.2$	46.2 ± 1.1	F2 b-
32743	V* QU Gem	$7.5\pm~0.8$	41.3 ± 9.7	K0III SB:	33466	BD+84 132	$2.0\pm~0.1$	20.1 ± 9.3	A0
32753	V* OV Gem	26 01	70 20	B7111	33473	HD 52300			B7/B811
32750	* kan CMa	2.0 ± 0.1 12.2 ± 0.3	7.0 ± 2.9 149 ± 0.4	B1 5/Vne	33409	HD 51520	74 ± 05	30.8 ± 2.0	B3V
32761	V* V415 Car	12.2 ± 0.5	14.5 1 0.4	G6II	33492	HR 2611	7.2 ± 0.1	11.9 ± 0.9	B2/B3V
32766	HD 49787	$9.3\pm~0.2$	$0.5\pm~0.4$	B1V:pe	33493	HD 51354	$5.0\pm~0.0$	$1.0\pm~0.6$, B3ne
32786	HD 49888	$5.6\pm~0.5$	63.1 ± 14.6	B5 ab/b	33509	HD 51506	$5.0\pm~0.0$	$54.8\pm~7.5$	B5
32807	HD 49886	2.6 ± 0.0	$3.9\pm~1.6$	B8	33511	HD 51821	2.0 ± 0.1	20.1 ± 9.3	A0V
32810	V* HZ CMa	6.8 ± 0.1	26.3 ± 4.9	B3V	33515	HD 51700	6.8 ± 0.4	57.1 ± 9.7	K0
32811	HD 49978	3.2 ± 0.1	10.0 ± 4.9	B7111/1V	33532	HR 2614	8.9 ± 0.3	23.8 ± 2.9	B2V
32814	* 35 Gem	6.3 ± 0.6	59.4 ± 13.5	K3III Béna	33550	HD 51870	61-00	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	BAIN /V
32821	HD 52880	9.0 1 0.1	10.5 1.4	K2 /	33575	HR 2616	81 ± 0.0	22.8 ± 3.0 85 ± 3.7	B2V
32827	HR 2544	8.0 ± 0.1	25.0 ± 3.8	B2111/IV	33577	HR 2638	0.1 ± 0.2	0.0 1 0.1	F211
32841	HD 50072	$6.3\pm~0.4$	48.8 ± 5.2	В5Ш	33579	ADARA	10.0 ± 1.3	22.5 ± 3.4	B211
32864	* 42 Cam	$6.4\pm~0.1$	50.1 ± 9.5	B4IV	33591	HR 2621	$5.6\pm~0.4$	0.7 ± 0.4	B3V
32876	HD 50091	$5.8\pm~0.4$	49.9 ± 1.9	B3:16/11	33594	HD 51913	$2.9\pm~0.2$	$10.0\pm~6.8$	B8V
32877	HD 49038	$2.4\pm~0.1$	44.1 ± 22.5	B9	33610	HD 52220			GOIL
32882	HD 50176	204 00	20.1 _ 0.2	B7/B8III/IV	33611	HD 52138	7.6 ± 0.4	1.8 ± 0.8	B2V B0UU
32903	HD 50261	2.0 ± 0.0 2.8 ± 0.2	10.0 ± 4.1	B8IV/V	33621	HD 52115			B9111 B811/111
32920	HD 50358	2.0 1 0.2	10:0 1 1:1	G8/K0IICN	33635	HD 52165	5.0 ± 0.0	1.0 ± 0.6	B3V
32923	HD 50138	$5.0\pm~0.0$	$0.5\pm~0.1$	В9	33639	HD 52854			M011/111
32947	HD 50083	12.5 ± 1.3	11.4 ± 1.2	B2Ve	33641	HD 52467	4.6 ± 0.4	27.2 ± 5.8	B5V
32949	HD 49633			G811	33644	HR 2613			B7111
32988	HD 50393			B5/B6 /	33650	* 40 Gem			B8
33005	HD 50228			B5	33657	HD 51956		10 06	F8lb:
33000	HR 2575 HD 50463	73 ± 02	398 ± 46	F511/111 B3111	33003	HD 52112 HD 52162	5.0 ± 0.0 5.9 + 0.4	1.0 ± 0.0 50.1 \pm 7.1	B3V B411
33016	HR 2587	1.5 ± 0.2	33.0 ± 4.0	G5 b/	33666	HR 2623	7.6 ± 0.1	19.6 ± 1.0	B2
33036	HD 50372			G611	33673	HD 52356	7.0 ± 0.2	39.8 ± 4.6	B3V(n)
33076	HD 50513	$3.1\pm~0.1$	60.4 ± 15.8	B8	33686	HD 52445			B5111
33092	V* EY CMa	$9.0\pm~0.1$	22.3 ± 2.1	В1ІЬ	33695	HD 52349			B5IV
33104	* 43 Cam			B7	33700	HD 52620			B9/B9.5111
33113	HD 50705			B8/B9 /	33703	HR 2625	7.1 ± 0.1	31.6 ± 2.4	B3V
33117	HD 51491	704 00	034 03	F3 / P2\/nno	33721	HK 2028	8.0 ± 0.2	29.0 ± 4.3	B3Vnn
33122	HD 51555	1.0 ± 0.0	0.5 1 0.2	B6III	33727	HD 52347	15.0 1 1.1	0.2 1 0.1	B811/111
33177	HD 50849			B8/B9/b	33729	HR 2624			B9111
33182	HD 50939			B2/B3V	33735	HD 52329	$3.4\pm~0.1$	$1.6\pm~0.6$	B6V
33200	HD 50938	$5.0\pm~0.0$	$7.3\pm~4.0$	B3Ve	33745	HD 52511			B5IV/V
33210	HR 2577	$29.1\pm$ 8.1	$4.0\pm~0.5$	B3 Ve+	33754	HR 2627	9.5 ± 0.5	21.2 ± 2.6	B1lb
33211	HD 51038			B3V	33764	HD 52384	3.9 ± 0.1	11.3 ± 9.6	B6V
33219	HD 50481	2.8 ± 0.1	10.0 ± 6.8	BS	33769	HD 52597	8.8 ± 0.7	22.5 ± 1.9	B2/B3V
33261	V* V745 Mon	30 ± 0.0	25.1 ± 20.8	B8	33110	107008-2539AB	7.0 ⊥ 0.3	9.5 1 0.0	DZIV
33263	HD 51054	6.3 ± 0.8	58.7 ± 10.3	K2/K3III	33774	HR 2641			G811/111
33274	V* V377 CMa			, B8III	33775	HD 52616	$3.2\pm~0.1$	$2.7\pm~0.3$, B7/B8V
33300	HD 50767	6.9 ± 0.1	$0.4\pm\ 0.3$	B2V	33789	HD 52287	6.3 ± 0.8	63.1 ± 29.0	K5
33313	HD 50243	3.2 ± 0.1	57.3 ± 13.1	А	33796	HD 52614	3.9 ± 0.1	$1.4\pm\ 0.4$	B5V
33317	HD 50975			F8lb:	33804	HR 2640	7.4 ± 0.1	23.8 ± 2.1	B2/B3III/IV
33330	HR 2598	$6.2\pm~0.1$	15.4 ± 0.4	B3V	33814	HD 52731	$5.0\pm~0.0$	$1.0\pm~0.6$	B3V
33341 32212	HD 51324			NUII/III B5V	33825 33846	HD 53142	75 + 03	3154 00	Böill B2V
33345	* 18 CMa	14.7 + 11	11.6 ± 0.6	B9.5V	33856	V* sig CMa	12.2 ± 0.2	16.4 ± 0.5	K4III
33347	V* iot CMa	12.5 ± 1.6	15.8 ± 0.5	B3 b/	33875	HR 2633	8.0 ± 0.3	16.6 ± 3.2	B2IV-V
33351	HD 51105	6.2 ± 0.5	60.8 ± 11.4	G5	33877	HD 289531			B2

Table C.1: - Continued. -

HIP	other D	mass [M⊙]	ag e [Myr]	SpT	HIP	other D	mass [M _⊙]	age [Myr]	ЅрТ
33883	HD 52929	$2.7\pm~0.1$	$7.0\pm~3.2$	B8/B9V	34616	HD 54911	10.0 ± 0.1	$10.1\pm~1.5$	B1
33887	HD 53526			F2/F3	34619	HD 54858			A011
33891	V* V926 Mon			M11b comp	34634	HD 55349	2.9 ± 0.0	31.6 ± 19.3	B8V
22005	HD 52772			SB	34669	HD 54995	5.0 ± 0.1	6.0 ± 3.7	B4V B711/111
33905	HD 53252	46 ± 04	33.0 ± 25.7	B5V	34706	HD 55062	29 ± 01	142 ± 107	B7 II / III B8
33927	V* ome Gem	4.0 ± 0.4	55.0 ± 25.1	G511	34719	HD 55135	6.3 ± 0.2	39.8 ± 4.0	B4Vne
33935	HD 53019	$2.0\pm~0.0$	20.1 ± 9.3	A0V	34725	HD 55213			B7!!!
33937	HR 2635	$6.5\pm~0.7$	63.1 ± 13.8	M2111	34729	HD 55345	6.6 ± 0.5	60.6 ± 12.0	G811/111
33951	HD 52986			B8/B9111/IV	34735	HD 54825			K0
33953	V* FZ CMa	6.7 ± 0.4	15.5 ± 5.2	B3n	34749	HD 54898	2.0 ± 0.0	20.1 ± 9.3	A0
33971	HD 53091	12.3 ± 0.3 53 + 03	10.1 ± 2.0 225 ± 2.3	B1V B4Vnn	34752	HD 54824	10 ± 01	127 ± 25	Δ2
33977	V* omi02 CMa	21.4 ± 2.7	7.4 ± 1.3	B3la	34786	HD 55523	5.5 ± 0.4	31.6 ± 6.1	B4V
33979	HD 53010			B2.5V	34798	V* MM CMa	$7.3\pm~0.1$	$3.0\pm~0.9$	B2IV/V
33987	HD 53035	4.0 ± 0.0	21.2 ± 11.6	B5	34811	HD 56116	$3.4\pm~0.1$	33.5 ± 4.8	B7/B8IV/V
34006	HD 53762	$8.5\pm~0.3$	$18.4\pm~2.4$	B2IV	34817	V* V363 Pup	5.9 ± 0.1	39.9 ± 9.5	B4V
34026	HD 53003			GOIL	34818	HD 55419	$3.5\pm~0.2$	63.1 ± 18.2	B7V
34037	HD 53375	76 ± 01	19.6 ± 1.6	B2/B3V	34830	HD 55080			G811 A0/A11a
34045	* gam CMa	1.0 1 0.1	19.0 1 1.0	B811	34851	HD 56023	9.3 ± 0.3	18.5 ± 3.3	B3Vn
34048	HD 53373	$6.9\pm~0.1$	$1.9\pm~0.9$	B2111/1V	34852	HD 55538	10.0 ± 0.5	15.7 ± 1.4	B2Vn(e)
34055	HR 2651	8.8 ± 1.1	29.2 ± 7.9	K5	34872	HD 55561			B811/111
34066	HR 2656			B9 n	34888	HR 2723	$6.3\pm~0.5$	63.7 ± 21.5	K0
34067	HD 53461	5.3 ± 0.3	18.1 ± 0.8	B3111	34894	HD 55692	$6.3\pm~0.3$	15.1 ± 3.0	B3V
34080	V* LI CMa V* zet Gem	6.3 ± 0.3 6.9 ± 0.1	50.1 ± 0.4	Galby SB	34898		15.6 ± 1.6	75+07	B2U
34093	HD 53547	2.8 ± 0.2	10.0 ± 6.8	B8/B9V	34937	V* GG CMa	7.8 ± 0.1	15.7 ± 2.6	B2111
34108	HD 53602	2.8 ± 0.0	11.0 ± 4.5	B8/B9V	34940	HR 2733	8.0 ± 0.2	16.4 ± 1.7	B2IV
34116	HD 53367	$13.5\pm~1.5$	0.2 ± 0.1	B0IV:e	34954	HR 2743	8.8 ± 0.2	18.4 ± 2.1	B2111
34127	HD 53676			B9111/1V	34970	HD 55810			К51Ь
34139	HD 53654	$4.0\pm~0.0$	10.0 ± 1.7	B5V	34981	* 27 CMa	10.9 ± 4.3	0.2 ± 0.1	B3111
34159 34167	HD 53514 HD 53728	71 ± 01	27 ± 17	B9ID B2IV	34982 34983	HR 2732 HD 56044	7.0 ± 0.8 63 ± 0.2	39.8 ± 7.8 17.2 ± 2.0	K3III B3V
34168	HR 2645	7.1 ± 0.1	2.1 1 1.1	B9 n	34986	HD 55885	0.5 ± 0.2	17.2 1 2.0	B0.5///
34176	HD 53668	$4.0\pm~0.0$	52.0 ± 28.5	B6	34998	HD 55902			B9111
34178	HD 53623	7.8 ± 0.6	$7.1\pm~2.8$	B1 /	34999	HR 2739	15.8 ± 1.8	6.9 ± 1.0	B0111
34196	HD 54343			B8	35009	HD 56066			B8 /
34219	HD 53808		151 47	B6III	35011	HD 55649	6.3 ± 0.3	68.6 ± 20.7	K0
34227 34236	HD 53885	5.0 ± 0.0 7.5 ± 0.5	15.1 ± 4.7 5.0 ± 3.1	B3V:n B111	35013	HD 56316	0.0 ± 0.5	50.1 ± 0.4	E8/G0U
34247	HD 53314	6.9 ± 0.6	47.8 ± 6.9	G5	35024	HD 56094	7.5 ± 0.2	6.7 ± 1.5	B2IV/V
34248	HR 2680	$6.1\pm~0.1$	12.6 ± 3.1	B3V	35031	HD 56284	$7.4\pm~0.2$	15.8 ± 1.0	B2.5V
34281	HD 54063	4.7 ± 0.3	41.5 ± 12.4	B5V	35037	* ome CMa	10.0 ± 0.8	22.5 ± 3.4	B2IV/Ve
34301	V* FN CMa	21.5 ± 3.5	$5.5\pm~0.3$	B0.5IV	35040	HD 56378	2.6 ± 0.0	50.6 ± 17.7	B9111
34306	HD 53778	72 00	20.0 4.7	B716/11	35051	HD 56211	7.0 ± 0.2	39.8 ± 4.4	B3Vn D4UL(N/
34331 34338	HR 2088	7.3 ± 0.2	39.8 ± 4.7	B3111 B95111	35054	HR 2759 HD 59104	19 ± 0.0	31.6 ± 10.2	A21V/Vm
34339	HR 2691	$6.2\pm~0.1$	15.9 ± 1.2	B3V	35059	HD 56039	4.4 ± 0.4	22.6 ± 4.2	B5V
34342	V* LW CMa			M2/M311/111	35075	HD 56376	3.8 ± 0.1	27.0 ± 4.3	B6V
34350	HD 54967	$6.1\pm~0.2$	42.4 ± 6.0	B3V	35081	HD 56375			K2 /
34386	HD 55478			B8111	35083	HR 2756	6.3 ± 0.0	18.1 ± 1.7	B2V
34394	CD-29 3927	2.6 ± 0.1	3.9 ± 1.6	B 3IV	35121	HD 56961	6.4 ± 0.8	56.2 ± 7.4	K4III
34444	WEZEN	12.0 ± 0.6	17.6 ± 3.1	F8la	35142	HD 56310	9.6 ± 0.4	14.9 ± 1.9	B1/B2
34485	HD 54575	7.9 ± 0.5	24.5 ± 4.8	B5111	35153	HD 56273	3.6 ± 0.1	49.2 ± 0.9	Asp
34495	HR 2702	$8.1\pm~0.2$	21.6 ± 4.3	B3IV/V	35167	HD 56306	3.2 ± 0.2	41.4 ± 14.8	B7V
34528	HD 54816	2.9 ± 0.1	$3.0\pm~0.6$	B8/B9111	35168	V* MS CMa	$5.9\pm~0.2$	39.5 ± 3.8	B2111/1V
34536	HR 2694	24.6 ± 0.6	$1.7\pm~0.8$	O6	35177	HD 56430		10.0 - 7.5	B7/B811
34552 34555	HD 54979			во/ в9111 F511	35190	HD 55581	3.2 ± 0.2 1 0 \pm 0 0	10.0 ± 7.1 42.0 ± 23.6	Β81V/V Δ2
34561	V* OS CMa	12.5 ± 0.9	15.0 ± 0.7	B1 b/	35202	HR 2769	5.0 ± 0.0	34.0 ± 13.3	B4V
34566	HD 54814	5.0 ± 0.2	63.1 ± 14.4	B511/111	35208	HD 56579	7.8 ± 0.3	25.1 ± 2.4	B3V
34574	HD 54740	6.7 ± 0.3	4.5 ± 3.3	B2111	35210	* 145 CMa	7.9 ± 0.3	35.8 ± 2.5	K4111
34579	V* LZ CMa	10.0 ± 1.5	19.4 ± 1.5	B2V	35212	V* RY CMa			F7.5lb
34597	HD 54632	$7.1\pm~0.4$	47.6 ± 9.1	K2	35217	HD 56501	$6.0\pm~0.3$	$50.1\pm~6.4$	B5111
34000 34601	HD 54935 HD 55010	80+ 03	01+ 16	ван В 31/	35219	HD 56200 HR 2770	80+01	103 + 35	F4II B3V
34611	BD+34 1543	0.0 1 0.3	5.1 <u>1</u> 1.0	B5	35220	* del Vol	0.0 ± 0.1	19.9 1 3.3	F611

Table C.1: - Continued. -

HIP	other ID	mass [M⊙]	age [Myr]	SpT	HIP	other D	mass [M⊙]	age [Myr]	ЅрТ
35237	HD 56493	2.0 ± 0.0	22.5 ± 10.7	A0	35893	HR 2829			B5V
35241	HR 2768			A911	35904	V* eta CMa	$19.2\pm~0.8$	$8.3\pm~0.5$	B51a
35264	V*pi Pup	9.6 ± 0.9	$25.1\pm~0.6$	КЗІР	35906	HD 58377	$7.2\pm\ 0.1$	39.8 ± 5.8	B3111
35267	HD 56694	$4.7\pm~0.3$	$38.2\pm~5.1$	B5V	35933	HR 2817	$13.7\pm~1.0$	$11.4\pm~0.9$	B2Ve
35278	HR 2760		57 0 L 00 0	B8111	35936	HD 58277		17.0 0.5	G611
35299	BD-02 2031 HD 56834	3.2 ± 0.1	57.3 ± 30.9	B8II	35951	HR 2825 HD 58416	9.4 ± 0.3 73 ± 02	17.9 ± 2.5 0.6 ± 0.3	B2Vne B1/B2 /
35326	HR 2774	7.0 ± 0.2	2.3 ± 1.3	B5Vn	35970	HD 58741	7.3 ± 0.2 2.9 ± 0.1	10.0 ± 0.3	B8/B9IV
35329	HD 56848			B6111	35975	HR 2831	7.0 ± 0.2	47.8 ± 4.2	A2 b/
35342	HD 56998	3.2 ± 0.1	17.4 ± 6.8	B7!!!	35978	HD 57790			F211
35347	HR 2789			B811/111	35988	HD 58512	$7.7\pm~0.3$	$10.4\pm~0.4$	B2IV
35352	HD 56800	3.0 ± 0.0	50.1 ± 16.4	B8V	35996	HD 58563			B5111
35355	HD 56847	4.0 ± 0.0	43.2 ± 18.7	B5Ib	36008	HD 60455	$1.8\pm~0.0$	16.3 ± 3.0	A3m
35358	HD 56955 HR 2787	10.0 ± 0.5	225 ± 34	R011 B2V+	36023	HD 58630	20 ± 0.0	225 ± 107	B2V A0
35391	CCDM	8.8 ± 0.3	13.9 ± 2.6	B2V	36024	HR 2841	6.3 ± 0.2	50.1 ± 6.3	B5
	J07186-3048AB				36040	HD 58529	4.0 ± 0.0	7.4 ± 3.7	В5
35406	V* NW Pup	$8.0\pm~0.1$	17.2 ± 3.4	A0V	36041	* eps CMi	$6.3\pm~0.3$	68.6 ± 24.9	G8111
35408	HD 57808	$2.4\pm~0.0$	63.1 ± 24.9	B9V	36045	HR 2847	$7.9\pm~0.1$	$5.6\pm~2.7$	B2/B3III
35411	HD 56714			B9111	36089	HD 58722			B5111
35412	V* UW CMa	25.7 ± 7.0	2.5 ± 0.6	U7t	36125	V* AX Pup			F5II(R)
35415	ND 57029 V* tau CMa	27.4 ± 12.0	33+ 03	Ogib	36141	HR 2840			В0/В911/111 В711-111
35427	HR 2786	6.3 ± 0.5	63.7 ± 14.6	G211	36143	HR 2856	7.9 ± 0.1	15.7 ± 3.0	B4V
35453	HD 57193	$10.0\pm~0.6$	12.6 ± 3.2	B1	36158	HD 57925	$6.8\pm~0.5$	63.1 ± 19.6	K2
35461	V* MX CMa	9.3 ± 0.3	16.6 ± 2.0	B2V	36168	HR 2855	9.5 ± 0.3	14.6 ± 2.4	B1
35468	HD 57139			B511/111	36184	HD 59425	$3.2\pm~0.1$	63.1 ± 21.8	B8/B9V
35497	HD 57919			K0 /	36195	HD 59006			B8II
35503	HD 57281			B5V	36211	HR 2809			BAIII
35512	HD 58804			K0 /	36223	HD 59076	6.3 ± 0.3	57.1 ± 12.8	A1
35514	HD 56385	$2.0\pm~0.0$	$20.1\pm~9.3$	A0	36225	HD 59074	0.0 1 0.0	0111 1 12:0	B911
35517	HD 56243	$6.8\pm~0.4$	50.1 ± 10.7	K2	36231	HD 58809	$6.2\pm~0.5$	63.7 ± 14.6	K2
35532	HD 57551	3.2 ± 0.2	57.3 ± 16.8	B8III	36235	HD 58973			B5
35536	HD 56442	$2.6\pm~0.1$	$7.0\pm~2.9$	B8	36236	HR 2860			B5111
35551	HD 57048		15.0 10.7	G511	36243	HD 58683			B8111
35507		2.0 ± 0.0	15.8 ± 10.7		36240	V* V3/1 Pup HD 5000/	4.6 ± 0.4 7.8 ± 0.6	35.1 ± 7.0 9.7 ± 1.6	B5V B2V:ne
35590	HD 58092			B9.5	36251	CCDM	10.0 ± 0.6	22.6 ± 5.3	B8Vy comp
35597	CD-24 5234			B5		J07279-1133AB			VB
35600	V* AR Mon			K0 SB	36275	HD 59189			B8111/IV
35604	HD 57618			B5Vn	36288	V*Y Lyn			M51b-11var
35609	HR 2799	6.7 ± 0.2	26.3 ± 4.9	B3V	36299	HD 59618	$5.0\pm~0.0$	25.1 ± 4.6	B3III
35011		10.0 ± 0.3	20.2 ± 1.4		36300	HD 59279	704 02	201 + 40	B8/B9III
35621	HD 57968	80 ± 01	66 ± 32	B9.5111 B2V	36323	HD 59364	7.0 ± 0.2 42 ± 0.3	30.1 ± 4.0 28.0 + 13.0	B5V
35624	V* V389 Gem	1.8 ± 0.0	12.7 ± 2.5	A2	36330	HD 59343	2.7 ± 0.1	17.1 ± 9.4	B811
35641	HD 57759	2.0 ± 0.0	23.1 ± 11.2	A0V	36341	HD 60037			K2 /
35655	BD+81 238	2.8 ± 0.2	$10.0\pm\ 3.9$	B8	36345	DS 07250-3139	5.8 ± 0.2	7.3 ± 2.5	B3V+
35669	HD 57539			B5		AB			
35676	V* V389 Car	2.7 ± 0.0	7.0 ± 2.9	Ар	36355	HD 59527	5.0 ± 0.0	34.0 ± 17.0	B5V
35083	HD 58112 HR 2801	5.0 ± 0.0	8.2 ± 0.7	B4V B8III	36359	HD 59480	3.2 ± 0.2 2.4 ± 0.1	63.1 ± 30.9 31.2 ± 10.7	Bolli /IV
35720	HD 57494			B9II	36362	HR 2873	8.5 ± 0.3	12.9 ± 4.1	B3III/IV B2IV
35727	HR 2812			B511/111	36363	* y Pup	5.9 ± 0.1	5.7 ± 4.0	B3V
35761	HD 58063	$6.1\pm~0.2$	41.6 ± 5.2	B3111	36369	NGC 2392	15.0 ± 10.0	$2.3\pm~2.2$	O6
35762	HD 56788	$6.2\pm~0.5$	63.7 ± 13.8	K2	36404	HD 59497	9.6 ± 0.7	15.0 ± 2.1	B2V∶ne
35767	HD 58238	$6.9\pm~0.4$	$39.8\pm~4.6$	B4	36431	HR 2874	9.3 ± 0.4	26.0 ± 2.7	A616/11
35795	HR 2819			B3V	36437	HD 59543	6.5 ± 0.5	29.9 ± 2.0	B3IV/V
35790	HD 57704	25 + 00	67 2 + 25 4	G211 B9	30500	v* v350 Pup HR 2881	9.7 ± 0.3	10.1 ± 2.0	6216 G216
35817	HD 58082	3.2 ± 0.1	22.5 ± 18.7	B8111	36521	V* U Mon			K0lbpvar
35822	HD 58216	2.7 ± 0.1	10.0 ± 6.8	B8V	36540	HD 59813	$8.7\pm~0.4$	4.4 ± 3.2	B0 51b
35829	HD 58200	3.7 ± 0.2	43.2 ± 16.7	B5 b/	36582	HR 2885	5.0 ± 0.0	15.9 ± 3.1	B3V
35830	HD 58260	$5.9\pm~0.2$	37.3 ± 3.3	B2/B3Vp	36585	HD 59965	$3.1\pm~0.1$	10.0 ± 7.1	B8111
35855	HR 2823	$7.0\pm~0.1$	39.8 ± 8.4	B2/B311/111	36629	HD 59929	8.7 ± 1.4	28.9 ± 7.4	K0
35859	v ™ V 398 CMa HD 57300	21 - 01	45 6 ± 22 1	B0 BAIII	30048	HD 00195	2.5 ± 0.0	10.0 ± 4.3	B011/111 B0
35887	HR 2824	2.4 ± 0.1 8.8 + 0.2	$+5.0 \pm 55.1$ 19.1 + 2.4	B2	36681	HD 60575			B6V
		0.0 1 0.2	-9:4 2:4		36682	V* V454 Car	$8.2\pm~0.5$	$33.2\pm~6.9$	B4/B5V

Table C.1: - Continued. -

HIP	other D	mass [M⊙]	ag e [Myr]	SpT	HIP	other D	mass [M _☉]	age [Myr]	SpT
26602	UD 60014	20 01	20.0 5.4	DA	27470	UD 67470			A Q U / U U
30093	HD 60044	3.0 ± 0.1	39.8 ± 5.4		37470	HD 67479			A911/111
26717	HD 60282	3.1 ± 0.1	20.0 ± 10.3		37500	HD 62612	70 01	20 24	B0111
26726	HD 00279	3.0 ± 0.1	10.0 ± 7.1	D0/D9IV	37502	HD 62012	7.9 ± 0.1	2.9 ± 2.4	D2V D4V
26741		0.9 ± 0.3	23.0 ± 2.0	D2II D4IV	37524	HD 62515	7.0 ± 0.5	54.0 ± 1.1	
26745	HD 60753	4.0 ⊥ 0.0 8 0 ⊥ 0.1	10.0 ± 1.9	D 4IV	27520	HD 02500	77 - 01	211 + 20	B2 5V
36756	HD 60479	3.9 ± 0.1 12.0 ± 0.8	10 ± 11		37533	HD 62663	6.3 ± 0.1	21.1 ± 3.0 17.1 ± 1.8	B3V
36773		12.0 ± 0.0 15.4 ± 3.0	1.0 ± 1.1 13.0 ± 5.0	A415	37544	HD 62312	0.3 ± 0.1 3.2 ± 0.0	17.1 ± 1.0 50.7 ± 11.5	BBIII
36778	* z Pun	10.4 ± 0.1	13.0 ± 3.0 20.0 ± 2.6	B2Vne	37558	HD 62072	3.2 ± 0.0 23 \pm 0.0	30.7 ± 11.3 48.9 ± 30.7	B9
36792	HD 60668	80 ± 0.1	16.3 ± 1.5	B2UL/IV	37565	HD 62542	5.8 ± 0.3	50 ± 30.1	B5V
36798	HD 60792	0.0 1 0.4	10.5 1 1.5	G8/K0U/UU	37577		65 ± 0.5	43.0 ± 4.5	B311/111
36799	HD 60930			Ball	51511	107427-4234 AB	0.5 ± 0.4	43.0 1 4.5	Banym
36808	HD 60553	63 + 06	20 ± 18	B2II	37507	HD 62826	64 ± 01	20.1 ± 1.6	B3V
36836	HD 60555	0.5 ± 0.0	2.9 1.0	6211 F711/111	37623	HR 2994	5.0 ± 0.1	520.1 ± 4.0	B5V
36868	HD 60665			B711/111	37637	HD 62755	5.0 ± 0.0	52.5 ± 5.0	B5V
36885	HD 61169			B911	37650	HD 62179	27 ± 01	70 ± 37	Δ
36940	HD 61008			BBII	37653	HD 62659	30 ± 0.1	573 ± 82	B8V
36944	HD 60879	63 ± 02	15.1 ± 4.7	B3V	37656	HD 62322	24 ± 0.0	37.8 ± 28.6	B9
36955	HD 61006	98 ± 0.2	19.1 ± 4.1	B2111	37660	HR 2992	63 ± 0.1	57.0 ± 20.0 57.1 ± 8.6	A3111
36967	HD 60856	5.0 ± 0.2	15.0 1 1.0	B5V	37675	HD 62753	84 ± 0.3	96 ± 37	B3Vne
36971	V* V379 Pup			B9111 (n Si)	37677	* Pup	192 ± 0.3	83 ± 03	A2lab
36981	HR 2921	99 + 01	23.8 ± 1.9	B2/3V(n)	37692	V* V385 Pup	15.2 ± 0.4	0.5 ± 0.5	B9IIIn (Si)
36986	HR 2923	5.5 ± 0.1	23.0 1 1.5	K1	37697	HD 62803	24 ± 01	56.7 ± 19.5	B9V
36994	HD 61049			BBII	37716	CD-24 5872	2.4 ± 0.1 2.0 ± 0.1	20.1 ± 0.3	A0
37001	HD 60945	36 ± 01	28.2 ± 14.8	B7/B8III	37725	HD 62617	2.0 ± 0.1	20.1 ± 5.5	BOILI
37001	HD 61025	73 ± 0.1	13 ± 0.4	B2\/ne	37738	CD 23 6071	20 ± 0.0	20.1 ± 8.4	A0
37000	HD 60676	1.9 ± 0.0	1.5 ± 0.4 31.6 \pm 10.2	A 2	37751	V* V300 Pup	10.0 ± 1.7	16.0 ± 1.0	B211
37015	HD 60969	60 ± 0.0	30.5 ± 1.3	B3UU/IV	37763	V* V606 Car	32 ± 0.0	10.0 ± 1.3 54 1 \pm 13 3	B8/B9III
37017	CD 31 /800	0.0 ± 0.2 20.0 ± 0.0	0.1 ± 0.0	edO:	37765	HD 63007	5.2 ± 0.0	37.1 ± 13.3 32.8 ± 12.2	B5V
37025	HD 61071	20.0 ± 0.0 8.7 ± 0.3	24.0 ± 1.6	B2111	37766		0.2 ± 0.0	52.0 ± 12.2 50.0 ± 17.5	M/ 51/e
37025	HD 61333	6.7 ± 0.3	365 ± 40	B3V	37784	HD 62729	7.9 ± 0.0	30.9 ± 17.5 3.9 ± 3.4	B2V
37034	V* PT Pup	81 ± 0.1	29.0 ± 3.9	B211	37803	HR 3016	81 ± 0.1	115 ± 3.3	B2V
37037	HD 61017	0.1 ± 0.1	2310 1 313	B9111	37819	* c Pup	125 ± 0.2	15.8 ± 0.5	K4111
37044	HD 61016			B4V	37854	HR 3031	12:0 ± 0:1	10.0 1 0.0	FOIL
37047	HD 61045			B7/B8	37880	HD 63028	8.1 ± 0.5	29.2 ± 3.6	B3IV/V
37056	HD 62038	19 + 00	130 ± 18	A 2V	37886	HD 62615	30 ± 01	25.1 ± 16.8	B8
37070	HD 61209	7.9 ± 0.7	29.0 ± 6.8	B8IV/V	37915	HR 3022	5.0 ± 0.0 5.0 + 0.0	15.9 ± 9.9	B5V
37074	HD 60848	19.9 ± 0.1	1.3 ± 1.3	O8V:pevar	37925	V* V393 Pup			B7111
37089	HR 2933	6.9 ± 0.4	46.2 ± 1.9	F0lb	37938	HR 3025	9.6 ± 0.3	19.1 ± 2.1	B2
37099	HD 61328			B3/4V +	37951	HR 3019			B9
				, . В8/9	37954	HD 63165			B8
37104	HD 61095	7.3 ± 1.0	42.4 ± 14.6	к5	37957	HD 63274	6.1 ± 0.2	12.6 ± 1.4	B5V
37169	HD 61347	12.0 ± 0.8	0.1 ± 0.0	O9.5 ab	37966	V* V458 Car			B8/B9
37174	V* MY Pup	9.0± 0.3	27.5 ± 3.1	F4 ab	37970	HD 63531	8.7 ± 0.2	24.9 ± 2.2	, B5Vn
37190	HD 61428			B9	37983	HD 63425	10.0 ± 0.6	18.0 ± 2.8	B1/B2 b/
37222	HD 61712	3.0 ± 0.0	2.7 ± 0.3	B7/B8V	37993	HD 63467			B9111/1V
37223	HR 2954	7.9 ± 0.1	15.8 ± 2.6	B3111	37995	HR 3023	10.0 ± 0.8	15.8 ± 1.4	B1/B2V
37229	CCDM			B5IV	37997	HD 63039	2.0 ± 0.0	20.1 ± 9.3	A0
	J07388-2648AB				38000	HD 63270			B8/B9111
37245	HD 61948	$7.0\pm~0.5$	30.8 ± 1.8	B3V	38010	HR 3035	$8.0\pm~0.2$	33.2 ± 4.8	B2IV/V
37285	HD 61590	$3.2\pm~0.1$	$10.0\pm~7.1$	B711	38020	HR 3037	$11.9\pm~0.1$	$15.3\pm~0.8$	B1V
37297	HR 2961	$6.5\pm~0.1$	21.3 ± 3.5	B3V	38028	HD 63579	$7.0\pm~0.1$	29.3 ± 3.6	B3V
37304	HD 61687			B4V	38029	HD 63423	$9.6\pm~0.3$	$15.1\pm~2.0$	B1 b/
37315	HD 61759			K1/K2 /	38031	V* QY Pup	$6.3\pm~0.6$	63.1 ± 19.7	K3lab/b
37318	HD 61946			B5IV/V	38037	HR 3027			K5 /
37322	HR 2963	$5.0\pm~0.0$	15.9 ± 9.7	B5V	38038	HD 63358	$6.3\pm~0.2$	39.8 ± 3.5	B3111
37329	HR 2964	8.3 ± 0.4	24.3 ± 3.1	B3111	38062	HD 63241	$6.3\pm~0.3$	68.6 ± 22.2	K0
37339	HR 2936			F611	38070	* omi Pup	$15.5\pm~1.2$	$10.5\pm~0.7$	B1 V:nne
37345	HR 2968	$6.2\pm~0.0$	63.1 ± 14.3	B4111	38071	HD 63603			K2 /
37357	HD 61850			K2II:+	38076	HD 63641			B9111/1V
37378	HD 63609			G 211	38081	HD 63870			K1
37385	HD 61944	$5.0\pm~0.1$	$5.9\pm~4.5$	B4V:	38093	HD 63283	2.8 ± 0.1	$7.0\pm~2.9$	B8
37399	HR 2972	$6.3\pm~0.2$	$50.1\pm~6.2$	B5	38103	HD 63439	6.3 ± 1.0	63.1 ± 28.6	K5
37404	HR 2953	$6.3\pm~0.5$	63.7 ± 13.7	K0	38110	V* V395 Pup	4.5 ± 0.5	45.8 ± 5.9	B5111
37407	HD 61523	$1.9\pm~0.1$	20.1 ± 9.3	A0	38112	HD 63481			B9.5III
37428	HR 2951	$7.8\pm~0.6$	38.4 ± 6.9	K5	38133	HD 63806	$5.7\pm~0.3$	36.0 ± 2.6	B3111
37439	HD 61957	$7.0\pm~0.2$	26.5 ± 3.5	B3V	38152	HR 3062	$6.3\pm~0.3$	68.6 ± 23.6	G5
37444	V* V442 Pup	10.0 ± 0.5	22.6 ± 4.4	B4lab	38159	V* QS Pup	10.0 ± 1.3	16.9 ± 2.1	B1.5IV
37450	HR 2981	$6.2\pm~0.0$	15.4 ± 0.4	B3V	38164	HR 3055	19.3 ± 0.1	7.6 ± 0.1	B0111
37462	HD 62278			B7111/1V					

Table C.1: - Continued. -

HIP	other D	mass [M⊙]	age [Myr]	SpT	HIP	other D	mass [M _☉]	age [Myr]	SpT
38165	HD 63868			B5V	38988	HD 65895			B8/B9III
38170	* ksi Pup	$9.4\pm~0.5$	25.8 ± 3.4	G6la	38994	HR 3147	$8.5\pm~0.3$	$18.0\pm~3.5$	B2 Vnpe
38173	V* V398 Pup	9.7 ± 1.0	25.1 ± 3.0	A0Ia(p)	39001	HD 65701			K1 /
38174	HD 63593	$2.0\pm~0.0$	25.1 ± 13.1	A0	39013	HD 65930	9.0 ± 0.1	19.8 ± 2.3	B2V
38184	HR 3042		60 7 L 14 6	B8/B911	39014	HR 3137	$6.1\pm~0.2$	41.6 ± 7.9	B4V
38201	HD 03387 HR 3076	6.2 ± 0.6	63.7 ± 14.6	KU	39019	HD 00004 * 12 Pup			Gell/III
38240	HD 64383			K0 K2	39023	HD 65848	6.5 ± 0.4	50.1 ± 6.4	B5111/IV
38257	V* CK Lyn	$6.8\pm~0.8$	$50.1\pm~6.7$	M0	39033	HD 66027			B911/111
38262	HD 64008	$6.9\pm~0.4$	$50.1\pm~6.5$	K2	39063	HD 65888	$6.7\pm~0.2$	$3.6\pm~2.5$	B2/B3V
38268	HD 64028	2.9 ± 0.0	31.6 ± 12.1	B8/B9V	39070	V* V460 Car			M011
38290	HD 64249			B9	39073	HR 3152			B8111
38310	HD 64507	01 01	21.0 2.0	B8/B9Ib/II	39105	HD 65962			B9111
38355		9.1 ± 0.1 10.0 ± 0.3	21.0 ± 3.0 21.0 ± 2.8	B2IV-V B2IV	39107	HD 65980			B5V A311/111
38373	* zet CMi	10.0 ± 0.5	21.9 1 2.0	B811	39137	HR 3146	7.1 ± 0.5	47.7 ± 9.9	G8lb
38408	HD 64441			B9	39138	HR 3159	6.3 ± 0.0	16.3 ± 0.4	B3V
38425	HD 64578	$3.0\pm~0.1$	15.8 ± 12.5	B8IV	39142	HD 66284	$3.5\pm~0.1$	45.2 ± 1.7	B7111
38438	V* V372 Car	$10.0\pm~0.2$	15.8 ± 3.3	B1.5IV	39172	HR 3135	$10.0\pm~1.1$	19.7 ± 1.1	B2.5Ve
38453	HD 64294			B9	39184	HR 3156			B5Vn
38455	V* QZ Pup	7.9 ± 0.1	24.3 ± 1.0	B2V	39185	HD 66252	20 01	20.0 12.0	B2IV
38457	HD 64336	50+00	60 ± 37	B3V B3	39203	HD 00311 V* V683 Pup	3.0 ± 0.1	39.8 ± 13.2	B8/B9V
38477	HD 64717	3.0 ± 0.0 8.1 ± 0.3	25.0 ± 2.3	B3V	39200	HD 66464	7.2 ± 0.2	25.1 ± 1.7	B3
38487	HD 64438			B9111/1V	39225	V* V461 Car	9.1 ± 0.1	19.8 ± 1.9	B2IV-V
38500	HR 3089	$9.7\pm~0.2$	$8.9\pm~2.7$	B1.5Vp	39227	HD 66507	$5.0\pm~0.0$	43.5 ± 5.0	B4111
38502	V* NQ Pup			S6,2	39238	HR 3161	5.0 ± 0.0	$7.6\pm~2.2$	B4V
38512	HD 64571			F8/G0lb	39240	HD 66180	$4.0\pm~0.0$	20.0 ± 15.0	B511/111
38518	HR 3090	15.5 ± 0.1	11.6 ± 0.7	B0.516	39246	HD 66522	7.4 ± 0.0	16.8 ± 2.9	B2IIIp
38523	V‴ IU Mon HD 64565	7.6 ± 0.3 3.0 ± 0.0	1.5 ± 0.6 50.1 \pm 5.0	B2Vn B8/B0\/	39270	HD 66478	62 ± 0.8	63.1 ± 25.2	K2II K2IIICN
38584	HD 64827	5.0 ⊥ 0.0	50.1 ± 5.0	B8	39272	HD 66247	1.9 ± 0.1	12.7 ± 2.5	A2V
38592	HD 64905			B9111/1V	39279	HR 3130	6.3 ± 0.5	63.7 ± 19.0	K0
38593	HR 3091	7.6 ± 0.2	$1.2\pm~0.9$	B2V	39290	V* V415 Pup			B5V
38608	HD 63347	2.9 ± 0.0	31.6 ± 12.3	B8	39294	HD 66629			B5Vn
38610	HD 64901	$2.8\pm~0.1$	$17.1\pm~9.4$	B8/B9 /	39310	V* V462 Car	7.1 ± 0.1	29.9 ± 1.6	B3V(n)
38612	HD 65038	60 01	10 00	B5V	39321	HD 67252	3.0 ± 0.0	57.3 ± 17.9	B8/B9V
38667	HD 64898 HR 3100	0.9 ± 0.1	1.9 ± 0.9	B2III/IV B8III	39331	HD 66582	65 ± 01	3/3 + /3	B2III B3IV
38690	HD 65249			F2 /	39371	HD 66765	9.3 ± 0.3	7.3 ± 3.3	B5111
38701	HD 65297			G5∣b	39376	V* AR Pup			Rpvar
38716	CPD-27 2592	12.0 ± 0.8	0.1 ± 0.0	B0V	39386	HD 67170			B8111/IV
38727	HD 65147	$6.3\pm~0.1$	15.9 ± 0.3	B3V	39397	HD 66492	$4.0\pm~0.0$	24.0 ± 10.6	B5111
38732	HR 3101	7.0 ± 0.2	50.1 ± 4.6	B6V	39406	HD 67559			B8111
38746	HD 65248	6.9 ± 0.3	41.0 ± 2.1	B6V	39420	HR 3166	227 ± 165	22 - 15	
38779	HD 65663			B8IIIe	39429	NAO3 HD 66971	32.7 ± 10.3 3.0 ± 0.0	3.2 ± 1.5 31.6 ± 23.2	B8/B9V
38783	HR 3120			K411	39438	HD 67277	3.0 1 0.0	51.0 ± 25.2	B8111
38795	HR 3107	$7.0\pm~0.0$	$0.4\pm~0.3$	B2V	39446	HD 66670			B4V
38827	V* chi Car	$7.0\pm~0.1$	39.8 ± 6.7	B3IVp	39467	HD 66669	2.8 ± 0.2	3.3 ± 0.8	B8IV
38835	*jPup			F7/F8	39487	V* MZ Pup	9.0 ± 0.6	30.4 ± 3.8	M211
38846	HR 3114	9.9 ± 0.1	23.8 ± 2.3	B2.5V	39524	* 14 Pup	$6.3\pm~0.1$	40.5 ± 4.2	B3111
38855	HD 65279	7.7 ± 0.4	3.5 ± 3.2 15.2 \pm 0.5	B2V(ne) B2V	39527	HK 31/8	71 - 00	205 - 26	G5 B2 5\/n
38861	HD 65402	0.3 ± 0.2	15.5 ± 0.5	B511/111	39584	HR 3179	11.9 ± 0.8	16.0 ± 1.6	B3Vnp
38872	HR 3116	$8.0\pm~0.2$	33.2 ± 6.2	B2.5IV	39585	HD 67297	2.4 ± 0.1	46.7 ± 26.7	B9V
38879	HR 3118			B5V	39613	HD 67385	$6.7\pm~0.3$	49.2 ± 2.0	B4V
38887	HD 65622			B5Vnn	39617	HR 3177	$7.2\pm~0.7$	43.3 ± 6.3	G1 b
38896	HD 65658	$7.1\pm~0.1$	29.0 ± 1.4	B3V	39690	HR 3187	$7.9\pm~0.6$	38.5 ± 5.1	K3
38906	HD 65950			B9111	39691	HD 67621	$7.8\pm~0.2$	10.0 ± 2.0	B3111
38907	V* AP Pup V* V407 D			+8∏ M2la /-⊾	39696	HD 67528			G511/111 B7111
38036	V V407 Pup HD 65774	26+ 01	70 + 20	ivi∠ia/ab B8V	39700	CD-28 5472			B
38942	HD 65615	5.0 ± 0.0	19.2 ± 5.4	B4V	39734	HR 3183			A3Ib/II
38947	HD 65570	2.8 ± 0.1	10.0 ± 6.0	Ар	39746	HD 68036			, B8III
38957	V* V Pup	$8.0\pm~0.3$	$29.0\pm~4.6$	B1Vp +	39774	HD 67954	5.8 ± 0.2	7.3 ± 2.5	B3V
				B2	39776	HD 67758	10.0 ± 0.6	17.2 ± 2.5	B2/B3111
38974	HD 65817	2.9 ± 0.1	3.0 ± 0.6	B8111/1V	39779	HD 67491	3.0 ± 0.1	15.8 ± 12.5	B8/B9IV/V
38979	HD 65041	$9.2\pm~0.3$	$15.7\pm~3.6$	B2V	39782	HD 67522	$6.3\pm~0.4$	$15.8\pm~2.9$	B3V

Table C.1: - Continued. -

HIP	other D	mass $[M_{\odot}]$	ag e [Myr]	SpT	HIP	other D	mass [M _☉]	age [Myr]	SpT
39810	HD 67890	$3.2\pm~0.1$	24.2 ± 5.1	B7IV/V	40485	HR 3253	7.5 ± 0.6	40.1 ± 8.7	K2
39814	HD 67780			A511	40486	HD 69444			F8 /
39828	HD 67778			B8111	40515	HD 69710	2.6 ± 0.1	7.0 ± 2.9	B8/B9V
39831	HD 68249			K0	40519	HD 69620	$5.0\pm~0.1$	$4.0\pm~3.1$	B3IV
39834	HD 67698	$6.0\pm~0.1$	38.3 ± 7.9	B3111/IV	40528	HD 69887			B5IV
39852	HD 67670			B811/111	40537	HD 69841			B7111/1V
39863	* zet Mon	6.2 ± 0.4	63.7 ± 14.6	G 2Ib	40540	HD 70398			F2
39866	HR 3195	10.0 ± 0.5	22.6 ± 4.7	B3V	40542	HD 69437	6.6 ± 0.5	55.2 ± 7.3	G5
39879	HD 68372	50± 00	15.0 - 2.6	Balli	40543	HD 09502	8.3 ± 0.7	31.2 ± 0.0	C8/K011/111
30806		5.0 ± 0.0	15.9 ± 3.0 0.7 ± 8.0	D4V M0 5V/:e	40572	HD 60821	10 ± 01	11.1 ± 1.0	
39090	J08089+3249	0.0 1 0.2	9.1 ± 0.9	1010.50.2	40596	HD 69882	1.9 ± 0.1 10.0 ± 1.1	20.0 ± 2.3	B1 :
39906	* 16 Pup			B5V	40600	HD 69973			B5Vn
39915	HD 67920			G 511/111	40628	HD 69500	$6.3\pm$ 0.9	63.1 ± 28.9	K5
39919	V* NN Vel			B816/11	40629	HD 69929	$5.0\pm~0.0$	$1.0\pm~0.6$	B3V
39943	HR 3194	$7.9\pm~0.1$	39.8 ± 4.4	B4V	40662	V* IT Vel			B7111
39949	HD 68518			B5V	40690	HD 70385			G5 b/
39951	HD 68371	$6.5\pm~0.2$	22.8 ± 2.2	B5V	40740	HD 70157			B9111
39953	* gam Vel	73.3 ± 17.0	$1.1\pm~0.6$	WC8 +	40743	HD 69263	$6.3\pm$ 1.0	63.1 ± 28.4	K5
				091	40748	CD-29 5938			B4
39958	HD 67542		107 1 1 0	GOII	40749	HD 70309	5.5 ± 0.5	31.6 ± 16.7	B3V
39961	HR 3204	9.8 ± 0.2	19.7 ± 1.3	B2IV-V	40764	CD-29 5941			
39905		88+01	18.4 ± 3.4	B 1 V e	40787	HD 70307	20 ± 00	31.6 ± 11.1	B8/B0V
30084	BD-12 2364	0.0 1 0.1	10.4 1 3.4	K5lb-ll	40789	HD 70263	2.9 ± 0.0	51.0 ± 11.1	B8/B9111/IV
40003	HD 68301			K1 /	40817	HR 3301			B9III/IV
40011	HD 68451			B2	40851	HD 70464			B9 p
40016	HD 68478	$7.0\pm~0.1$	39.8 ± 1.3	B3IV	40900	HD 70393			A2 m
40019	HD 68477	$2.4\pm~0.0$	52.7 ± 12.0	B9V	40906	HD 70531			A4/A5 /
40047	BD+75 325			O5pvar	40916	HD 70703	2.0 ± 0.0	25.1 ± 15.1	A0/A1V
40053	HD 68633	$7.6\pm~0.7$	34.8 ± 7.8	B5V	40929	HD 70731			A6/A7 /
40056	HD 68474	$6.3\pm~0.4$	$50.1\pm~6.4$	B4111	40932	HR 3293	$10.0\pm~0.4$	21.2 ± 1.6	B1.5
40059	HD 68608			B5	40943	HR 3283	10.0 ± 0.3	21.6 ± 2.2	B2IV-V+
40063	HR 3219	17.5 ± 2.1	5.5 ± 1.5	B0	40945	*wPup	7.5 ± 0.8	39.1 ± 10.2	K2/K3III
40077	HR 3227	6.4 ± 0.1	22.8 ± 2.4	B3V	40949	HD 72354	2.0 ± 0.0	38.7 ± 25.8	A0V
40085	HR 3201	00 17	20.0 1.0	B6	40985	HD 70639	7.3 ± 0.2	3.2 ± 2.2	B2III/IV
40091	V * NS Pup ⊔P 2006	9.8 ± 1.7	20.0 ± 1.0	K4111 A 716	41024	HD 70742	91⊥ 10	2254 60	R3111+B3/1 R8/R811
40090	HR 3220			B 5V	41037	HR 320/	0.4 ± 1.0 155 ± 1.1	33.5 ± 0.9 11.1 \pm 0.8	R1V
40143	HD 68678			B9111	41057	HD 70950	13.5 ± 1.1	11.1 ± 0.0	B9111/1V
40148	HD 68570	7.8 ± 0.3	23.4 ± 2.8	B2	41065	HD 70796	6.5 ± 0.2	12.6 ± 2.6	B211
40155	V* AH Vel	$7.0\pm~0.5$	$50.0\pm~6.2$	F7p	41084	HD 70630	$1.9\pm~0.1$	34.8 ± 22.1	A2
40181	HD 68761	12.4 ± 0.2	$7.8\pm~3.3$	B1/B2	41085	HD 70948	$5.0\pm~0.0$	38.2 ± 5.0	B5V
40183	HR 3234			B5V	41103	HD 70947			B811
40215	* 55 Cam			G 8	41109	HD 70792			B911:
40218	HD 68843	$3.7\pm~0.0$	$15.8\pm~3.6$	B6Vnn	41119	HD 71613			K2 /
40233	V* RS Pup	6.8 ± 0.5	53.4 ± 7.1	F8 ab	41145	HD 70945			B9 / sp.
40237	HD 68687	1.7 ± 0.0	39.8 ± 24.9	A6V	41162	HD 71123			B9111
40250	HD 68886	5.0 ± 0.1	7.8 ± 4.9	B3III	41168	HD 71015	7.1 ± 0.3	39.8 ± 4.6	B2IV
40251	HD 69171	40 00		BBII	41212	HD 71216	72 06	476 07	BSVn
40255	* 20 Pup	4.0 ± 0.0	50.0 ± 20.0	6516/11	41221	HD 70995	7.2 ± 0.0	47.0 ± 9.7	R4
40264	V* V428 Pup			M411/111	41250	V* V438 Pup	81+03	29.0 ± 4.7	B3V
40265	HD 68982	7.7 ± 0.3	31.6 ± 0.6	B3V	41288	HD 71284	0.1 1 0.0	23.0 1	B711
40268	HD 68962	6.8 ± 0.2	0.4 ± 0.3	B2/B3V	41293	HD 71634			B7IV
40274	* r Pup	10.0 ± 0.7	20.0 ± 1.1	, B2ne	41295	HD 71444	$4.7\pm~0.3$	45.8 ± 10.9	B5IV
40285	V* NO Vel	$9.1\pm$ 0.2	25.3 ± 1.2	B2.5IV	41296	HR 3330	$8.0\pm~0.1$	11.5 ± 4.0	B2V
40299	HD 69168	$8.2\pm~0.2$	9.2 ± 2.0	B3V	41305	CD-38 4447	12.0 ± 0.8	$0.1\pm\ 0.0$	В
40321	HR 3240	$9.6\pm~0.2$	14.3 ± 3.4	B2V:	41307	* 30 Mon	2.3 ± 0.2	4.5 ± 1.1	A0V
40324	HR 3241	$7.9\pm~0.1$	12.5 ± 0.7	B2IV/V	41323	HR 3326	$6.5\pm~0.1$	23.6 ± 7.4	B3V
40326	HR 3243			K1 /	41325	HR 3306			G811
40328	HD 69106	9.4 ± 0.5	2.6 ± 2.3	B1/B2	41332	HD 71470			B8111
40341	HR 3239	12.2 ± 0.6	12.6 ± 1.5	B2V	41363	HD 71458			K0/K1
40357	HK 3250	8.1± 0.2	11.5 ± 3.2	B2IV-V	41420		0 5 1 0 2	120 - 20	B0111/1V
40300	HD 691203	5.8± 0.2	4.0± 3.0	D4V B7III	41403 41515	10 1 10 10 VA	0.5 ± 0.3 67 ± 0.1	12.0 ± 3.2 26.8 ± 4.5	B2V
40397	HD 69404	8.0 + 0.1	33.2 ± 5.1	B3Vnne	41520	• AFFyx HD 71969	2.5 ± 0.1	52.5 ± 28.2	B9V
40430	V* X Ve	15.0 ± 1.1	0.2 ± 0.1	B+	41534	HD 71771	9.3 ± 0.6	21.7 ± 2.6	B211
40443	HD 69402	5.0 ± 0.0	10.5 ± 7.6	B4V	41539	HD 72019	5.0 ± 0.0	10.0 ± 3.1	B3IV
40455	HD 69653	-		B7/B8III					

Table C.1: - Continued. -

			141						
HIP	other D	mass [M⊙]	age [Myr]	ЅрТ	HIP	other D	mass [M⊙]	age [Myr]	Sp⊤
41557	HD 72111			B8111	42399	V* NW Ve			K2lb BaO
41500	HD 72014	102 ± 0.0	82 + 05	B3Vnne	42333	HD 73882	177 + 23	12 ± 0.6	081/
41599	HD 72014	19.2 ± 0.9	0.2 ± 0.5	DOUL	42433	11D 7 3002	17.7 ± 2.3	1.2 ± 0.0	A0
41005	HK 3345			DOIL	42457		2.0 ± 0.0	20.1 ± 9.3	AU
41616		12.5 ± 0.5	15.7 ± 0.5	B2IV	42459	V* HVV Vel	4.5 ± 0.4	27.4 ± 20.4	B5V
	JU8291-4756AP			5.0.7	42477	HD 73986	2.9 ± 0.0	35.7 ± 13.7	B8V
41621	HR 3356	9.5 ± 0.3	18.5 ± 3.2	B2V	42489	V* RV Hya			Mblivar
41634	HD 72125			K1	42501	HD 73897			B9/B9.5111
41639	ССДМ	12.5 ± 1.2	12.6 ± 0.6	в+	42504	V* NZ Vel	5.0 ± 0.0	20.0 ± 3.8	B4IV
	J08295-4443AB				42515	* bet Pyx			G5 /
41640	HR 3353	6.1 ± 0.1	$43.0\pm~5.8$	B4V	42520	HD 74480	$3.4\pm~0.1$	40.5 ± 2.3	B7IV/V
41647	HD 71945			B3111	42530	HD 72129	$6.2\pm~0.6$	63.7 ± 16.8	K2
41656	HD 72139			B9111	42536	V* omi Vel	$7.1\pm~0.1$	39.8 ± 6.2	B3IV
41704	* omi UMa			G4 -	42568	V* V343 Car	12.5 ± 0.7	15.7 ± 0.2	B1.5
41716	HD 72249	6.3 ± 0.3	31.6 ± 1.7	B3 / V	42570	* b Vel	19.1 ± 0.9	8.3 ± 0.4	F3la
41732	HD 72055	3.0 ± 0.1	25.1 ± 20.8	, В8	42595	HD 74234	9.0 ± 0.1	20.4 ± 1.3	B2V
/1737	HR 3371	80 ± 0.2	33.2 ± 5.1	BAV	42605	HD 7/251	70 ± 0.2	20.0 ± 2.8	B3IV /V
41750		0.0 ± 0.5	100± 01	DEIV	42614	HD 2452	115 - 0.5	12.0 ± 2.0	B1 5V
41730	11D 72207	4.0 1 0.0	10.0 ± 0.4	DGUU /IV	42014	* 1/ 1	11.5 1 0.0	13.0 1 2.9	DI.JV
41774	HD 72384			воптуту	42024	*n vei	8.7 ± 0.2	30.1 ± 2.5	ASII
41/80	HD 72284				42637	" eta Cha	3.0 ± 0.0	2.0 ± 0.6	RAIA RAIA
41781	HR 3375	7.4 ± 0.0	16.5 ± 3.2	B2.5V	42649	HD 74985			B8/B9111/IV
41803	HD 72539	$4.0\pm~0.0$	$10.0\pm$ 8.4	B5V	42653	HD 74319	7.4 ± 0.2	$34.5\pm~2.6$	B3V
41806	HR 3373	$5.9\pm~0.3$	63.1 ± 15.3	B5V	42698	HD 74436	$7.0\pm~0.1$	27.8 ± 2.5	B3V
41823	HD 72537	$6.3\pm~0.1$	$15.4\pm~1.1$	B3V	42712	V* HX Vel	$19.2\pm~1.1$	$6.5\pm~0.4$	B1.5Vn
41828	HD 72555	$6.7\pm~0.2$	26.3 ± 4.9	B2.5V	42726	V* HY Vel	$5.9\pm~0.1$	21.9 ± 8.2	B3IV
41848	HD 72514			B7/B811	42774	HD 75485			A1V
41878	HD 72648	9.5 ± 0.6	23.8 ± 2.2	B1/B2lb	42794	V* RS Cha	2.2 ± 0.1	4.0 ± 1.3	A7V
41882	HD 72754	8.1 + 0.3	29.0 ± 3.9	, B2 ape	42799	V* eta Hva	7.0 ± 0.2	29.5 ± 2.0	B3V
41896	HD 72412	65 ± 05	552 ± 88	G5	42828	* alf Pvx	119 ± 01	15.8 ± 2.8	B1.5III
/1038	HD 72838	0.0 ± 0.0	00.2 ± 0.0	K11b	12820	HR 3476	15.7 ± 0.1	05 ± 0.8	BOUUn
41930	HD 72030	704 02	20.8 - 1.6	RID.	42034	HR 3470	15.7 ± 0.9	9.5 ⊥ 0.0	COL
41941		7.0 ± 0.2	39.0 ± 4.0	D3/11	42035	HR 3409			
41970	HR 3388	8.8 ± 0.1	14.0 ± 3.8	B2/B3V	42849	HD 74922			B9.5111/1V
41972	HD 72600	6.3 ± 0.1	36.1 ± 0.5	B3III	42854	HR 3458			B9.5111-1V
41986	HR 3390	7.9 ± 0.6	38.5 ± 6.9	K3	42894	HD 74644			B9.5III
42001	HR 3389			B5	42903	HD 74608	2.0 ± 0.0	20.1 ± 9.3	A0
42003	HD 72898	$2.5\pm~0.0$	67.2 ± 20.6	B9V	42907	HD 75187			K1 CN
42008	HR 3378	6.2 ± 0.4	63.7 ± 14.6	G5	42908	HD 74804	$10.0\pm~0.6$	20.0 ± 6.9	B0V
42036	V* V451 Ve	$6.7\pm~0.3$	$13.7\pm~2.0$	B2 /	42923	HR 3479	$9.1\pm~0.2$	23.8 ± 1.6	B2111
42038	HD 73105	$6.2\pm~0.0$	$14.8\pm~0.8$	B3V	42936	CCDM			B7111
42041	HD 73010	$5.6\pm~0.4$	63.1 ± 15.0	B5V		J08451-5843AB			
42060	HD 72973	$3.3\pm~0.1$	38.4 ± 14.6	B7V	42942	HD 74969			B811
42063	HD 72168	1.8 ± 0.0	12.7 ± 2.5	A2	42996	HD 74979	7.9 ± 0.3	25.0 ± 3.9	B2
42069	HD 73127	7.8 ± 0.1	2.3 ± 1.9	B5Vn	43000	HD 74966	5.0 ± 0.0	37.7 ± 2.0	B4IV
42088	HR 3407			K1/K2	43023	* a Vel	87 ± 0.2	292 ± 28	A1
12000	HD 72032			6811/111	43020	HD 75062	0.7 ± 0.2	10.12 1 2.00	B8III/IV
42120	UD 2415	724 02	261 - 46		42020	HD 74605	60 - 20	01 + 01	K2
40150	HR 3415	1.2 1 0.2	50.1 ⊥ 4.0	BOUL	43057	HD 75100	0.0 1 0.0	0.1 1 0.1	DEIL
42102	110 73309	10 01	100 1 10	59111	43057	HD 75129	9.3 1 0.9	22.0 1 3.0	DSID
42160	HD 72205	1.9 ± 0.1	13.0 ± 1.8	A2	43059	HD 75060	5.0 ± 0.0	38.2 ± 1.6	B2A
42188	HD 73742	2.5 ± 0.0	(1.3 ± 23.4)	BAA	43078		1.9± 0.0	50.1 ± 36.3	AZ
42198	HD 73241			B2(E2)	43085		5.5 ± 0.4	34.4 ± 6.8	B4V
42206	HD 73990	$3.4\pm~0.1$	$29.0\pm~3.6$	B7/B8V		J08466-4234AB			
42211	HD 72907			G8	43087	HD 75127	$3.0\pm~0.1$	17.9 ± 14.1	B8V
42217	HD 73240	$3.0\pm~0.0$	48.8 ± 2.8	B8V	43100	HR 3474			G811
42236	HD 73701	$5.0\pm~0.0$	43.3 ± 4.8	B5V	43103	HR 3475			G8lab:
42239	V* FO UMa	$7.0\pm~0.7$	44.2 ± 5.5	M0	43105	* f Car	$7.1\pm~0.1$	31.6 ± 3.6	B3Vne
42242	HD 73478	$6.6\pm~0.3$	$36.1\pm\ 0.3$	B3IV	43107	HD 75125			B8111/IV
42251	HD 73834	$6.1\pm~0.1$	12.3 ± 2.6	B3n e	43114	V* A⊢Pyx	$6.2\pm~0.1$	45.2 ± 4.5	B3V
42257	V* RZ Ve			G1 b	43128	HD 75241	$5.7\pm~0.3$	47.4 ± 3.8	B4IV
42268	HD 73440			K0 /	43158	HD 75222	14.7 ± 1.0	$10.0\pm~0.4$	B011/111
42270	HD 74439			K211	43177	LTT 3243			, G0 a0:
42307	HD 73457			B9111	43170	HD 75271			B2V
42210	* e Vel	784 00	30.8 + 1.6	Δ <u>6</u> 11	12100	HD 75324	504 01	31.6 ± 14.7	B5V
42312		1.0 ± 0.2	100 ± 00		43200	LD 2501	J.U I U.L	JI.U <u></u> 14.7	BOV BOIV
42310		15.0 ± 1.8	10.0 ± 0.8	BTID	43209	HD 75540	$\delta.3 \pm 0.2$	$1/.0 \pm 4.2$	B2IV B2V
42331	HD 73227	1.0 ± 0.9	43.3 ± 8.9	KU	43285	HD 75549	6.0 ± 0.1	10.7 ± 3.2	B3V
42336	HD 73414			K011/111	43326	CD-42 4684s			B6111
42349	V* V363 Vel			B9 /	43346	HD 75655	$6.3\pm~0.2$	$1.9\pm~1.6$	B2111
42354	HD 73653	$9.9\pm~0.3$	23.8 ± 2.5	B2	43354	V* HZ Vel			A2/A3 /
42378	HD 73515	1.8 ± 0.0	12.7 ± 2.5	A2	43385	HD 75650	2.0 ± 0.0	31.6 ± 19.2	A1IV
42390	HD 73847			B7!!!	43392	HR 3525	12.5 ± 0.4	15.8 ± 0.7	09V
42395	HD 73811			B8/B9111	43396	HD 75722			B5IV
42398	HD 73810	$2.6\pm~0.1$	$7.0\pm~2.9$	B8/B9V	43398	HD 75628			B9111
		•.•		<i>,</i> -					

Table C.1: - Continued. -

HIP	other D	mass $[M_{\odot}]$	ag e [Myr]	SpT	HIP	other D	mass [M _☉]	age [Myr]	Sp⊤
/3/13	* f Vel	17.6 + 2.0	56 ± 10	BOUL	44602	HD 78076	30+01	15.8 ± 12.2	B8V
43413	HD 75721	17.0 1 2.9	5.0 1 1.0	G211	44002	HR 3603	5.0 ± 0.1	15.0 ± 12.2	E6U-UU
43450	HD 75850	31 ± 01	57.3 ± 20.1	B8/B9V	44618	HD 78290	50 ± 00	83+ 24	B3IV
43459	HD 75818	0.1 1 0.1	01:0 1 20:1	B9.5	44626	HR 3642	9.7 ± 0.3	19.7 ± 1.1	B2 Ve
43462	HD 76047	$5.0\pm~0.0$	50.1 ± 4.4	B5V	44647	HD 78344	17.8 ± 2.7	3.0 ± 0.5	O9.51a
43464	HD 75871	$7.9\pm~0.5$	28.2 ± 4.3	B3V	44649	HD 78201	$3.1\pm~0.1$	44.6 ± 11.8	B8/B9IV
43466	HD 75869	$9.5\pm~0.4$	17.8 ± 3.3	B2111	44655	V* PR Vel	4.0 ± 0.0	$10.0\pm$ 8.4	B5IV
43473	HD 75870	$6.0\pm~0.3$	9.0 ± 1.6	B3V	44659	* ome Hya			K2 -
43494	HD 75968			B9111/1V	44669	HD 79175			B9
43499	HR 3536			B8111	44676	LTT 3359			G5 /
43513	HD 76131			B6111	44685	HD 77770	$8.1\pm$ 0.4	$18.2\pm~3.7$	B2IV
43520	HD 76004	7.6 ± 0.2	33.6 ± 6.5	B3V	44700	HR 3612			G8 b-
43541	V* RZ Pyx	3.6 ± 0.3	10.0 ± 6.0	Вбр	44708	HR 3629	7.9 ± 0.1	13.5 ± 1.5	B2IV-V
43589	HR 3539	6.9 ± 0.2	28.2 ± 3.1	B3Vn DEUU	44714	HD 77969	1.9 ± 0.0	22.5 ± 10.7	A2
43669	HR 3560	6.6 ± 0.2	50.9 ± 10.6	B 5111	44729	HD 78690			B8III
43073	HD 76441	50 ± 00	25.1 ± 3.0	R011/111-T	44704	V* KK Ve	76 ± 03	232 ± 11	B211/111
43699	HD 76442	3.0 1 0.0	23.1 ± 3.0	B4V	44798	V* kap Cnc	1.0 1 0.5	23.2 1 1.1	B8IIIMNp
43746	V* NN Hya	7.0 ± 0.6	47.9 ± 8.2	K5	44816	V* am Ve	8.5 ± 0.4	31.2 ± 2.1	K4lb-ll
43763	V* V473 Car	$5.0\pm~0.0$	15.9 ± 10.3	B5V	44831	HD 78348	6.2 ± 0.2	63.1 ± 15.5	K5
43782	HD 76403	$6.0\pm~0.7$	63.1 ± 21.2	K1	44832	HD 78708			B8/B9111/IV
43783	* c Car			B8111	44847	V* BG Vel			F7/F811
43807	HR 3562	$6.5\pm~0.1$	34.0 ± 5.4	B3IV	44879	HD 78931	$8.3\pm~0.9$	23.8 ± 3.1	B3IV/V
43814	HD 76588	$1.9\pm~0.0$	$11.4\pm\ 1.3$	A1m	44883	* 19 Hya			B9.5III
43815	HD 76484			F3/F5Ib	44961	* 20 Hya			G811
43834	* 58 Cnc			G8 -	44977	BD+01 2243	$1.9\pm~0.1$	$12.7\pm~2.5$	A2
43866	HD 76431	12.0 ± 0.8	0.1 ± 0.0	A	44996	V* PS Ve	5.8± 0.2	37.8 ± 3.6	B4V
43868	HD 76510	7.5 ± 0.1	10.6 ± 1.2	B1b	45014	HD 79072	6.0 ± 0.1	38.3 ± 11.0	B3111
43878	HR 3574	5.0 ± 0.0	15.9 ± 0.3	B5V	45044	HD 78985	6.1 ± 0.2	29.8 ± 0.6	B3/B4V
43902	HD 77033	20 ± 0.0	31.6 ± 6.0	B8/B0Vn	45000	HD 70000 * a Car	2.0 ± 0.1 8.8 ± 0.1	20.1 ± 9.3 18.4 ± 1.7	AU B2IV
43927	HD 77348	2.9 1 0.0	51.0 ± 0.9	E3/E5	45085	V* GX Vel	16.0 ± 0.1	10.4 ± 1.7 10.0 ± 2.2	B5la
43928	HD 75972	6.6 ± 0.5	55.2 ± 6.8	G5	45094	V* V477 Car	6.1 ± 0.2	39.5 ± 4.3	B4V
43937	V* V376 Car	7.8 ± 0.1	12.1 ± 1.2	B2IV-V	45095	HD 79278	5.3 ± 0.3	18.7 ± 8.1	B3IV/V
43938	HD 76860	$6.8\pm~0.8$	48.2 ± 10.5	КЗІЬ	45101	* i Car	$6.9\pm~0.1$	$39.8\pm~7.0$	B3IV
43955	HD 76838	$6.1\pm~0.1$	$13.4\pm~2.3$	B3V	45104	HD 78769	$6.0\pm~3.0$	$0.1\pm~0.1$	К2
43964	HD 77076	$5.0\pm~0.0$	32.8 ± 6.5	B5V	45105	HD 78887			K0
43965	HD 76955	$5.0\pm~0.0$	11.3 ± 5.5	B3	45117	HD 79149			B9111
43972	HD 76970			B5	45119	HD 79420	6.8 ± 0.3	39.8 ± 3.2	B4III
43987	HD 76898			B5Vn	45121	HD 79421	6.1 ± 0.0	10.7 ± 1.7	B2.5IV
44019	HD 76954	3.2 ± 0.0	57.6 ± 10.5	B8/B9III	45122	HR 3658	7.7 ± 0.1	10.5 ± 1.4	B2IV-V
44024	HR 3565				45124	HD 79032	2.0 ± 0.0	11.0 ± 0.9	AU REIII
44055	HD 77244	70 ± 03	39.8 ± 4.6	B4/B5V	45127	HD 79419			B8/B9111
44080	HD 77017	1.0 ± 0.5	55.0 ± 4.0	B8/B9	45145	HD 79332			B5V
44105	HD 76868	$6.7\pm~0.3$	43.2 ± 10.3	В5	45165	HD 79446			B5 /
44181	HD 77321			G5lb:	45219	HR 3673			G6II
44194	HD 77554			B8/B9111	45237	HD 79573	$7.8\pm~4.5$	$5.0\pm~2.7$	WC
44213	HR 3593	$7.9\pm~0.1$	23.2 ± 2.1	B3Vn e	45240	HD 79624	$3.1\pm~0.0$	33.8 ± 8.0	B8III
44227	HD 77125	2.0 ± 0.0	37.0 ± 24.1	A0	45257	HD 79320	$1.9\pm~0.0$	20.1 ± 8.4	A2
44231	HR 3580	$6.2\pm~0.8$	63.1 ± 23.8	K5	45290	V* E⊢Lyn			B8IIIMNp
44242	HD 77525	4.0 ± 0.0	28.2 ± 12.0	B5Vn	45293	HD 79482	$1.7\pm~0.0$	15.8 ± 5.4	A4V
44245	V* CV Vel	8.5 ± 0.3	11.5 ± 2.7	B2V +	45296	HD 79864		27.4 2.2	B911/111
44051	UD 77266	03 04	155 16	B2V B2/B2V	45299	HD 79395	8.0 ± 0.6	37.4 ± 8.3	KZ Céll
44251	HD 77300	9.3 ± 0.4	15.5 ± 1.0	62/63V	45515	HD 80128			GOIB GBIL/III
44278	HD 77523			B6III	45343	HD 79210	0.6 ± 0.0	312 ± 61	MOV
44299	HR 3600	40 + 00	56.6 ± 26.0	B5V	45344	* z Vel	5.0 ± 0.0 5.8 + 0.2	37.8 ± 15.6	B4V+
44317	HD 77566	5.0 ± 0.0	45.8 ± 4.1	B5V	45372	HD 79946	7.4 ± 0.6	39.8 ± 4.6	B5V
44332	HD 77595			B8II	45395	HD 79901	2.0 ± 0.0	11.0 ± 0.9	A0V
44368	V* GP Vel	15.5 ± 1.0	$12.6\pm~2.4$	B0.5 b	45411	HD 79753			B9111
44381	HD 77669			B9111/1V	45437	HR 3693			G811
44400	HD 77312	2.0 ± 0.0	28.6 ± 16.3	A0	45467	HD 80077	$17.4\pm~2.9$	6.5 ± 0.5	B21ape
44485	HD 78232			B9111/1V	45479	HD 80212	2.0 ± 0.0	$11.0\pm\ 0.9$	A0V
44509	HD 78005	$6.2\pm~0.1$	33.4 ± 4.8	B4V	45486	HD 80056			B9111
44562	HD 78097	$7.6\pm~0.8$	37.9 ± 8.0	K2III+	45505	HR 3692	12.0 ± 0.5	17.6 ± 2.1	КЗІР
44580	HD 77916	$7.9\pm~0.6$	37.4 ± 9.0	K2	45520	HD 80156	$2.9\pm~0.1$	14.2 ± 10.7	B8/B9IV
44582	HD 77954			B7/B811	45526	* 24 Hya			B9111
44599	HR 3643			F6 -	45556	* iot Car	$7.9\pm~0.2$	37.4 ± 5.1	А8ІЬ

Table C.1: - Continued. -

HIP	other ID	mass [M _O]	age [Myr]	ЅрТ	HIP	other D	mass [M _☉]	age [Myr]	SpT
45563	HD 78584	62+02	143 + 15	B3	46843		0.0+ 0.0	51.0 + 10.4	KU
45580	HD 80457	0.2 1 0.2	14.5 1.5	F311	46885	HD 82605	1.8 ± 0.0	14.0 ± 3.7	A3
45625	HD 80380	5.7 ± 0.3	14.2 ± 5.0	B3IV	46889	HD 82988			B8111
45631	HR 3703			B7/B8III	46905	HD 83032			B7111
45659	HD 80577	141 22	142 40	K2 b/ B7 -b	46912	HD 83111	62 01	E4 0 12 0	K0II BAIM
45681	HD 80528	14.1 ± 2.5	14.2 ± 4.0	B9111/IV	40914	J09337-4900AB	0.5 ± 0.1	54.2 ± 13.2	B41V
45690	HD 80527			K0/K1 /	46928	V* zet Cha			B5V
45694	HD 80574	3.8 ± 0.2	15.8 ± 12.4	B6	46950	HR 3819	9.3 ± 0.2	12.6 ± 2.7	B1.5IV
45731	GJ 3547	0.6 ± 0.0	13.9 ± 1.8	M:	46974	* h Car	9.3 ± 0.4	24.5 ± 3.3	B511
45734	HD 81485 HR 3717	1.3 ± 0.0 10.0 ± 0.5	14.0 ± 2.1 22.6 ± 4.4	G3V B5V	46977	V* DK UMa HD 83312	2.7 ± 0.2 61 ± 0.1	0.8 ± 0.4	G4III-IV B4:nsh
45747	HD 80328	6.2 ± 0.7	63.7 ± 14.6	K2	47005	HD 83153	5.0 ± 0.1	45.2 ± 4.5 39.8 ± 5.5	B3/B4
45776	HD 80761			B5	47018	V* AK Ant			A211/111w
45799	HD 81372			B8/B9III	47078	CD-49 4527B			B5
45805	HD 80705	6.2 ± 0.6	68.6 ± 24.3	K1	47116	HD 83358			B9111
45817	HD 81038	7.0 ± 0.4 5.0 ± 0.0	49.8 ± 4.6 20.7 \pm 4.5	B5Vn B5V	47126	HD 83369 V* MS Vel	3.0 ± 0.0	31.6 ± 22.9	B811 M211
45880	HIP 45880	5.0 1 0.0	20.7 1 4.5	B2	47135	HD 84075	1.1 ± 0.0	21.7 ± 5.6	G2V
45924	HR 3726			МЗІЬ	47137	HD 83488	$5.0\pm~0.0$	2.7 ± 1.8	B3V
45934	HD 298369	7.6 ± 0.3	$2.0\pm~1.1$	B2:Vne	47155	HD 83277			A6:IIw
45941	* kap Vel	$12.5\pm~0.4$	$15.7\pm~0.2$	B2IV	47183	HD 83643	2.9 ± 0.1	23.3 ± 11.8	B8/B9V
45956	HD 81293	11 00	150 20	B8III	47189	* 8 Leo	6.3 ± 0.3	68.6 ± 23.6	K1III BOU
45965		1.1 ± 0.0	15.0 ± 3.9	R2V	47192	HD 83403 HR 3751	79 ± 0.6	384 + 49	K3III
45969	HD 81172			B7/B8III	47248	HD 83626	3.0 ± 0.1	57.3 ± 26.5	B8/B9V
46017	HD 81353			G811/111	47267	* y Vel			GBÍI
46032	HD 81370	$9.2\pm~0.6$	2.8 ± 2.6	B0IV:	47277	HD 83657			K1
46045	HD 81347	8.8± 0.3	23.8 ± 2.6	B5V	47296	HIP 47296	$15.0\pm~1.1$	$0.2\pm~0.1$	sdO:
46049	HR 3740 HD 81369	7.5 ± 0.5	40.4 ± 5.6	K1/K2 / B7	47301	HD 83834	35 + 03	57 3 ± 22 3	BZIV
46130	HD 81213	1.9 ± 0.0	39.8 ± 26.8	A2	47318	HD 83495	1.9 ± 0.1	57.3 ± 22.3 11.3 ± 1.2	A1V
46145	CCDM			B9	47370	HD 83866			B811
	J09246-7025AB				47394	HD 83853	7.9 ± 1.1	37.4 ± 10.4	K2/K3
46149	HD 81193	$6.2\pm~0.5$	63.7 ± 14.6	K2	47397	HD 83865			B5V
46192	HD 81543			B9111	47422	HD 84046	66 04	E7 1 10 6	B8/B9111/IV
46223	V* V415 Hva	1.8 ± 0.0	35.2 ± 21.5	A3	47451	н D 03020 * kap Hva	5.0 ± 0.4 5.0 ± 0.0	57.1 ± 10.0 27.8 ± 4.7	B4IV/V
46224	V* V377 Car	6.9 ± 0.3	39.8 ± 4.4	B4V	47495	HD 84101			B5V
46238	HD 81542			B9	47522	HR 3858			B5V
46284	HD 81599			K1 /	47549	HD 84375	6.1 ± 0.1	43.0 ± 6.6	B3III:psh
46296	HD 81891	10.0 ± 1.7	20.0 ± 2.1	B3V C6UU/IV	47559		7.8 ± 0.2	39.8 ± 4.4	B4V
46329	HR 3745	0.0 ± 0.3 7.6 + 0.4	47.0 ± 0.0 39.8 ± 4.4	B5V	47615	HD 84799	1.8 ± 0.0	56.6 ± 40.5	A3V
46342	HD 81949			G3/G5Ib	47627	HR 3867			Asp
46348	HD 81921			B9 /	47653	HD 84359			B8111
46364	HD 81946	$4.6\pm~0.4$	51.2 ± 2.2	B5111	47676	HD 84464			B5V
46370	HD 82187	10 01	20.0 0.2	B8	47700	HD 84462	5.0 ± 0.0	47.3 ± 2.6	B5/B6V
40378	HD 81745	1.8 ± 0.1	20.0 ± 8.3	A2 B9III	47701	* T Leo HD 84414	2.0 ± 0.0	31.0 ± 19.2	A2IV F6/F7II
46470	HD 82121			B5IV/V	47747	HD 84493	$7.0\pm~0.2$	$2.1\pm~1.2$	B2IV
46496	HD 81703	6.3 ± 0.8	63.1 ± 23.5	K5	47789	HD 84585	3.0 ± 0.1	10.0 ± 6.8	B8/B9111
46505	HD 82405			B8	47802	HD 84551			B9111
46512	HD 85742			B6III Bell	47809	HD 84891			FOIL
40518	HD 82278 HD 82346			E31b	47850	HD 84759 V* Car	89+02	29.0 ± 3.7	G5 ab/lb
46569	HR 3767	$6.3\pm~0.6$	57.2 ± 11.0	K2/K3III	47857	HD 84866	6.1 ± 0.2	56.8 ± 13.2	B4111
46611	HD 298437	3.0 ± 0.1	25.1 ± 20.8	B8	47868	HR 3878	15.5 ± 1.2	$8.4\pm~0.6$	B0IV
46614	HD 82457			B7 /	47876	HD 84851			B8/B9III
46622	HD 82600	150 1 1 1	0.0 0.7	K2	47880	HD 84418	$6.3\pm~0.8$	63.1 ± 27.2	K5
40059 46661	БU+48 1/// НD 82904	15.0 ± 1.1	0.2 ± 0.1	saU: F011	47803	п U 84010 V* V487 Сэг			G8111 B81111/IV
46678	HD 82790			B9111	47904	V* VX Hya	$1.5\pm~0.1$	35.8 ± 5.6	F2-F8lb
46691	HD 82397			B9	47908	* eps Leo			G011
46693	HD 81547	6.6 ± 0.3	58.9 ± 9.8	K0	47940	HD 84774			G811/111
46755	HD 83019	8.2 ± 0.7	29.0 ± 6.0	B5 n	47950	HD 84727	6.3 ± 1.1	50.1 ± 6.4	A0111
46760 46765	HD 83093 HD 82764	9.9 ± 0.1	19.0± 1.6	82V 88111	47963 48002	нк 3886 ССDМ	$(.5 \pm 0.2)$	24.0 ± 1.9 26.8 ± 2.0	82.51V A9
46816	V* LQ Hva	0.8 + 0.0	51.9 ± 14.0	K0	70002	J09471-6504AR	9.1 <u>1</u> 0.3	20.0 1 2.9	A 2

Table C.1: - Continued. -

HIP	other D	mass	age	SpT	HIP	other D	mass	age	ЅрТ
		[₩ _☉]	liviyr				[™⊙]	[iviyr]	
48129	V* IX UMa			A211	49553	HD 88079	3.9 ± 0.1	10.0 ± 8.4	B6V
48130	HD 85498	$2.7\pm~0.2$	$7.0\pm~3.2$	B8V	49583	* eta Leo	$7.8\pm~0.2$	$39.8\pm~4.5$	AOIb
48156	HD 85642			F2	49602	HD 88103			B8/B9111
48199	HD 85341			B911/111	49608	HD 88115	8.7 ± 0.5	1.9 ± 1.2	B1
48222	HD 85469			B8/B911	49619	HD 88015	0.5 ± 0.1	23.0 ± 1.7	Balli
40224	HD 85356	67+03	283 + 30	B2lb	49003	HD 00175	71 ± 0.2	133± 63	POILI
40220	HD 85496	0.7 ± 0.3	20.3 1 3.0	B8/B9111	49000	HD 88322	63 ± 01	45.5 ± 0.3 45.6 ± 4.7	R4V
48253	HD 85629			B9 / V	49712	HR 3990	8.9 ± 0.3	28.8 ± 3.8	B3IV
48256	* 16 LMi	6.2 ± 0.4	63.5 ± 18.1	K5	49723	HD 88292			B811
48260	HD 85530			G811	49729	HD 88009			G811
48369	HD 85552			G1 /	49799	HD 88471			B8111
48374	* m Vel			G 5 lb	49835	HD 88591	$5.0\pm~0.0$	34.0 ± 15.0	B5Vnn
48386	HD 85361	$6.8\pm~0.3$	45.8 ± 6.7	K0	49840	HD 88484			K1 /
48436	HD 85416	$6.2\pm~0.4$	63.5 ± 19.5	K5	49854	HD 88150	$2.0\pm~0.0$	11.0 ± 0.9	A0
48440	HD 85777	7.9 ± 0.4	25.7 ± 1.5	B3IV	49855	HD 88410			G6 /
48457				B9.5111	49909	HD 88556	100 0 0 5	011 1 1 7	B5/B6III
40.460	J09528-4033AB	10.4 0.0	126 16	D1)/	49934	HR 4009	10.0 ± 0.5	21.1 ± 1.7	B2 Vnpe
48409	V* QZ Vei ⊔D 95797	12.4 ± 0.0	13.0 ± 1.0 20.1 ± 9.4	BIV	49940		F 0 + 0 0	15.0 ± 11.0	Bolli B5Vn
48527	V* V335 Vel	2.0 ± 0.0	20.1 ± 0.4 25.1 ± 1.7	B2V	49945	HD 88353	3.0 ± 0.0	15.9 ± 11.0 20.1 \pm 0.3	Δ0
48547	HD 85860	10.0 1 0.1	23.1 ± 1.1	B3/5V +	49957	HD 88660	2.0 1 0.0	20.1 ± 5.5	B9111/1V
				B/A	49975	HD 88716			F3/F5
48561	HR 3925			, В+	49983	HD 88733			, B9III/IV
48586	HD 86183	$4.0\pm~0.0$	$10.0\pm~2.6$	B5V	50038	HD 88894	$5.0\pm~0.0$	$53.8\pm~4.6$	B5V
48589	V* QX Car	$8.6\pm~0.3$	$11.1\pm~2.1$	B3V +	50044	HR 4018	10.0 ± 0.2	$25.1\pm~3.4$	B4Ve
				B3V	50067	HR 4022	$7.7\pm~0.2$	2.0 ± 1.6	B2V
48590	HD 85844	$1.8\pm~0.0$	25.1 ± 13.1	A2	50099	* ome Car			B8111
48640	HD 86099	$3.0\pm~0.0$	51.8 ± 14.5	B8/B9V	50126	HD 89403	$6.4\pm~0.2$	$9.2\pm~3.0$	B2V
48643	V* V423 Car			Ар	50135	HD 88945	5.5 ± 0.4	31.6 ± 4.4	B4V
48669	HD 86289			B811	50171	HD 88978	6.6 ± 0.4	50.1 ± 6.4	B5111
48679	HD 86319			B7/B8III	50232	HR 4038	8.7 ± 0.2	19.8 ± 2.3	B2IV-V
48697	HD 86288	6.9 ± 0.3	39.8 ± 4.4	B5 B7\(50233	HD 80303			BAIII
40705	HD 80550	3.2 ± 0.1	10.0 ± 0.0 23.6 ± 3.8	B11b	50242	HD 89203	24 ± 01	13 2 + 24 8	
48730	HR 3935	9.0 ± 0.1 12.3 ± 0.5	15.7 ± 0.9	B2IV-V	50240	HD 89275	33 ± 01	18.1 ± 14.7	B7/B8IV/V
48745	HD 86248	12.5 ± 0.5	13.7 ± 0.9	B2	50310	HD 88896	6.0 ± 3.6	0.1 ± 0.1	K2
48756	HD 86135	6.2 ± 0.9	63.5 ± 24.2	K5	50371	V* V337 Car	6.9 ± 0.5	45.5 ± 11.1	K3
48761	V* V367 Car	$6.3\pm~0.5$	$50.1\pm~6.4$	B6V	50398	HD 89385	$2.9\pm~0.0$	31.6 ± 8.4	B8Vp
48774	* phi Vel	11.7 ± 0.3	20.0 ± 3.4	B5lb	50417	HD 89280	$2.0\pm~0.0$	28.1 ± 15.9	A2111
48782	V* V492 Car	$7.1\pm~0.1$	31.6 ± 1.0	B3V	50437	HD 89429	$2.4\pm~0.0$	55.3 ± 28.0	B9V
48799	V* IV Vel	10.0 ± 0.0	25.1 ± 1.1	B3IV	50450	HD 89310	$1.8\pm~0.0$	12.7 ± 2.5	A2
48808	HD 86438			B2	50456	V* AG Ant	$8.9\pm~0.3$	29.0 ± 4.2	B9.5 b/
48835	HR 3943	7.9 ± 0.2	33.2 ± 5.0	B3V	50519	HD 89587	7.9 ± 0.5	37.3 ± 5.8	B5111
48851	HD 86202	7.5 ± 1.0	39.2 ± 8.1	K5	50531	HD 89683	00107		B811
48868	HD 86601			Ballivin	50555	V* GZ Vel	8.9 ± 0.7	30.3 ± 4.1	K311
48943	HR 3946	20 01	20.9 20.1	B5V	50561	HD 89740	6.0 ± 0.2	7.3 ± 4.9	B3Vn K2U
40990	HD 86878	3.2 ± 0.1 25 ± 0.1	39.8 ± 29.1 70.8 \pm 28.8	BOV	50576	HD 89756			F311
49123	HD 87222	6.3 ± 0.1	27.7 ± 3.1	B3IV	50595	HD 89738	2.4 ± 0.1	55.1 ± 36.5	B9V
49137	HR 3955	7.0 ± 0.1	30.5 ± 2.6	B2.5V	50619	HD 89876	4.6 ± 0.4	41.2 ± 8.2	B5IV
49138	HD 87241			B9111	50646	HD 89844	$7.0\pm~0.2$	21.3 ± 3.5	B2 n
49149	HD 87266	$5.8\pm~0.3$	26.8 ± 0.9	B3IV	50648	HD 311613	$2.0\pm~0.0$	39.8 ± 26.8	A0
49160	HR 3957			K1	50666	HD 89785	$2.4\pm~0.1$	20.0 ± 12.0	B9V
49164	HR 3960	$7.2\pm~0.3$	44.7 ± 4.3	A9IV	50667	HD 89974	$2.0\pm~0.0$	20.1 ± 9.3	A0V:
49184	HD 87408	$6.9\pm~0.9$	39.8 ± 4.6	B7!!!	50676	CCDM	$8.1\pm~0.3$	33.2 ± 5.2	B3111
49201	HD 87265			B2V		J10209-5603AB			
49203	HD 87295	$6.3\pm~0.1$	$39.8\pm~0.9$	B3/B4IV	50677	HD 89856			B9111:
49218	HD 87405	641.05	24.0 5.4	Ap	50684	V* RS Sex	8.1 ± 0.6	25.5 ± 3.0	B2.5IV
49220	V* EU Leo	6.4 ± 0.1	34.0 ± 5.4	82.5IV	50692	HD 89720	6.8± 0.3	50.1 ± 8.2	K2
49231		7.5± U./ 78⊥ 0.2	43.2 ± 8.2 30.8 ± 4.6	ND NGU/UU	50095	HD 80706			GUIAD
49233	HR 3900	7.0 ± 0.2 75 ± 0.2	39.0 ± 4.0 30.8 ± 4.6	B4.Vre	50719	HD 00088	20+01	10.0 + 6.9	B8V
49201	HR 3959	7.5 ± 0.2 7.2 ± 0.4	43.3 ± 6.3	K0	50740	HD 89884	2.3 1 0.1	10.0 1 0.0	B5
49318	HD 87541	2 _ 0.4		B9111/1V	50769	HD 90066			F2
49384	HD 87559	5.6 ± 0.8	64.4 ± 16.6	K3III	50780	V* V345 Ve	6.2 ± 0.1	15.4 ± 2.6	B3V
49394	HD 87652			B8/B9III	50816	HD 90139	2.4 ± 0.1	42.0 ± 29.8	B9IV/V
49468	HD 87800			B6/B711	50821	HD 90151			B9111/1V
49480	HD 88159	1.9 ± 0.0	11.4 ± 1.3	A1V	50843	HD 90177	21.4 ± 4.3	4.9 ± 0.8	B2ev ar
49513	HD 87782	$5.0\pm~0.1$	63.1 ± 13.1	B6V					

Table C.1: - Continued. -

HIP	other D	mass [M _☉]	age [Myr]	Sp⊤	HIP	other D	mass [M⊙]	age [Myr]	Ѕр⊤
50855	HD 90219			K011/111CN.	52379	HD 92771			A711/111
50857	* 26 LMi	$1.9\pm~0.0$	$13.0\pm~2.1$	A2	52394	HD 92908			, B9111
50893	HD 90057	6.4 ± 1.1	60.1 ± 23.5	K5	52419	* tet Car	$14.9\pm~0.5$	$4.0\pm~2.0$	B0Vp
50899	HD 90202	$9.3\pm~0.3$	$0.3\pm~0.1$	B0 ab/ bn	52426	HD 92948			B7111
50901	HD 90085			A411	52436	HD 93010	$7.2\pm~0.4$	39.8 ± 4.4	B3111
50916	HR 4091			K5lb-ll	52455	HD 92857	$1.9\pm~0.0$	13.0 ± 1.8	A2
50919	HD 90313	$8.0\pm~0.5$	$19.8\pm~2.3$	B1	52462	V* V419 Hya	$0.9\pm~0.0$	43.5 ± 12.4	K1V
50938	HD 90167			K0	52468	V* V520 Car	7.8 ± 0.1	39.8 ± 5.4	K3IB
50945	HD 90456	1.8 ± 0.0	31.6 ± 19.2	A2V	52487	HR 4204	8.0 ± 0.2	33.0 ± 4.7	B3:V
50953	HD 90398	10 01	20 5 4 9 9	B9111/1V	52488	HD 93131	19.8 ± 1.0	4.9 ± 0.3	VVN7 + A
50974	HD 90243	1.9 ± 0.1 6.2 ± 0.7	20.5 ± 0.0 63 7 ± 14 6	A2/A3m	52499	HD 93007	1.9 ± 0.1	12.7 ± 2.5	A2IV B5Vn
51011	HD 90490	5.2 ± 0.1	34.0 ± 6.2	B5V/ne	52502	V* 07 Car	99 ± 01	72 ± 28	BOIL
51063	HD 90578	7.0 ± 0.0	0.4 ± 0.3	B1.5	52536	HD 93064	5.5 <u>T</u> 0.1	1.2 1 2.0	K2
51133	HD 90445	6.3 ± 0.5	63.7 ± 14.6	K0	52556	HD 92954	7.0 ± 0.7	47.8 ± 4.6	K5
51140	HR 4107	7.9 ± 0.3	38.5 ± 5.5	K3 /	52562	V* RT Car			M2Ia
51146	HD 90484	$7.1\pm~0.7$	47.6 ± 9.7	K2	52566	HD 93172	$1.9\pm~0.1$	43.1 ± 29.9	A2 m
51169	HD 90856	2.6 ± 0.0	$7.0\pm~2.9$	B8V	52628	HD 93403	24.1 ± 16.1	1.9 ± 1.2	O5e
51232	* s Car	$7.5\pm~0.4$	43.3 ± 6.3	F211	52633	HR 4234	$5.0\pm~0.0$	32.6 ± 15.1	B2.5IV
51242	HD 90797			B411/111	52639	HD 92880	$7.2\pm~0.5$	43.3 ± 6.3	K0
51246	V* V506 Car			B8	52670	HD 93484	$7.6\pm~0.1$	$31.6\pm~5.9$	B2.5V
51265	HD 90966	7.6 ± 0.2	17.7 ± 1.1	B2/B3 :ne	52736	HR 4222	$5.9\pm~0.1$	21.0 ± 5.8	B3IV
51290	HR 4103	$6.3\pm~0.5$	63.7 ± 14.6	K0	52738	BD+47 1812			A711
51310	V* V508 Car			B8 ab	52742	HR 4221			B8/B9111
51313	HR 4120	12.1 ± 0.2	17.6 ± 2.1	КЗЬ	52785	HD 93739	8.6 ± 0.3	18.2 ± 3.5	B2IV
51322		5.8 ± 0.2	45.9 ± 3.9	B4IV	52792	HD 93527			F711/111
E1202	J10290-4859AB	22 00	61 0 10 0	DOLL	52797	HR 4220	65 00	F0 1 F 2	
51325	NI TT 24408	3.2 ± 0.0 13 ± 0.0	01.2 ± 12.3 24.0 ± 4.8	E5	52799	HD 93714	0.5 ± 0.2	50.1 ± 0.2	B5Wyar
51425	V* V655 Car	58 ± 0.0	453 ± 92	B4IV	52818	HD 93680			G8/K011/111
51444	HD 91188	7.0 ± 0.2	39.8 ± 4.6	B3	52831	HD 93471			K2
51453	HD 91269	7.0 ± 0.2	39.8 ± 4.6	B4:V∶ne	52834	HD 93692			B9111
51488	HD 91307			B5V	52849	HD 93521	17.7 ± 2.7	$3.3\pm~0.8$	O9Vp
51506	HD 91342			B9	52855	HD 93721			B9.5111/1V
51544	HD 91466			B8111/1V	52868	HD 93913	$7.1\pm~0.2$	30.5 ± 2.6	B3V
51548	HD 91323	$5.9\pm~0.1$	45.3 ± 4.5	B5	52872	HD 93790			G3/G5 /
51557	HR 4161	4.7 ± 0.3	51.3 ± 15.2	B5 / V	52898	HD 93840	$7.9\pm~0.5$	23.0 ± 3.6	B211
51558	HD 91370	$4.5\pm~0.4$	27.2 ± 5.7	B5V	52903	HD 93898			B8/B9III
51560	HR 4136	$5.0\pm~0.1$	23.6 ± 5.3	B4	52970	HD 94066			B5Vn
51576	*pCar	7.6 ± 0.1	39.8 ± 6.6	B4Vne	52977	HD 94097	7.7 ± 0.2	31.6 ± 5.5	B3V
51583	HD 91337	2.0 ± 0.0	11.0 ± 0.9	Ар	53004	HD 94112	60 00	F01 71	F211
51593		4.0 ± 0.0	33.7 ± 8.0		53007	HD 94144	0.2 ± 0.2	50.1 ± 7.1	B2V B4V
51676	V * V369 Car	21.2 ± 3.0 11.7 ± 0.4	4.2 ± 0.3 169 ± 12	BTID 3B	53010	HD 94108	65 ± 02	50.1 ± 4.2	B4V B4V
51775	* 48 Leo	11.7 ± 0.4	10.9 1 1.2	Gall-III	53024	HD 93847	24 ± 01	35.1 ± 4.2 35.6 ± 14.5	B9
51776	HD 91907	3.1 ± 0.1	25.1 ± 16.9	B8111	53057	HD 94290	5.0 ± 0.1	7.7 ± 2.1	B4V
51816	HR 4154			G8/K0 /	53074	HD 94454			B8111
51849	* r Car	$7.9\pm~0.3$	$38.5\pm~4.9$	K3/K4II	53089	HD 94289	$7.0\pm~0.1$	26.5 ± 1.7	B3V
51857	V* V513 Car	$15.4\pm~0.7$	10.3 ± 0.8	B0.5Ib	53109	V* V523 Car	7.9 ± 1.0	37.3 ± 11.3	B5 lab
51934	HD 92072			B5V	53121	HD 94346	$7.1\pm~0.5$	39.8 ± 4.6	B6/B7III
51940	HD 92087	$7.0\pm~0.6$	39.8 ± 4.6	B5V:	53151	HR 4268	$6.2\pm~0.8$	63.1 ± 24.4	K2 /
51973	HD 91840			K3	53162	HD 94326			A411/111
51984	HD 92155	7.1 ± 0.1	$30.5\pm~2.6$	B3Vn	53183	HD 94409	$3.0\pm~0.1$	15.8 ± 12.2	B8/B9V
52032	* 36 LMi	6.6 ± 0.4	58.9 ± 11.0	K0	53192	HD 94494			K011/111
52043	V* V514 Car	6.6 ± 0.1	34.0 ± 5.4	B3IV	53211	HD 94366	7.0 ± 0.6	43.2 ± 4.8	B6III
52093	BD+61 1197	2.8 ± 0.2	10.0 ± 6.8	B8	53231	HD 94491	6.5 ± 0.1	35.4 ± 5.3	B5V
52098	" 37 LIVII	10.0 - 0.0	20.0 - 6.0		53260		9.7 ± 1.0	25.1 ± 3.3	NZ111
52102	ПК 41// НД 02300	12.2 ± 0.6 61 ± 0.1	20.0± 0.0 50.1⊥ 6.2	N4/N3111:	53274 53204	HD 94540	15.U ± 1.1	0.2 ± 0.1	vv in† 85111
52105	HR 4186	0.1 _ 0.1	JU.1 _ U.J	K3II	53200	V* B7 Car	⊣ .J ⊥ 0.4	41.7 <u>1</u> 2.3	M2lab
52154	* x Vel			G2	53344	HD 94565	3.0 + 0.0	15.8 ± 4.5	B8
52161	HD 92464	6.0 ± 0.2	$39.8\pm~0.6$	B5Vn	53353	HD 94644	6.3 ± 0.4	50.1 ± 6.4	B5111
52172	CCDM	1.5 ± 0.0	11.3 ± 1.7	F7/F8V	53498	HD 95688			B9111
	J10395-7538AB			,	53546	HR 4279	$10.0\pm~0.6$	$25.1\pm~4.7$	K1
52181	GJ 398.2	12.0 ± 0.8	0.1 ± 0.0	DA:	53557	HD 94971	-		F8/G011/111
52204	HD 92501			К5ІЬ	53643	HD 95602	$6.0\pm~0.4$	$50.1\pm~5.9$	B411
52340	HR 4206	6.0 ± 0.1	47.9 ± 7.6	B5IV	53691	V* CR Cha	1.5 ± 0.1	2.2 ± 0.6	K2e
52358	HD 92850	9.8 ± 0.3	$5.9\pm~5.3$	В01Ь	53694	HD 95222	1.6 ± 0.0	50.1 ± 34.5	A7V
52370	HR 4196	6.3 ± 0.0	17.1 ± 1.1	B3V	53701	HR 4290	$3.1\pm~0.0$	45.8 ± 5.5	B8IV
52373	HD 92686	$6.7\pm~0.5$	52.8 ± 11.7	K5					

Table C.1: - Continued. -

HIP	other ID	mass [M_]	ag e [Myr]	SpT	HIP	other D	mass [M_]	age [Myr]	SpT
		101	[,.]				[0.0 \ 0.0	
53714 53717	HD 95286			B8/B911	55537	HD 98922	5.0 ± 1.4 3.0 ± 0.0	0.2 ± 0.0 15.6 ± 11.0	B9Ve
53750	HD 95098			K211-111	55560	* 56 UMa	5.0 ± 0.0	15.0 ± 11.9	Gall
53759	HD 95282			A2/A311/111	55597	HR 4401	$5.0\pm~0.0$	27.3 ± 10.9	B5
53762	HR 4292	$3.0\pm~0.0$	39.8 ± 2.8	B8/B9V	55657	HR 4406	$9.0\pm~0.1$	19.8 ± 1.6	B2IV-V
53772	HD 95558	78 04	20.0 5.5	B9111/1V	55667	HR 4403	10.7 ± 2.7	15.7 ± 0.5	B2IV-V
53831	HD 305913	7.8 ± 0.4	39.8± 5.5	R5111	55682	HD 99073 HD 99301	7.9± 0.8	37.4 ± 8.9	кэ В2Ш/IV
53966	HD 95999			G611/111CN.	55700	HD 99199	$1.6\pm~0.0$	50.1 ± 34.5	A711/111
54006	HD 96044	$5.0\pm~0.0$	39.5 ± 7.8	B5V	55702	HD 99317			B8/B9111
54024	HD 95725			K1	55707	HD 99316	$7.5\pm~0.9$	$33.3\pm~6.8$	B8lb
54082	HD 96088	8.4 ± 0.7	29.1 ± 6.0	B3 E0 /	55710	HD 99241			K0II
54179	V* V414 Car	15.5 ± 1.5	10.0 ± 2.0	B1 ab	55746	HD 99827	1.5 ± 0.0	10.5 ± 1.0	F5V
54226	V* QU Car			в+	55782	HD 99399			B9111
54257	HD 96675	3.5 ± 0.1	1.8 ± 0.4	B6IV/V	55801	HD 99467			B9 /
54266	V* V430 Car	$7.6\pm~0.2$	18.6 ± 1.3	B2IIIp	55831	HR 4415	8.7 ± 0.2	28.8 ± 4.7	B3IV
54269	HD 96234	20 ± 01	20.1 ± 0.3	KU11 A0	55851	HD 99506	2.0 ± 0.0	22.5 ± 10.7	AU 6811 111
54291	HR 4321	2.0 1 0.1	20.1 1 9.5	K211	55956	HD 99785	$4.6\pm~0.4$	28.2 ± 7.0	B5V
54293	HD 96507			B9	55979	HR 4425	$6.9\pm~0.1$	27.8 ± 3.6	B3V
54294	HR 4323			K2 /	56021	HD 99897	15.0 ± 10.0	2.3 ± 2.2	O6
54303 54307	HD 96344	8 E 0.3	11 5 4 6 0	M0II: BOV	56050	V* V808 Cen	16.9 ± 3.0	8.3 ± 0.6	B2la Arra
54365	HK 4329 V* D∣ Cha	3.5 ± 0.3 2 0 + 0 1	29 ± 0.9	G1labine	56065	HD 99935	1.7 ± 0.0	15.0 ± 5.4	AM B9111/1V
54413	HD 97048	2.3 ± 0.1	4.9 ± 1.3	A0pshe	56114	HD 100370			B9111/1V
54463	V* V382 Car	21.3 ± 3.8	6.8 ± 1.9	G0la0	56130	HD 100012			K0/K1 /
54475	HD 96917	17.8 ± 2.7	3.8 ± 0.4	O9 11:	56156	HD 100126			B911
54515	* 66 Leo	2.0 ± 0.0	63.1 ± 30.4	A2	56162	HD 100137			G8 E7
54524 54543	V* ER Car			G1 ab/ b	56191	HD 100199	11.9 ± 1.2	6.5 ± 4.7	B1 bp
54557	HD 97300	$2.4\pm~0.1$	$5.4\pm~2.0$	B9V	56219	HD 100150			A1 :
54572	HD 97151	$9.4\pm~0.4$	14.7 ± 2.2	B2Ve	56244	V* V857 Cen	0.3 ± 0.0	64.0 ± 16.4	М
54606	HD 97222	10.2 ± 0.3	0.2 ± 0.1	BOII	56313	CCDM			B7/B8111/IV
54610 54630	HD 97185	8.3 ± 0.9	23.0 ± 2.7	B4V B7III	56331	JII327-6552AB	15.0 ± 1.1	0.2 ± 0.1	0911
54723	V* FL Leo	$5.0\pm~2.0$	$0.0\pm~0.0$	K5	56364	HR 4451	15.0 1 1.1	0.2 ± 0.1	F8/G0Ib/II
54727	HD 97522	14.9 ± 0.7	10.0 ± 0.6	B1 b-	56365	HD 100478			G1/G2
54732	HD 97468			K0 CN	56379	HD 100546	$2.4\pm~0.1$	5.4 ± 2.1	B9Vne
54733	HD 97512	124 01	1274 45	B9	56388	HD 100456	6.2 ± 0.1	63.1 ± 13.9	K5
54753	V * V 830 Car	6.3 ± 0.2	12.7 ± 4.3 36.1 ± 2.0	B1:Vn	56462	HD 100541 HD 100714			B8
54774	HD 97617			B8/B9111	56473	ССДМ	$7.4\pm~0.7$	$33.8\pm~8.0$	B4V
54783	HR 4353			G811/111		J11347+1648AB			
54796	HD 97630	125 07	140 10	B8/B9111	56495	HD 100753			B6111
54829 54833	HR 4301 HD 97762	12.5 ± 0.7	14.2 ± 1.2	B1.5V	56561	HD 100689			Ball
54851	HD 97688			K011/111CN.	56606	HR 4472	8.9 ± 0.2	24.6 ± 2.3	B2.5IV
54885	HD 97851	12.0 ± 0.8	0.2 ± 0.1	B0111	56619	HD 306799			M0IB
54958	HD 98143			B8111	56661	BD+56 1532	2.7 ± 0.1	7.0 ± 2.9	B8
54970	HD 97895	96 17	201 0 5	B4V	56703	BD-16 3293B	$2.0\pm~0.1$	20.1 ± 9.3	A0 DE
54971 54983	HD 97959	8.0 ± 1.7 1.9 ± 0.0	30.1 ± 9.5 25.1 ± 13.1	A1m	56709	V* V810 Cen HD 101119			B9
55140	V* V535 Car	6.5 ± 0.7	63.1 ± 13.8	M2111	56726	V* V1051 Cen	22.3 ± 3.4	$1.2\pm~1.2$	O7n
55149	CCDM			B9.5/A0111	56743	HD 101174			B4/B5IV
55150	J11175-5906ABC			DOUL	56748	HD 101142			B5
55153	HD 98314			B011/111	56770	* 59 UMa			F2 - K2 -
55188	HD 98363	1.9 ± 0.0	50.1 ± 36.3	A2V	56839	HD 101314	6.8 ± 0.3	60.7 ± 12.2	G2 b
55193	HD 98217			G811	56899	V* VX Crt			M311/111
55202	HD 98386			G611	56986	HR 4499	$6.3\pm~0.4$	68.6 ± 26.1	G3lb
55283	V* V903 Cen		27.0 14.0	M4/M516/11	56992	V* V885 Cen			F0lape
55350 55356	пк 4389 HD 98659	5.8± 0.2	31.U ± 14.U	64V B8	57076	v * v915 Cen HD 101723			Б911/111 G211/111
55420	HD 98733	$8.9\pm~0.7$	$19.2\pm~2.6$	B1lb	57142	HD 101849			K1/K2
55425	HR 4390			B5Vn	57160	HD 101841			F3II
55483	HD 96870	3.0 ± 0.1	29.0 ± 13.5	B8	57192	HD 102065	3.0 ± 0.0	2.3 ± 1.4	B9IV
55505	V TV Crt	1.2 ± 0.0	3.1 ± 0.8		57240	HR 4512	6.5± 0.7	62.8 ± 13.6	K5111
55534	11D 90900			ייוואס	57241	HIP 57244	2.0 ± 0.0 1.4 ± 0.0	20.1 ± 9.3 35.8 ± 5.6	A A9

Table C.1: - Continued. -

HIP	other ID	mass [M⊙]	age [Myr]	SpT	HIP	other D	mass [M _☉]	age [Myr]	ЅрТ
57261	HD 101828			G5	58996	HD 105070	1.5 ± 0.1	9.6 ± 1.7	 G1V
57269	V* V838 Cen	$1.1\pm~0.0$	19.5 ± 4.9	K0/K1Vp	59002	HD 105059	1.7 ± 0.0	39.8 ± 24.9	A5
57296	HD 102155			K1	59046	HR 4614	$8.9\pm~0.5$	29.4 ± 2.9	G3lb
57371	HR 4519		100 0 0 4	B6111	59086	HD 105162		10.6 1 0.5	G8II
57432	L11465 5802AB	4.0 ± 0.0	10.0 ± 8.4	B2A	59106 50151	HD 105272 HR 4617	3.0 ± 0.1	12.6 ± 9.5	R311/111
57439	HR 4522			G0	59151	HR 4618	7.0 ± 0.0	6.6 ± 3.1	B2 ne
57515	HD 102435			A5 / m	59196	* del Cen	10.0 ± 0.7	21.2 ± 1.6	B2 Vne
57524	HD 102458	$1.2\pm~0.0$	16.3 ± 1.6	G3/G5Vp	59200	HR 4622	8.6 ± 1.3	33.4 ± 8.9	K3/K411
57529	HD 102428			F5 ab:	59231	V* CO Cru			A811/111w
57542	HD 102533			A011	59232	HR 4625	9.8 ± 0.1	23.8 ± 1.9	B3IV
57565	V* DQ Leo			A comp SB	59266	HD 105580	6.8 ± 0.1	36.1 ± 3.5	B6V
57569	V* V1023 Cen HD 102567	93+ 03	05 ± 03	A311/111 B1Vne	59279 59280	G 123-7	10 ± 0.0	20.1 ± 4.9	RUM
57589	V* V1239 Cen	0.8 ± 0.1	7.3 ± 2.8	Мр	59315	HD 105690	1.0 ± 0.0 1.0 ± 0.0	35.1 ± 8.3	G5V
57628	HD 102657	5.0 ± 0.0	29.8 ± 4.3	B3V	59449	* rho Cen	6.6 ± 0.1	23.6 ± 7.4	B3V
57669	* j Cen	$7.1\pm~0.1$	32.0 ± 0.4	B3V	59461	HD 105973			B9111/IV
57696	HR 4538			G5Ib	59488	HD 106000	$7.8\pm~0.3$	$39.8\pm~3.3$	A211
57710	HD 102814	1.8 ± 0.0	14.0 ± 3.7	A3V	59501	* 5 Com			Koll-111
57722	HD 102809	1.8 ± 0.0	12.6 ± 1.5		59551	V* 5 Mus	12.3 ± 0.8	17.0 ± 1.0	F016
57787	CD-70 889			Gola	59588	V* V335 Hva			M4/M5lb/II:
57843	V* V923 Cen			M3la-lab	59607	HR 4648	$6.6\pm~0.1$	50.1 ± 9.4	B4111
57848	CCDM	$7.8\pm~0.7$	32.3 ± 7.2	B4V	59653	HD 106309	$8.7\pm~0.5$	$18.4\pm~3.0$	B5Ve
	J11518-6436AB				59662	HD 106337			B7 111:
57851	HR 4549	$5.0\pm~0.0$	$15.9\pm~3.1$	B4V	59674	HD 106342			B811
57861	HD 103077		05 71	B5V	59679	HD 106344	6.1 ± 0.1	43.0 ± 6.6	B5V
57870	HR 4551 HD 103182	4.5 ± 0.5 0.3 ± 0.0	8.5 ± 7.1	B4III B3III	59714 50710	HD 106419			R011/111 R0111
57963	HD 103270	5.9 ± 0.1	45.3 ± 4.3	B4IV	59747	V* de Cru	8.9 ± 0.1	18.5 ± 3.4	B2IV
58028	HD 103353			F6lab:	59760	HD 106556			G511
58179	BD+10 2357	2.0 ± 0.0	$11.0\pm\ 0.9$	A0	59803	GIENAH CORVI			B8111
58182	HD 103655			G8 /	59823	HD 106616	8.0 ± 0.2	4.4 ± 2.5	B1 b/
58217	HD 103683			G9 -	59830	HD 106635	6.0 ± 0.2	8.8 ± 1.4	B3V
58285	V* Cha	1.2 ± 0.1	32.9 ± 1.3	F5	59899	HD 106782	96 04	69 22	B5V B0D/man
58326	HD 103845 HR 4573	60 ± 01	94 + 30	B3V	59955	HD 106881	5.0 ± 0.4 51 ± 0.1	0.0 ± 0.2 10 + 0.6	B3Vnn
58356	HD 103922	0.0 1 0.1	5.1 ± 0.0	G8 /	59987	HD 106970	0.1 ± 0.1	1.0 1 0.0	B8111
58367	HD 103938			B811	60000	* bet Cha	$5.0\pm~0.0$	22.7 ± 6.7	B5Vn
58379	HR 4576			B8III	60009	* zet Cru	$6.4\pm~0.1$	18.5 ± 3.2	B2.5V
58391	HD 103962			A011	60078	HD 107097	$5.0\pm~0.3$	63.1 ± 14.3	B9IV
58400	V* DW Cha	1.2 ± 0.1	1.9 ± 0.7	Kp	60082	HD 107098		20.1 / 0.2	K0
58402 58452	HD 104015	29+00	31.6 ± 11.1	BSVSN B8/B9V	60128	HD 107174 V* DM Cru	2.0 ± 0.0 8.1 ± 0.7	20.1 ± 9.3 33.3 ± 5.8	AU AUlah
58453	HR 4582	2.5 ± 0.0	51.0 ± 11.1	K1/K2	60134	HD 107233	0.1 ± 0.1	55.5 ± 5.6	A411
58475	HD 104122			, B9!!!	60148	HD 107265	$2.0\pm~0.0$	20.1 ± 9.3	A0V
58488	HD 104171	$5.6\pm~0.9$	46.5 ± 3.3	B911	60153	HD 107250			B9111
58490	2MASS	$1.1\pm~0.0$	6.8 ± 1.8	Кр	60169	HD 107285			G2/G3lab/lb
	J11594226-				60308	HR 4702	$6.8\pm~1.2$	48.2 ± 7.8	K4III + (F)
59500	7601260 V* DX Ch-	22 01	E1 10	D / A = -	60371	HD 107693	22 00	42.0 \ 10.4	K0:11/111+.
58544	HD 104255	2.2 ± 0.1	5.1 ± 1.2	Б/Аре В8/В9Ш	60455	V* R Cru	3.2 ± 0.0	42.9 ± 10.4	E716/11
58565	HD 104298			G611/111	60546	HD 107980	$10.0\pm~0.4$	25.1 ± 3.6	B9V
58584	HD 104346			B7/B8II	60553	2MASS	$1.0\pm~0.0$	$17.5\pm~2.1$	K3Ve
58587	V* TY Crv	15.5 ± 1.0	11.1 ± 0.7	B2IV		J12244737-			
58648	V* HX UMa			F611		7503088			
58661	* 1 Com			GOII	60570	HD 108002	8.9 ± 0.3	23.8 ± 2.8	B1 ab
58668	HD 104455	204 00	F0 1 ⊥ 26 2	G8/K011/111	60573	CD-80 474	20 - 01	15 0 1 12 0	B5 B6V
58681	HD 104508	2.0 ± 0.0 2.5 ± 0.0	17.1 ± 6.6	B8 /	60629	CPD-68 1650B	3.3 ± 0.1 3.3 ± 0.1	1.7 ± 0.7	B6V
58719	V* KT Mus	0.0	0.0	M516/11	60710	HR 4732	6.2 ± 0.1	13.4 ± 2.2	B3Vn
58748	V* DE Cru	13.3 ± 1.7	$11.4\pm~0.8$	B1	60718	* alf Cru	15.6 ± 0.1	10.8 ± 1.4	B0.5IV
58794	HD 104722	10.0 ± 0.7	15.1 ± 2.2	B2Vn e	60720	BD+21 2418	$2.0\pm~0.0$	20.1 ± 9.3	A0
58861	HD 104835			A211	60730	HD 108294	$2.8\pm~0.1$	20.0 ± 12.0	B8/B9V
58867	V* tet02 Cru	$9.4\pm~0.3$	20.2 ± 1.9	B2IV	60761	HD 108374			B8/B9111
58883	HD 104857			G8/KUID/II B9111	00770 60782	HD 108282			GUID B8III
58910	V* BY Cru			F0 b-	00702	J12275-7640AB			Dom
58922	HD 104932			F311/111	60809	HR 4742			G511
58954	HD 104994	7.7 ± 0.5	$3.9\pm~1.8$	WN3p	60823	* sig Cen	6.7 ± 0.1	26.3 ± 4.9	B3V

Table C.1: - Continued. -

HIP	other D	mass [M⊙]	ag e [Myr]	SpT	HIP	other D	mass [M _☉]	age [Myr]	ЅрТ
60831	HD 108574	1.1 ± 0.0	20.7 ± 6.2	G 5	62692	HD 111608	2.0 ± 0.0	20.1 ± 9.3	A1IV
60905	HD 108610	6.5 ± 0.2	34.0 ± 4.1	B3V	62732	V* DS Cru	9.7 ± 0.7	25.1 ± 2.4	A2 ab
60944	V* MO Mus	$7.1\pm~0.6$	39.8 ± 4.6	B5lb	62810	HD 111846	$1.9\pm~0.0$	13.0 ± 1.8	A2
60947	HD 108689			F0/F211	62820	HD 111808	$3.1\pm~0.1$	46.0 ± 6.9	B8IV
60971	CPD-64 1943			F5lab	62821	HR 4882			G8 b/
60974	HD 108719	9.3 ± 0.5	15.0 ± 1.8	B2	62829	HD 111822	9.5 ± 0.5	9.7 ± 2.1	B0.5III
61018	HD 108835	20 ± 00	20.1 + .0.3	Δ0	62013		5.0 ± 0.0 63 ± 0.2	2.5 ± 1.7 59 ± 38	B3Ib
61045	HD 108791	2.0 ± 0.0	20.1 ± 5.5	G8/K0	62919	V* DT Cru	0.5 ± 0.2	5.5 ± 5.0	B3
61175	HD 109061			G8II/III	62953	HD 111990	14.7 ± 1.6	11.6 ± 1.1	B3lb
61193	HD 108927			B5V	62981	V* EF Mus			K1 /
61199	V* gam Mus			B5V	62986	V* S Cru			F7 b/
61266	HD 109198			B8III	63003	HR 4898	7.7 ± 0.0	9.1 ± 2.0	B2IV-V
61281	* kap Dra			B6IIIp	63005	HR 4899	5.0 ± 0.0	15.9 ± 9.7	B5Vne
61284		1.0 ± 0.0	24.0 ± 9.2	KUV	63007	V * ∣am Cru HD 112102	5.0 ± 0.0 7.1 ± 0.1	53.3 ± 7.5 10.9 ± 0.1	B4Vn B5Vn
61200	V * KL Com	9.3 ± 0.6	26.6 + 3.9	KOV	63049	HD 112192	12.0 ± 0.8	0.1 ± 0.0	B0:IV:pe
61294	HD 109199	6.0 ± 0.3	36.8 ± 3.9	B3/B4IV	63117	HR 4908	33.1 ± 15.5	3.1 ± 0.1	09іЬ
61359	* bet Crv			G 5	63167	HD 112295			B8/B911/111
61404	V* BO Mus			M611/111	63170	V* DW Cru	$15.5\pm~1.3$	12.6 ± 2.4	B0.5la
61405	HD 109435			A3 /	63250	V* V856 Cen	7.0 ± 0.3	22.0 ± 2.9	B2lb
61431	HD 109399	12.2 ± 0.8	10.0 ± 0.7	B1lb	63253	V* BF CVn	0.5 ± 0.0	41.3 ± 11.5	M0Vvar D0V
61408	HR 4794 HR 4796	1.7 ± 0.1 2.2 ± 0.1	10.7 ± 1.5 5.3 ± 0.6	A () (03250 63266	HD 112484	0.0 ± 0.3 20 ± 0.0	13.0 ± 2.8 20.1 \pm 0.3	B2V A0
61506	HD 109550	2.2 _ 0.1	5.5 ± 0.0	B911	63317	HD 112733	1.0 ± 0.0	37.4 ± 7.6	G5V
61520	V* DP CVn	$3.5\pm~0.6$	0.4 ± 0.2	G5	63322	BD+39 2587	0.9 ± 0.0	49.9 ± 5.0	G6V
61585	V* alf Mus	$8.8\pm~0.1$	$18.4\pm~3.4$	B2IV-V	63334	HD 112754			G411
61602	BD+25 2534			Вр	63356	HD 112814			G9 -
61634	HD 109753			B9111/1V	63365	HD 112607			B7/B8III
61717	HD 109946	$2.0\pm~0.0$	20.1 ± 9.3	A0m	63368	V* BQ CVn	$3.0\pm~0.5$	$0.3\pm~0.2$	G8III-IVp
61766	HD 109938			A411 K011/111	63443	HD 112866	1204 08	01 + 00	
61789	* Cen			B811/111	63475	HD 112764	12.0 ± 0.8	0.1 ± 0.0	B916/11
61796	V* FH Mus	$3.0\pm~0.0$	39.8 ± 7.2	B8V	63541	HD 113009	$3.8\pm~0.2$	$3.9\pm~2.7$	B6V
61808	HD 110061	$3.2\pm~0.1$	57.3 ± 15.8	B8111/1V	63565	HD 112999			B6Ⅲ(n)
61809	V* U Com	$1.4\pm~0.0$	35.8 ± 5.6	A 9	63678	HD 113199	$1.9\pm~0.1$	15.8 ± 5.4	A2V
61833	HD 110022			B8111/IV	63688	HR 4930	8.4 ± 0.3	8.5 ± 2.4	B1.5 ne
61839	V* Y UMa			M711-111:v	63725	HD 113280	3.0 ± 0.2	17.1 ± 9.4	B8II
01842 61885	HD 110130			R111/111 R9111	63795	V* PA VII HD 113451	1.0 ± 0.0	40.9 ± 8.2	BOIII
61916	HR 4818			K3	63832	HD 113451	2.4 ± 0.1	58.4 ± 35.7	B9V
61958	BD+18 2647	15.0 ± 1.1	$0.2\pm~0.1$	Ор	63835	HIP 63835	15.0 ± 1.1	0.2 ± 0.1	OB+e
61981	V* R Mus			F7lb	63940	HD 113656	$5.7\pm~0.5$	10.0 ± 2.5	B3Vn
62024	HD 110502			A 311	63945	*fCen	$5.0\pm~0.0$	32.8 ± 13.6	B5V
62025	HD 110434			B8/B9111	63958	V* IS Vir	$3.5\pm~0.5$	0.2 ± 0.1	K0
62027	HR 4830	15.5 ± 0.5	11.4 ± 0.8	B2pe	63970	BD+33 2300		a	F8
62083	HD 110591 HD 110480	19+ 00	28.4 ± 16.1	Δ 2V	64004	HR 4941 HR 4942	80 ± 01	115 + 35	RUIT/III B1 5V
62110	HD 110511	1.0 1 0.0	20.1 ± 10.1	F0 /	64016	HD 113782	0.0 1 0.1	11.0 1 0.0	KOII
62115	HD 311884	$15.1\pm~9.9$	$2.2\pm~2.2$	WN6 +	64036	HD 113886			G611/111
				O5V	64086	HD 114061	2.0 ± 0.0	$11.0\pm\ 0.9$	A0
62212	HR 4841			F6la	64093	HD 114062	$1.9\pm~0.0$	34.0 ± 21.4	A1m
62243	HD 110720	2.0 ± 0.0	14.2 ± 3.9	A0V	64121	HD 113991	5.0 ± 0.1	6.2 ± 4.9	B3
62312		00+00	147 + 35	KUII/III B2V	64149 64201	HD 114397 HD 114121	7.8 ± 0.5	39.8 ± 4.5	KU E511
02322	J12463-6806AB	9.0 ± 0.0	14.7 ± 5.5	020	64217	* 15 CVn			B7
62327	HR 4848	$6.0\pm~0.0$	7.7 ± 2.2	B3V	64223	HD 114168			B9111/1V
62361	HD 111222	$2.8\pm~0.0$	12.6 ± 7.0	А	64237	HD 114401			К1
62362	HD 110832			B911	64272	HD 114213	7.9 ± 0.5	20.9 ± 2.1	B1 b:
62434	V* bet Cru	$12.1\pm~0.2$	12.5 ± 0.8	B0.5111	64287	HD 114274	$2.4\pm~0.1$	45.4 ± 32.9	B9IV
62455	HD 111420			K3 - R0	64312	HD 114520			F2II
0∠404 62522	HD 111313			B9111 B9111	04437 64522	HR 5009 HD 115010			KUID K211
62555	HD 111283	6.9 ± 0.6	44.6 ± 1.3	B6IV	64543	HD 114988			G2
62566	HD 111373	4.2 ± 0.2	33.1 ± 5.3	B5IV	64557	HR 4991			K5
62571	HD 111331			K2/3III:+B/A	64572	V* V956 Cen			F9Ib
62587	HD 111290	$7.8\pm~0.1$	23.5 ± 1.5	B2	64578	HD 114800	8.1 ± 0.4	18.2 ± 3.8	B2Vpe
62595	HD 111486			K011	64587	HR 4976	6.3 ± 0.5	57.1 ± 7.4	F8lb
62646	HR 4862			G816/11 A511 -	64622	HD 114981	6.2± 0.0	40.5 ± 3.9	B4V∶ne
02040				221					

Table C.1: - Continued. -

HIP	other ID	mass [M⊙]	age [Myr]	Sp⊤	HIP	other D	mass [M⊙]	age [Myr]	SpT
64624	ссрм	15.1 ± 0.1	0.2 ± 0.1	09:V	66732	HIP 66732	20.0 ± 0.0	0.1 ± 0.0	sdO
	J13147-6335AB				66822	HD 118033	2.5 ± 0.0	56.1 ± 37.4	B9IV
64647	HD 115066			K0	66850	HD 119103			B8111
64658 64665	HD 115067 HD 114887	50 ± 00	158 ± 22	B811/111 B4111	66917 66925	HD 119222 HR 5151	156 ± 16	10.0 ± 0.5	B6111 B0 5111
64667	HD 114998	6.3 ± 0.1	15.0 ± 2.2 15.1 ± 1.1	B2/B3111	66951	HD 119664	2.0 ± 0.0	10.0 ± 0.0 11.0 ± 0.9	A0
64778	V* UY Cen	17.3 ± 2.5	7.8 ± 1.0	, K5pvar	66957	HD 119338	4.0 ± 0.0	$10.0\pm\ 1.0$	B5V
64820	HR 5002	$6.3\pm~0.6$	58.4 ± 17.8	K2 b/	66960	HD 119225			B9111/IV
64863 64804	HD 115335			B9111 K5117111	66975 67012	HD 119256			K1 CNp B0 / V
64910	HD 115436			B9111	67042	HD 119402	$6.2\pm~0.1$	43.7 ± 4.7	B4V
64929	HD 115473	$8.1\pm~0.8$	4.0 ± 2.0	WC	67049	HD 119298			B8111
64940	HD 115564			B8	67100	HD 119512			G811/111
65002 65020	HD 115601 HD 115770			K1 B5	67108 67279	HD 119423 HD 120086	5.4 ± 0.4 7.0 ± 0.1	28.4 ± 4.3 0.9 \pm 0.6	B4∶Vne B2V
65033	HD 115652			B811/111	67296	HD 119817	3.1 ± 0.1	50.1 ± 27.1	B8V
65082	HD 115836	2.0 ± 0.0	20.1 ± 9.3	A0V	67301	ALCAID	6.1 ± 0.0	10.0 ± 2.4	B3V SB
65108	HR 5024		046 05	F3/F5	67326	HD 119974		00 07	B6111
65181 65192	HD 115846 HD 116139	6.6 ± 0.1 6.2 ± 0.9	24.0 ± 3.5 635 + 242	B3V K5	67385	HD 119889 HD 120297	3.0 ± 0.1 69 + 03	3.2 ± 0.7 50 1 + 12 6	В8111 К2
65223	HD 116053	5.0 ± 0.1	25.1 ± 7.4	B3111	67393	HD 120059	0.5 ± 0.5	50.1 ± 12.0	B9111
65247	HR 5036	12.5 ± 1.3	12.6 ± 2.1	B2.5lb	67422	CCDM	1.0 ± 0.0	16.5 ± 1.4	K2
65271	HR 5035	$5.9\pm~0.1$	$6.2\pm~3.9$	B3V	67454	J13491+2659AB			
65388	HD 110180 HIP 65388			G511+ B2	67454 67464	HD 120157 V* nu Cen	85+03	181 + 34	K111/111 B211/
65398	V* LT Mus	4.0 ± 0.0	46.0 ± 16.1	B6111/1V	67465	HD 120194	0.5 ± 0.5	10.1 1 3.4	B811/111
65474	V* alf Vir	12.5 ± 0.8	13.8 ± 1.6	B1V	67472	HR 5193	9.1 ± 0.1	19.8 ± 1.5	B2IV-Ve
65492	V* V379 Cen	$3.8\pm~0.1$	$1.4\pm~0.4$	B5V(n)	67663	HR 5206	9.8 ± 0.1	19.3 ± 1.3	B2Vp
65522 65593	* 67 Mus HR 5060	79 ± 07	388 ± 64	Ар КЗ	67669 67677	V* V983 Cen HD 120577	5.0 ± 0.0 32 ± 0.2	50.9 ± 3.2 15.8 ± 12.5	B5 B8111
65601	HD 116859	1.5 ± 0.1	30.0 <u>1</u> 0.4	B9.5111/IV	67687	HD 120576	3.1 ± 0.1	20.0 ± 12.0	B8V
65630	HR 5063	9.2 ± 0.7	23.8 ± 2.5	B3IV	67720	HD 120578	4.0 ± 0.0	25.1 ± 8.0	B511
65644	HD 117044			F0	67724	HD 120598			B8III
65688	HD 116816 HD 117014	27 ± 01	70 ± 29	Bav	67748	HD 120613 HD 120697			B8/B9III B8/B9III
65695	HD 116750	2.7 ± 0.1	1.0 1 2.0	G811	67786	* h Cen	$6.1\pm~0.1$	$50.1\pm~2.6$	B4IV
65722	HD 116950			B8 b/	67796	HD 120680	12.3 ± 0.8	11.4 ± 1.2	B2V
65760	HD 117000	10.0 ± 0.6	25.1 ± 4.7	F2la	67815	HD 120886	$2.0\pm~0.0$	11.0 ± 0.9	A0V
65915	V* 55 Hya V* FK Com	2.0 ± 0.0	11.0 ± 0.9	AUV G511	67821	HD 120784 HR 5217			B9111
65936	* d Cen	$7.1\pm~0.4$	45.7 ± 10.0	G811/111	67847	HD 120909			B811
65965	HD 117484	2.4 ± 0.1	43.8 ± 17.3	B9V	67869	HD 120786			B8/B9111
66013	HD 117535		a	K0	67909	HD 120976			B9111
66045	HD 117733			F0 F3 /	67933	HD 120979 HD 120993			B8
66057	HD 117445			F511/111	67951	HD 126047	2.4 ± 0.1	49.9 ± 37.1	В9
66069	HD 117155			K2	67969	HD 120948	$5.0\pm~0.0$	1.0 ± 0.6	B3V
66129 66141	HD 117806	25 - 00	62 9 1 24 0	A411/111 B0137737	67981 67082	HD 121177			B8/B9 B7/B9
66153	HD 117704	7.1 ± 0.1	0.9 ± 0.6	B31V/V	68002	* zet Cen	$7.8\pm~0.1$	39.8 ± 5.5	B2.5IV
66210	HD 117812			G8 /	68005	HD 121098	2.5 ± 0.0	$17.1\pm~9.4$	B811
66236	HR 5103			B8111	68034	HD 121228	$7.0\pm~0.4$	29.9 ± 2.1	B2lb
66252 66278	V* EQ Vir HD 117930	0.6 ± 0.0	28.2 ± 8.4	K7V B9III	68056 68100	HD 121209	40 ± 00	40.3 ± 17.1	B9.5III/IV B5V
66291	HIP 66291			ВЗр	68124	HD 121483	7.5 ± 0.3	40.3 ± 17.1 24.1 ± 1.0	B2V
66339	HD 118246			B5e	68163	HD 121254			F5
66341	HD 117979			B8 /	68178	V* V412 Cen			M3 ab/ b
66379 66300	HD 118137 HD 118256	6.9 ± 0.4	48.4 ± 8.0	A0/A1V	68226 68245	HD 121639 * phi Cen	85+03	181 ± 34	B9111 B211/
66415	HD 118226			B9III/IV	68247	HD 121315	6.2 ± 0.3	50.1 ± 0.4	B4111
66451	HD 118356			B711/111	68258	V* BH Vir	$1.7\pm~0.2$	6.3 ± 1.4	F8V
66467	HD 118643		067	K311	68282	HR 5249	7.9 ± 0.1	13.0 ± 1.2	B2IV-V
06475	LT3377+50434B	9.3 ± 0.4	20.1 ± 3.0	F3III comp	08344 68359	но 121807 Но 121899	3.0 + 0.0	20.0 ± 16.0	ва/ванн В8Л
66515	HD 118483	6.8 ± 1.2	48.0 ± 11.1	K4111	68399	HD 121857	5.0 <u>1</u> 0.0	10.0 - 10.0	B711
66524	HD 118450			B5	68431	HR 5240			B9111
66575	HR 5124	8.7 ± 0.6	30.3 ± 5.0	G5lb	68435	HD 122058			K1 / K2
00580 66657	пр 118792 V* eps Cen	2.0 ± 0.0 11.8 + 0.2	20.1 ± 8.4 15.8 ± 3.8	AU B1	08448 68496	HD 122075			ri∠II B7II
66690	HR 5143			G511:					
Table C.1: - Continued. -

HIP	other D	mass [M_]	ag e [Myr]	SpT	HIP	other D	mass [M_]	age [Myr]	ЅрҬ
68523	HR 5260	7.2 ± 0.4	39.8 ± 6.6	F6	70206	HD 125464	3.1 ± 0.1	31.6 ± 26.8	B8/B9V
68540	HD 122098	2.9 ± 0.1	2.8 ± 0.4	B711	70217	HD 125533	3.2 ± 0.1	50.2 ± 20.3	B7II
68557	HD 122036				70248	* eps Aps	6.1 ± 0.1	41.6 ± 7.1	B4V
60504	HD 122179			R 9/ R 9/ I/III	70270		11.9± 0.9	12.0 ± 1.1	
00502 68644	HD 122110			R1II/III B5III	70277	HD 125009 V* V1003 Cen			M511
68702	110 122449 V* bet Cen	155 ± 10	11.1 ± 0.6	B1III	70290	V * V761 Cen	78 ± 01	36 ± 0.8	B2V
68704	HD 122450	78 ± 02	19.7 ± 1.1	B2Ve	70320	HD 125809	1.0 ± 0.1	3.0 1 0.0	G5lb
68733	HD 122361			G5 /	70337	HD 125829			B7
68773	HD 122454			κοιί/ΙΙΙ	70349	HD 126378	$6.9\pm~0.5$	45.8 ± 8.0	K0
68781	HD 122705	$1.9\pm~0.0$	31.6 ± 19.2	A 2V	70361	HD 125811			B6III
68784	HD 122419			F2 b/	70429	HD 126717	$1.9\pm~0.0$	44.6 ± 29.7	A3
68817	HD 122669	$9.4\pm~0.4$	0.5 ± 0.3	B0.5Ve	70441	HD 126062	2.0 ± 0.0	31.6 ± 19.2	A1V
68862	V* chi Cen	$8.2\pm~0.2$	$8.8\pm~4.5$	B2V	70477	HD 126043	6.3 ± 0.5	36.1 ± 1.6	B4V
68868	HD 123233	2.0 ± 0.0	26.7 ± 14.6	A0V	70492	HR 5379	$7.8\pm~0.2$	$39.8\pm~3.2$	АЗІЬ
68877	HD 122925			B7III	70530	V* P Lup			B8/B911
68879	V* FZ Boo	6.3 ± 0.9	63.1 ± 24.5	K5	70551	HD 126164	2.1 ± 0.1	31.6 ± 19.2	A0Vn
68904	V* CZ CVn	3.0 ± 0.0	0.6 ± 0.3	K0	70553	V* FF Vir	2.0 ± 0.0	39.8 ± 26.8	A2p
68975	HD 123041	2.9 ± 0.1	17.1 ± 9.4	B811/111	70574	V* tau01 Lup	10.0 ± 0.3	21.5 ± 2.0	B2IV
68985	HD 123057	2.8 ± 0.3	10.0 ± 6.8	B8/B9V	70586	HD 126402			M211:
60011	HD 123224		496 99	BON BALL	70612	HD 120447			
60015	HD 123247	2.5 ± 0.0 2.0 ± 0.0	40.0 ± 0.2 11.0 ± 0.0	P 9 A	70645	HD 120152	63+ 06	60.5 ± 13.0	K016711
69015	HD 123440	2.0 ± 0.0	11.0 1 0.9	K011/111	70691	HD 126524	0.5 ± 0.0	00.5 ± 15.9	K1
69053	HD 123100			B9II	70765	HD 126818	20 ± 00	201 ± 84	AOV
69122	HR 5292	6.0 ± 0.1	63.1 ± 15.6	B5IV	70809	HD 126759	2.0 2 0.0	2011 1 0.1	Ap
69134	HD 123320			B911	70824	HD 126692			A311
69216	HD 123506	$5.1\pm~0.1$	$3.3\pm~2.2$	B2/B3111	70866	HD 126973	$6.6\pm~0.5$	51.4 ± 11.5	K2
69247	HD 123884	2.5 ± 0.1	56.3 ± 43.0	B8/B9 ap	70875	HD 126627			A511
69320	HD 123721			B911	70877	CD-69 1240			B2111
69358	V* V1203 Cen	$6.0\pm~0.5$	50.1 ± 6.3	B4/B5111/IV	70905	HD 126807			B8III
69395	HD 124092			K211	71013	HD 127087			B8111/IV
69396	HD 123940	$5.0\pm~0.0$	42.5 ± 6.7	B4/B5IV	71042	HD 127112			B7111
69455	HD 124305	1.4 ± 0.0	54.9 ± 12.0	A9V	71055	CCDM			G6Ⅲ+
69462	HR 5308	6.2 ± 0.7	63.1 ± 13.9	K5III+		J14318-7616AB			
69491	V* V716 Cen	5.9 ± 0.2	63.1 ± 14.6	B5V	71071	HD 127456			K1 /
69584	HD 124182	6.0 ± 0.1	45.9 ± 3.9	B5111	71096	HD 127493	12.0 ± 0.8	0.1 ± 0.0	BO
69591	HD 124197	7.4 ± 0.2	31.0 ± 5.8	B 5V	71105	HD 12/346	76 01	10.0 5.5	Balli
60610	N* V921 Can	5.7 ± 0.3	59.0 ± 19.7	B4vne B2p	71121		7.0 ± 0.1	19.2 ± 5.5	B2III B9III
69625	HD 124483	75 ± 0.8	414 + 94	кол Кол	71124	HD 127100			6811/111
69640	HD 124300	1.5 ± 0.0	41.4 1 9.4	B2V	71176	HD 127530			B8/B9 /
69648	HD 124395	5.7 ± 0.1	7.3 ± 2.5	B3V	71189	HD 127767			A6 /
69654	HD 124198			G8/K0Ib/II	71194	HD 127449	7.0 ± 0.1	9.2 ± 0.8	, B2/B3Vn
69655	HR 5319			кзіш	71216	HD 127317	$6.5\pm~0.2$	$2.4\pm~1.4$	B3Vn
69716	HD 124398			G811/111	71217	HD 127428			B7!!!
69719	HD 124488	$3.0\pm~0.0$	10.0 ± 7.1	B8111	71237	HD 127987	$1.9\pm~0.1$	25.1 ± 13.1	A2
69739	HD 126066	$6.2\pm~0.5$	63.7 ± 13.9	K2	71264	HD 127489	$7.9\pm~0.6$	9.3 ± 3.1	B2Vne
69763	HR 5320	$9.5\pm~0.3$	$18.1\pm~3.4$	B1.5	71352	* eta Cen	12.0 ± 0.0	5.6 ± 1.4	B1Vn + A
69778	HR 5306			K2∐p	71353	HR 5439	$3.6\pm~0.0$	$2.5\pm~1.3$	B6V
69803	HD 124531	$3.0\pm~0.0$	$19.9\pm~6.3$	B8III	71381	HD 128509	$1.9\pm~0.0$	50.1 ± 36.3	A2
69834	HD 123396			G8/K0 /	71388	HD 127614			B8 b/
69848	V* MX Vir			F2	71398	HD 127924			B8111/1V
69858	HD 125576	2.0 ± 0.0	35.0 ± 15.8	A0	71436	HD 128643	6.5 ± 1.2	54.0 ± 15.3	K5
69868	HD 124749			B811/111	71441	HD 128336			
60803	HD 124893	20.0 - 0.0	01+ 00		71442	HD 128239			B9.5/AUIII/
60006	HD 124979	20.0 ± 0.0	0.1 ± 0.0	Do.5	71447				
60010	HD 124995	80+01	0.4 ± 0.1	B1III	71492	HD 128155	10+01	12.0 ± 1.8	A2V/
69020	V* CS Vir	0.0 1 0.1	0.4 _ 0.1		71536	* rho Lup	1.9 1 0.1	12.9 1 1.0	B5V
69978	V* V1001 Cen	64 ± 02	50.1 ± 7.1	B4IV/V	71555	HD 128022	27 ± 01	171 + 94	B811/111
69996	* iot Lup	6.9 ± 0.1	18.9 ± 3.6	B2.5IV	71622	HD 128322	2.1 1 0.1	1.1.1 - 0.4	B911
70014	HD 125117	5.5 - 0.1	0.0	B8/B9111/IV	71668	HD 128293	11.9 ± 0.8	14.2 ± 2.9	B3Vne
70042	HD 124834	$6.8\pm~0.1$	39.8 ± 3.5	., , , , , , , , , , , , , , , , , , ,	71677	HD 128418			F3lb
70057	HD 125959	$1.9\pm~0.0$	39.8 ± 26.8	A2	71701	HD 128673			K1
70069	* v Cen	$7.9\pm~0.4$	37.3 ± 4.5	B6lb	71712	V* EG Boo	$6.2\pm~0.6$	60.5 ± 11.9	K5
70108	HD 125728			G 811	71746	HR 5461			K0/K1
70145	HD 125771	$6.3\pm~1.0$	63.1 ± 29.8	K5	71860	V* alf Lup	10.0 ± 1.3	22.5 ± 3.4	B1.5
70149	HD 125541	$1.4\pm~0.0$	45.9 ± 3.9	A9V	71865	* b Cen	6.3 ± 0.0	17.8 ± 2.0	B2.5V

Table C.1: - Continued. -

HIP	other ID	mass [M _☉]	age [Myr]	SpT	HIP	other D	mass [M⊙]	age [Myr]	SpT
71870	HD 128294			B9	73405	HD 131909	$2.6\pm~0.1$	7.0 ± 2.9	B8V:
71877	HD 128937	6.2 ± 0.2	$50.1\pm~6.3$	B4111:	73415	HR 5547			G811
71885	HD 128963	$2.7\pm~0.1$	$7.0\pm~3.0$	B8/B9Vp	73439	HD 131760			B9.5III
71942	HD 129090		50 0 L 00 0	B711	73469	HD 131805	4.0 ± 0.0	28.2 ± 16.9	B5V
71945	HD 129632	2.4 ± 0.1	50.3 ± 28.2	B9	73494	HD 132127	5.0 ± 0.0	31.5 ± 8.3 34.0 ± 6.0	B4V B5V
72105	CCDM	7.9 ± 0.1	39.8 ± 4.5	A0	73504	HD 132204	5.0 ± 0.0	34.0 ⊥ 0.9	B8
	J14449+2704AB				73516	HD 132834			A3 / m
72121	V* BU Cir	$7.9\pm~0.1$	23.2 ± 1.8	B2111	73535	HD 132761	$1.9\pm~0.0$	13.0 ± 1.8	A2/A3IV
72158	HD 129831	1.8 ± 0.0	25.1 ± 13.1	A2/A3V+	73555	* bet Boo	$5.0\pm~1.3$	0.0 ± 0.0	G8111
72159	HD 129189	$2.6\pm~0.1$	$7.0\pm~2.9$	B8/9Vp	73580	HD 132594			G511
72171	HD 129330			G5 b/	73603	HD 132420			B816/11
72224	HD 129532			K211	73624	HR 5595	5.0 ± 0.0	3.6 ± 2.5	B3V
72276	HD 130029			G511	73607	HD 132520			K211
72308	HR 5498	7.0 ± 0.6	48.4 ± 4.8	A1 /IV	73702	CCDM			B9111
72310	HR 5513	6.3 ± 0.6	63.1 ± 13.9	, K4/K5⊞		J15038-6649AB			
72313	HD 129965	2.6 ± 0.1	7.0 ± 2.9	B8V	73720	HD 133294			B811
72316	HD 130384	1.8 ± 0.0	12.7 ± 2.5	A2	73730	HD 133909	2.0 ± 0.0	31.6 ± 19.2	A2
72332	HD 129740	4.6 ± 0.4	48.3 ± 2.4	B5111	73749	HD 132985			B8II
72364	HD 129795	7.2 ± 0.2	11.7 ± 0.7	B2/B3Vn	73771	HR 5545	7.1 ± 0.4	43.3 ± 0.3	
72385	HD 130119			RUII/III Bolli	73788	HD 132259	1.0 ± 0.0	7.2 ± 0.9	R816/11
72424	HD 130152	3.5 ± 0.2	57.3 ± 11.5	B6 b/	73789	HD 133178			K1 b/
72438	HR 5500	9.5 ± 0.3	23.8 ± 2.1	, B2.5V	73807	CCDM			В5
72480	HD 130766			K3		J15051-4703AB			
72482	HD 130206	7.2 ± 0.8	45.0 ± 6.6	K3/K4III+	73838	HD 132988	1.4 ± 0.0	35.8 ± 5.6	Ap Si
72499	HD 130705			K4 -	73869	V* ∣U Dra	$1.0\pm~0.0$	$33.9\pm~7.5$	G5
72503	HD 130393			K1 /	73881	HD 133399	6.7 ± 0.2	3.0 ± 1.9	B3V
72510	HD 130298	15.1 ± 9.9	2.2 ± 2.2	07.5 B2III	73897	HD 132907	10 - 00	120 - 19	85111
72532	HD 130378	7.0 ⊥ 0.2	2.4 1 2.0	B811/111	73964	HD 133440	1.9 1 0.0	13.0 1 1.0	89111
72556	HD 130286	$6.3\pm~0.4$	$50.1\pm~6.4$	B711	73966	HD 133518	$7.0\pm~0.1$	31.6 ± 4.6	B3111
72569	HD 130380	$6.9\pm~0.4$	$50.1\pm~4.7$	F811	73969	HD 133729	$3.9\pm~0.1$	15.8 ± 13.8	B6/B7V
72578	HD 131444	6.3 ± 0.5	63.1 ± 22.2	K5	74070	HD 134282			G811
72583	V* AV Cir			F711	74091	HD 132501	$5.0\pm~0.0$	$1.0\pm~0.6$	B4/B5III/IV
72592	HD 130287	$4.5\pm~0.4$	37.4 ± 3.2	B5IV	74100	HR 5625	3.4 ± 0.0	36.4 ± 4.5	B7V
72602	HD 130494				74110	HD 133699	7.5 ± 0.2	32.3 ± 2.3	B3V B3V
72003	* 10 Lib			K011/111	74117	HD 133790	0.0 ± 0.3	20.0 1 4.4	K011/111CN
72710	V* V1018 Cen	$8.2\pm~0.6$	$10.6\pm~3.4$	В2:р	74141	HD 133385	$11.1\pm~1.4$	$15.7\pm~0.8$	B2Vn
72773	V* AX Cir			F811 + A/F	74171	HD 133903			B9.5111/1V
72800	V* V1019 Cen			B711/111	74187	HD 131744			A711
72816	HD 130764	5.9 ± 0.4	50.1 ± 6.4	B5Vn	74248	HD 133811			B9111p
72843	HD 131168	5.2 ± 0.2	3.3 ± 2.5	B3Ve	74295	HD 134411	75 05	40.2 5.0	B2III/IV
72002	HD 132100	0.2 ± 0.3	05.5 ± 15.1	6811	74305	HD 13/852	7.5 ± 0.5	40.3 ± 5.0	G2ID/II E2II
72903	HD 131124			B9111/1V	74360	HD 134556			K2 /
72965	* zet Cir	$7.5\pm~0.2$	31.6 ± 4.6	B3Vn	74368	V* BW Dra	12.0 ± 0.8	$0.1\pm~0.0$	во
72983	HD 130942			B5V	74405	V* NY Aps	1.0 ± 0.0	42.5 ± 14.2	G8/K0V:
72989	V* CR Cir			M2/M311	74421	HR 5628			B8/B9
73000	HD 131325			B5V	74425	HD 134945	7.9 ± 0.9	37.4 ± 8.7	K5
73020	HD 131172			B5V	74447	HD 134598	5.4 ± 0.5	63.1 ± 14.0	B6/B7III
73111	DS 14497-4728			B+	74449	HR 5645	121 ± 0.1	17.6 ± 3.0	K4lb
	AB				74490	HR 5655			B8111
73118	HD 131491	7.0 ± 0.3	39.8 ± 4.6	B5V	74539	HR 5658			G8/K011
73129	* tet Cir	9.3 ± 0.6	27.1 ± 6.8	B4Vnp	74552	CCDM			B5V
73155	HD 131612	4.5 ± 0.5	39.5 ± 8.7	B5III		J15140-6121AB			
73216	HD 132561	$1.9\pm~0.0$	42.9 ± 29.7	A2	74565	HD 134974	$1.2\pm~0.1$	13.2 ± 1.6	G6/G8V:
13241 73250	V C3 CIr HD 132041	40+00	105 + 22	B811/111	74600 74604	· 20 LID * i lup	60+ 00	460 + 25	E3111
73266	HD 132094	2.4 ± 0.1	10.3 ± 0.3 70.7 ± 24.8	B9V	74613	HD 135326	2.0 ± 0.0	20.1 ± 9.3	A0
73273	* bet Lup	8.8 ± 0.2	24.3 ± 2.9	B2	74634	HD 134877	15.0 ± 1.1	0.2 ± 0.1	W N
73298	HD 131738	2.9 ± 0.1	$10.0\pm~7.1$	B8IV/V	74636	HD 135055			G811
73315	V* EH Lib	$1.4\pm~0.1$	35.8 ± 5.6	A8.5	74663	HD 133921			K1 / +
73334	* kap Cen	$8.6\pm~0.2$	$18.3\pm~3.4$	B2IV	74680	HD 135485	105 1 1 1	150 1 1 5	B3V
13345 72274	HD 131803			вэ у В6Ш-	74716	HR 5668	12.5 ± 1.4 8.2 ± 0.4	15.8 ± 1.1	F:+ B3IV
73396	HD 132137			B8	74729	HD 135058	0.2 ± 0.4	20.0 <u> </u>	B8/B9111/IV
					= -				,,

HIP	other ID	mass [M⊙]	ag e [Myr]	SpT	HIP	other D	mass [M _☉]	age [Myr]	SpT
74750	HR 5661	$14.8\pm~0.1$	8.5 ± 2.3	B0.5V	76341	HD 138536			B8
74778	V* del Cir	31.5 ± 13.3	$3.0\pm~0.3$	08.5V	76371	* d Lup	$5.9\pm~0.1$	21.9 ± 6.8	B3IVp
74816	HD 135355	$6.6\pm~0.4$	60.6 ± 12.0	K3/K4	76395	HR 5790	2.9 ± 0.1	3.0 ± 0.6	B8/B9V
74820	CCDM			B8111/1V	76401	HD 138196			B7/B811/111
74957	J15174-5414AB			K1 11/111	76415	HD 138860			B8 / BEIV
74857	* т Lup HD 135551			GBUCN	76410	HD 138094 V* tau04 Ser			M511-111
74869	CCDM			B811	76426	V* BI CrB	2.0 ± 0.0	34.7 ± 22.9	A0
	J15180-6835AB				76434	HD 138679			B2
74875	HR 5682			Am	76464	HD 139035	3.2 ± 0.0	61.8 ± 20.4	B8/B9111
74881	V* U CrB	$3.3\pm~0.1$	35.3 ± 9.5	B7Vv SB	76483	HD 138680			B9.5III/IV
74918	HD 136010			K1 -	76581	HD 139068			B8
74938	V* FS Dra	7.0 ± 1.5	50.5 ± 24.5	K5V Ozlah	76598	HD 139992 * tou Lib	2.5 ± 0.0	56.7 ± 23.3	B9 B2 5\/
74963	HD 135553	1.4 ± 0.0	35.8 ± 5.6	A9V	76605	HD 139409	0.0 1 0.0	20.3 1 4.9	G8 /
74967	HD 135674			B7/B811/111	76606	HD 139206	$5.0\pm~0.0$	47.4 ± 8.6	в5V [′]
75002	HD 135899			G5/G611/111	76623	HD 139070			G8 /
75051	HD 135788			B9.5111	76629	V* V343 Nor	1.0 ± 0.0	20.1 ± 4.3	K0V
75079	HD 135917	10.0 ± 0.9	12.6 ± 2.1	B1	76633	HD 139486	2.4 ± 0.0	53.6 ± 33.2	B9V
75091	115207-67294 B	0.0 ± 0.1	22.8 ± 7.1	B3V	76664	HD 137179 HR 5757	0.3 ± 0.3	3.3 ± 2.2	B2111 K211
75095	HD 136003	11.5 ± 1.7	15.7 ± 0.9	B2lb	76687	HD 139236	6.2 ± 0.9	63.1 ± 28.1	K2
75097	V* gam UMi			A3 -	76733	HR 5831			G811
75110	* 28 Lib			G811/111	76767	HD 138758	2.8 ± 0.0	7.0 ± 3.2	Ар
75141	V* del Lup	11.9 ± 0.3	$15.7\pm~0.7$	B1.5 V	76768	CCDM	$0.8\pm~0.0$	33.1 ± 10.3	K3/K4V
75174	HD 136711	001 70		K3 -	70011	J15405-1842AB			Dalli
75187	V* UI Ser	8.0 ± 7.0	0.0 ± 0.0 25.1 \pm 10.0		76811	HD 139004			B0111
75257	HR 5726	7.7 ± 0.6	36.7 ± 4.3	K4	76881	HD 139636	2.9 ± 0.1	10.0 ± 6.8	B8/B9111
75264	* eps Lup	9.1 ± 0.1	20.4 ± 2.2	B2IV-V	76894	HD 139471	9.3 ± 0.8	27.8 ± 6.8	K2/K311
75304	HR 5712	$6.1\pm~0.1$	39.9 ± 9.4	B4V	76924	HD 139828	$6.2\pm~0.3$	63.9 ± 17.0	КЗШ
75323	* gam Cir	$6.0\pm~0.2$	63.1 ± 14.5	B5111 + F8	76934	HD 139534			K0 /
75349	HD 136537	$6.9\pm~0.3$	$50.1\pm~6.5$	G 211	76943	HD 140037	4.5 ± 0.5	47.1 ± 1.6	B5111
75430	V* GH Lup CD 63 1083	120 - 08	01+ 00	G 2lab R0	76945	* 4 Lup	5.0 ± 0.0	15.9 ± 13.8	B5V K5
75434 75440	HD 136506	12.0 ± 0.0 24 + 01	0.1 ± 0.0 37 3 + 25 3	B9V	77023	V*F0 Lup	7.5 ± 1.1	43.0 ± 13.4	M5/M611
75509	HD 137119	1.8 ± 0.1	17.8 ± 6.3	A2V	77029	HD 139913			A411/111
75523	HD 136899			B8!!!	77042	HR 5836			GOIL
75534	HD 136969			G8/K0 /	77056	HD 140079			B8111
75582	HD 136860	$3.0\pm~0.0$	22.5 ± 18.4	B8IV	77072	HD 140042			B8/B911/111
75639	HD 137250	40 00			77092	HD 140700			K5 -
75658	HR 5730 HD 136977	4.0 ± 0.0	50.0 ± 20.0	B3V B811/111	77150	HD 140175	19+ 00	31.6 ± 17.3	Δ2V
75688	HD 137742	$1.9\pm~0.1$	17.9 ± 6.4	A2	77157	V* HT Lup	1.4 ± 0.2	0.6 ± 0.3	Ge
75711	HD 137595	$7.8\pm~0.7$	23.6 ± 2.9	B2 /	77178	HD 141243	$6.2\pm~0.2$	63.1 ± 14.7	K5
75729	HD 137779	$2.0\pm~0.0$	$20.1\pm~8.4$	A0	77199	V* KW Lup	1.0 ± 0.0	16.3 ± 5.6	K2V
75742	HR 5738	6.3 ± 0.3	68.6 ± 19.5	G2Ib	77227	V* PT Ser			B8
75769	L15297 21194 P	1.5 ± 0.1	8.7 ± 0.9	G6/G8	77239	HD 140523	62 - 04	62 1 ⊥ 12 7	K1 - +
75771	HD 137620			B8111	77278	HD 140400	0.3 ± 0.4	03.1 ± 13.7	R2117111 B9111
75787	V* V376 Lup			B9111	77320	HD 140022	$3.2\pm~0.0$	71.3 ± 28.5	B8V
75812	HD 137355			K1	77375	HD 140679			G8/K0 /
75873	HD 137384	$6.8\pm~0.2$	16.0 ± 3.1	B2/B3IV	77396	HD 140973			F6
75924	V* KR Lup	1.4 ± 0.1	9.0 ± 1.7	G6V	77403	HD 140842	7.6 ± 0.6	44.7 ± 5.0	A711
75952	HD 137935	2.6 ± 0.0	7.0 ± 2.9	B8/B9V	77452	HD 140926	7.1 ± 0.1	0.7 ± 0.4	B2/B3Vnne
75955	HD 137366	70 ± 01	294 ± 21	B3V	77481	HD 141166			B8III
75965	HD 138306	1.8 ± 0.0	12.7 ± 2.5	A2	77524	HD 141277	1.4 ± 0.1	9.8 ± 2.9	K0V:
75980	HD 137958			G311/111	77542	HD 141569	2.4 ± 0.1	5.6 ± 1.4	B9
76000	HD 137683			B7 /	77562	HR 5869	3.0 ± 0.0	39.8 ± 17.7	B8V
76011	V* NN Aps			Ap SICrFe	77575	HD 141297			K1 / CN b
76013	HR 5730	12.0 ± 0.0	6.5 ± 1.7	Blnpe B6/B7/	77634	*chiLup *b.Sco	021 00	0.2 - 5.4	B9.5111-1V
76070	HD 137965	3.8 ± 0.1 19+01	13.3 ± 0.1 11.1 + 1.0	а 11V /V	11035 77645	U 300 V* V360 Nor	0.3± 0.2 99∔ 05	9.2 ± 5.4 15.9 ± 1.5	Б1.5VN В2Ш
76126	* zet Lib	6.3 ± 0.0	15.7 ± 0.8	B3V	77658	HD 141408	5.5 <u>T</u> 0.5	10.0 1 1.0	K0
76171	HD 138347			K1 / CN	77659	HD 142264	2.0 ± 0.0	20.1 ± 9.3	A0
76236	HD 138363			K1	77676	HD 142053			K1 -
76285	CD-75 822			B1Vn	77701	HD 141545	$4.0\pm~0.0$	14.4 ± 12.4	B5111/1V
76297	V* gam Lup	9.4 ± 0.3	18.6 ± 2.2	B2IV	77720	HD 141645			B6111
10304	11D 120/18	1.3 ± 0.0	9.3 ± 1.4	02V					

Table C.1: - Continued. -

	HIP	other ID	mass [M⊙]	age [Myr]	SpT	HIP	other D	mass [M⊙]	age [Myr]	SpT
17736 ID 341887 CSI/III RBS 344 IC 54 \pm 08 ID 44 08 DS 34 DC 40 RS 344 77786 ID 31013 32 \pm 02 100 \pm 08 RBV RBV RI4064-1940C 74 \pm 03 10 \pm 07 RV	77724	HD 141562			B7/B811	78809	HD 144175	$2.4\pm~0.0$	58.2 ± 24.7	B9V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	77730	HD 141687			G511/111	78820	HR 5984	12.5 ± 0.8	13.8 ± 0.8	B0.5V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	77761	HD 140316	3.0 ± 0.0	37.9 ± 20.3	B8V	78821	CCDM	$7.4\pm~0.3$	$1.0\pm~0.7$	B2V
$ \begin{array}{c} 1/17 \\ 1$	77764	CD-61 5101	2.9 ± 0.2	10.0 ± 6.8	B8	700.46	J16054-1948C		001 000	
177360 CD L 00 0.2 L 0	77811	HD 141765	2.4 ± 0.1 5.6 ± 0.4	47.2 ± 34.0	Balv	78840	HD 144408	2.0 ± 0.0	20.1 ± 9.3	AU BOIII
17550 CCDM 65 ± 0.0 73 ± 4.0	77835	HR 5913	5.0 ± 0.4	4.0 1 3.1	F5 -	78884	HD 143983			K6
J1556 220.8 J11 1 J10 10 10 10 10 10 10 10 10 10 10 10 10 1	77840	CCDM	$6.9\pm~0.0$	27.3 ± 4.0	B2.5Vn	78918	* tet Lup	$6.5\pm~0.1$	21.3 ± 3.5	B2.5Vn
17388 IR \$906 50 ± 00 15 ± 4.6 BPV 7983 "eme See 11.1 \pm 1.2 10.0 60 ± 0.6 $60 \neq 10.6$ 70 ± 10.6		J15536-2520AB				78928	HD 143853	$6.2\pm~0.4$	68.6 ± 22.2	K1
7738 W Videlo Sc. 6.8 ± 0.2 0.4 ± 0.3 B2V 7893 HD 14432 1.9 ± 0.1 0.0 ± 0.6 A A/FeV 7798 HD 143300 2.2 ± 0.0 1.0 ± 0.0 A Pist I 1.13897 3.5 ± 0.1 <td< td=""><td>77858</td><td>HR 5906</td><td>$5.0\pm~0.0$</td><td>$15.9\pm~4.6$</td><td>B5V</td><td>78933</td><td>* ome Sco</td><td>11.1 ± 1.2</td><td>$10.0\pm~6.6$</td><td>B1V</td></td<>	77858	HR 5906	$5.0\pm~0.0$	$15.9\pm~4.6$	B5V	78933	* ome Sco	11.1 ± 1.2	$10.0\pm~6.6$	B1V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	77859	V* V1040 Sco	6.8 ± 0.2	0.4 ± 0.3	B2V	78943	HD 144432	1.9 ± 0.1	6.0 ± 0.6	A9/F0V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	77864	HD 142300	2.0 ± 0.0	11.0 ± 0.9		78951	HD 143967	3.5 ± 0.1	32.1 ± 7.8	B/III
17780 H) Lib 7.9 ± 0.1 0.9 ± 1.1 B2/B3V 7898 HE 5079 H H 500 G3pe	77927	HR 5898			B9II	78968	HD 144586	2.4 ± 0.1	46.7 ± 36.9	B9V
17780 HD 142242 1.7 ± 0.0 1.6 ± 0.4 AlW/V Y 1994 V 5 K Her 6.4 0.5 5.2.4 ± 0.5 S0.4 K0(M3) 17980 H 5900 Amor 7003 HE 5908 3.1.4 0.1 3.7.5 ± 5.5 B8V/V 17980 H 5900 Amor 7003 HE 591 3.2.4 1.1 1.6.4 3.4.4 1.1 1.6.4 3.4.4 1.1 1.6.4 3.4.4 1.4.5 1.6.4<	77939	* 47 Lib	$7.9\pm~0.1$	6.9 ± 1.1	B2/B3V	78989	HR 5979			F2
17796 HD 142279 5.3 ± 0.5 3.1.5 ± 3.6 B311//V Ke(M3) 17786 KE 1 0.1 0.2 5.2 ± 7.3 GV11 7003 HE 5.90 3.1.5 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10 10.4.2 10.4.2 10.4.2 10.4.2 10.4.2 10.4.2 10.4.2 10.4.2 10.4.2 10.4.2 10.4.2 10.4.2 10.4.2 10.4	77960	HD 142424	$1.7\pm~0.0$	16.6 ± 6.1	A4IV/V	78994	V* SX Her	$6.4\pm~0.5$	55.2 ± 6.9	G3pe-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	77976	HD 142279	$6.3\pm~0.5$	$31.6\pm\ 2.3$	B3111/IV					K0(M3)
	77982	* kap TrA	$7.0\pm~0.2$	55.2 ± 7.3	G6VII	79031	HR 5998	3.1 ± 0.1	37.5 ± 5.5	B8IV/V
1930411013342323232324By/BaV7900V* V355 Co.231410101010107805HD142181323232424104510411141/2117805HD14421814218101016166610<	77990	HR 5900 HR 5031			Amvar B8III	79035	HD 144262 V* V365 Nor	3.2 ± 0.1 116 + 12	10.0 ± 7.1 17.6 ± 3.0	B016/11
7906V * 1027 Sco 2.4 ± 0.1 4.5 ± 1.6 4.7 ± 2.4 $80.1 + 10.2$ 7903HDH214385Bolin7903HD 4.4 ± 0.1 4.5 ± 1.6 $4.6 \pm 1.6 \pm 1.6$ $4.6 \pm 1.6 \pm 1.6$	78004	HD 142304	5.9 ± 0.1	23.3 ± 2.4	B3/B4V	79080	V* V856 Sco	2.3 ± 0.1	4.0 ± 1.8	A8/A9
7803 VP 14213 VP 14213 Set 11 7922 HD 144560 6.8 ± 0.3 7.7 ± 2.4 80 Nove 78090 HD 143550 1.0 ± 0.0 5.7 ± 2.7 6.8 ± 0.3 7.7 ± 2.4 80 Nove 80 Sin 78090 HD 143550 1.0 ± 0.0 8.7 ± 7.4 6 Nove 7803 HD 144860 1.2 ± 2.1 1.5 ± 1.0 8.1 min 78131 BD 10 131048 8.3 ± 0.1 1.6 ± 0.6 80' 78037 HC 0.144860 1.2 ± 2.1 1.5 ± 1.0 8.1 min 78145 HD 142466 8.8 ± 0.2 2.19 ± 2.3 B0.5 m<	78005	HD 142218			B911	79081	V* V1027 Sco	2.4 ± 0.1	4.5 ± 1.6	A1/A2
78070 V+ HR Lib A21b/II 79200 HD 144956 6.8± 0.3 2.4.7± 2.4 B3Vne 78094 HD 142567 3.0± 0.1 1.0± 0.6 6.7HII 79201 HD 144956 1.2 2.1 1.5.7± 1.0 B1III 78044 Hn 5.5co 81± 0.1 1.0± 0.6 BV/V 79279 HD 144950 1.2 2.1 1.5.7± 1.0 B1III 78131 BD-103104B 3.3± 0.1 1.0± 0.6 BV/V 79374 CCOM 9.0± 0.2 1.9.2± 0.7 B2V 78164 HD 142466 5.6± 0.4 0.7± 0.5 B3V 79374 CCOM 9.0± 0.2 1.9.2± 0.7 B2V 78173 HD 142168 2.5± 0.0 3.3± 2.17 B91II 7944 *1.35co 7.8± 0.1 2.5± 0.7 B2V 78204 HD 142513 J± 0.40 3.3± 2.17 B91II 7944 *1.35co 7.8± 0.1 2.5± 0.7 B2V 78373 V* 19285ca 3.2± 0.0 3.3± 2.17 B81II 7944 HD 145531 J± 2.5 A7 A8II/V 78204 V* 19135ca <td>78036</td> <td>HD 142138</td> <td></td> <td></td> <td>B9.5III</td> <td>79225</td> <td>HD 145458</td> <td></td> <td></td> <td>G811-111</td>	78036	HD 142138			B9.5III	79225	HD 145458			G811-111
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	78078	V* HR Lib			A2 b/	79230	HD 144965	$6.8\pm~0.3$	24.7 ± 2.4	B3Vne
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	78092	HD 142527	3.0 ± 0.1	1.6 ± 0.6	F6	79251	HD 144596			B9.5III
	78094	HD 142560	1.0 ± 0.0	55.7 ± 8.7	G5Vpe	79261	HD 144855	11.2 2.1	157 10	M1
Tells HD 142468 8.8 ± 0.2 21.9 ± 2.3 80.5 is 7937 HR 6050 80 ± 0.2 19.8 ± 1.9 $82/V$ 78164 HR 5934 5.6 ± 0.4 0.7 ± 0.5 $B3V$ 7937 CCDM 9.0 ± 0.2 19.8 ± 1.9 $82/V$ 78171 HD 14215 2.5 ± 0.0 33.3 ± 21.7 $B911$ 79404 $*13.5$ co 78.4 ± 0.1 2.5 ± 0.7 $82V$ 78133 V V282 Sco 3.2 ± 0.0 37.6 ± 2.2 $B911$ 79466 $CD.53.647$ 6.7 ± 0.3 3.8 ± 2.7 $B211$ 78227 * 46 Lib T 5.6 ± 0.0 35.9 ± 8.2 $B7Vn$ 79404 HD 145631 2.0 ± 0.0 20.1 ± 9.3 $A0$ 78229 H0 14251 3.4 ± 0.0 35.9 ± 8.2 $B7Vn$ 79952 HD 145914 2.0 ± 0.0 20.1 ± 9.3 $A0$ 78265 V V913 Sco 1.8 ± 0.1 12.7 ± 2.5 A_{0} T $B10/V$ CS_1/V	78131	BD+03 3104B	3.1 ± 0.1 3.3 ± 0.1	20.5 ± 3.4 16 + 06	B2IV/V B6V	79279	HD 144909 HD 144860	11.2 ± 2.1	15.7 ± 1.0	B911
TRIG HF 5934 5.4 0.4 0.7 600 7937 HCD 9.1 0.2 0.8 1.9 21V 78171 HD 142158 2.5 ± 0.0 33.3 ± 21.7 B9111 79404 *13 Sco 7.8 ± 0.1 2.5 ± 0.0 5.2 ± 0.0 5.2 ± 0.0 3.2 ± 2.0 82/8 B8/8 P1046 C.5 ± 6.47 0.5 0.5 ± 2.5 0.0 5.2 ± 0.0 5.2 ± 0.0 5.0 ± 2.0 82/11 82/11 78020 * 4 × 101 5.2 ± 0.0 5.9 ± 8.2 B9111 P7466 C.5 ± 6.47 1.5 ± 0.0 1.6 ± 0.1 1.6 ± 0.1 1.6 ± 0.1 1.6 ± 0.1 1.6 ± 0.1 1.6 ± 0.1 1.6 ± 0.1 1.6 ± 0.1 1.7 ± 2.5 AP 79571 HD 145517 K211/11 B911/1V S8 1.1 ± 7.4 ± 2.5 AP 79571 HD 14514 K211/11 B911/1V S911 T.7 ± 2.5 AP 79711 HD 14528 K211/11 B811	78145	HD 142468	8.8 ± 0.2	21.9 ± 2.3	B0.5/a	79357	HR 6050			K4II+
	78168	HR 5934	$5.6\pm~0.4$	$0.7\pm~0.5$	B3V	79374	CCDM	$9.0\pm~0.2$	19.8 ± 1.9	B2IV
78172 HD 142189 2.5 ± 0.0 33.2 ± 2.7 B9 79404 * 13 Sco 7.8 ± 0.1 2.5 ± 0.7 B2V 78203 HD 142674 2.5 ± 0.0 37.6 ± 23.2 B6/B9 79406 CD 53 6479 6.7 ± 0.3 3.8 ± 2.7 B2 / V 78207 * 48 Lib D 3.5 ± 1.0 3.5 ± 5.6 BV 79528 HD 145611 2.0 ± 0.0 20.1 ± 0.3 $A8 \parallel 1/V$ 78204 V* V913 Sco 5.0 ± 0.0 54.8 ± 5.6 B5V 79528 HD 145914 2.0 ± 0.0 20.1 ± 0.3 $A0$ 78265 V* pi. Sco 1.5 ± 0.4 15.1 ± 0.4 B1V + 79572 HD 145194 4.0 ± 0.0 4.2 ± 7.9 B61V 78267 HE 5920 1.8 ± 0.1 1.2 ± 2.5 A_P 79572 HD 145234 3.1 ± 0.1 5.7 ± 2.25 $B6/PS^{11}/V$ CS^{11}/V <t< td=""><td>78171</td><td>HD 142913</td><td></td><td></td><td>K0 / </td><td></td><td>J16120-1928AB</td><td></td><td></td><td></td></t<>	78171	HD 142913			K0 /		J16120-1928AB			
78183 V V V28 beso 32 ± 0.0 432 ± 3.2 B8/B9011 79439 HD 145611 25 ± 0.0 50.1 ± 20.8 B9V 78203 HD 142671 25 ± 0.0 37.6 ± 2.3 B8/II 79476 V* V718 Sco 16 ± 0.0 16.2 ± 3.7 A8III/V 78229 HD 142051 34 ± 0.0 35.6 ± 2.7 B5V 79528 HD 145314 2.0 ± 0.0 20.1 ± 9.3 A0 78266 V* V133 Sco 50.4 ± 0.0 54.8 ± 5.6 B5V 79528 HD 145514 2.0 ± 0.0 20.1 ± 9.3 A0 78266 HD 142823 $18.4 0.1$ 12.7 ± 2.5 Ap 79572 HD 145194 $V = V10.5 1.5 co$ 40.2 ± 0.0 48.2 ± 7.9 B6/V 78317 V* RY Lup $11.4 0.0$ 31.8 ± 4.6 G0V var 79664 * del TA F6/F711 78355 HS 937 T 79739 HD 146284 T B8/B9/V F6/F711 78364 H 142585 C 0.0 57.4 ± 0.8 $80.2V$ 79755 HR 6066 5.5 ± 0.5 53.4 ± 0.8 B9/II	78172	HD 142158	$2.5\pm~0.0$	33.3 ± 21.7	B9111	79404	* 13 Sco	7.8 ± 0.1	$2.5\pm~0.7$	B2V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	78183	V* V928 Sco	3.2 ± 0.0	43.2 ± 3.2	B8/B9III	79439	HD 145631	2.5 ± 0.0	50.1 ± 26.8	B9V B2UU
Table 1 3.4 ± 0.0 35.9 ± 8.2 BTVn7944HD 14510HD 14510GB 16.1 to 3GB 16.1 to 3GB 16.1 to 3T8229V* V913 Sco 5.0 ± 0.0 56.4 ± 5.6 B5V79528HD 145914 2.0 ± 0.0 26.2 ± 7.9 B6(VT8265V* pi. Sco 12.5 ± 0.8 15.1 ± 0.4 B1V79572HD 145597 0.4 ± 0.0 48.2 ± 7.9 B6(VT8266HD 142823 1.8 ± 0.1 12.7 ± 2.5 Ap79572HD 145194B910/VK21//11T8279HE 9520B71179573HD 145283 3.1 ± 0.1 57.4 ± 23.9 B6/B90/VT8279HE 9520B2 0.1 ± 0.0 31.8 ± 4.6 G0V.var79664 $*$ del TrAF6/F71J15594951B32 0.8 ± 0.0 30.7 ± 12.3 Kp79687HD 146234F6/F71F6/F71J15594951J2.5 \pm 0.0 20.4 ± 0.0 20.1 ± 8.4 A11V/V79775HD 146234F6/F71B911//VT8361HD 142589 2.0 ± 0.0 20.1 ± 8.4 A11V/V79775HC 0668 6.5 ± 0.5 53.4 ± 3.5 F9aT8367HE 937G31bT9730HD 146234TS911//11S911//11S911//11S911//11T8364* et al.up 7.0 ± 0.1 39.8 ± 3.5 $2.5 V$ 79765HR 0666 2.5 ± 0.0 53.4 ± 3.5 F9aT8364HD 143119SG31bT9790HR 01625 2.9 ± 0.1 12.3 ± 2.2 A2VT8460HD 143119 <td>78203</td> <td>* 48 Lib</td> <td>2.5 ± 0.0</td> <td>57.0 ± 23.2</td> <td>B8la/lab</td> <td>79400</td> <td>V* V718 Sco</td> <td>0.7 ± 0.3 16 ± 00</td> <td>3.0 ± 2.7 162 ± 3.7</td> <td>A8111/IV</td>	78203	* 48 Lib	2.5 ± 0.0	57.0 ± 23.2	B8la/lab	79400	V* V718 Sco	0.7 ± 0.3 16 ± 00	3.0 ± 2.7 162 ± 3.7	A8111/IV
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	78229	HD 142051	3.4 ± 0.0	35.9 ± 8.2	B7Vn	79494	HD 145414	1.0 1 0.0	10.2 1 0.1	G8 b/ :
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	78246	V* V913 Sco	$5.0\pm$ 0.0	54.8± 5.6	B5V	79528	HD 145914	$2.0\pm~0.0$	20.1 ± 9.3	A0 [′]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	78265	V* pi Sco	12.5 ± 0.8	15.1 ± 0.4	B1V +	79530	V* V1051 Sco	4.0 ± 0.0	48.2 ± 7.9	B6IV
78226 HD 142823 1.8 ± 0.1 12.7 ± 2.5 Ap 79572 HD 145194 B31/1/V B31/1/V 78279 HR 5920 B71/1 79573 HD 145283 3.1 ± 0.1 57.4 ± 23.9 B3/B9V/V G51/1					B2V	79571	HD 145597			K2 /
TAX 17TAX 32.0DiffTAY 170TAX 170	78266	HD 142823	$1.8\pm~0.1$	12.7 ± 2.5	Ap	79572	HD 145194	21 01	E7 4 1 22 0	B9III/IV
783452MASS J15594951. 0.8 ± 0.0 0.7 ± 12.3 Kp79687HD 146234HD 146234F6/F71178345J15594951. 30.7 ± 12.3 Kp79739HD 146285 2.9 ± 0.1 10.0 ± 7.1 B8V78351HD 142289 2.0 ± 0.0 2.01 ± 8.4 A1IV/V79775HD 146332 6.3 ± 0.1 39.8 ± 3.8 B311178355HR 5937B5IV79785HR 6066 2.5 ± 0.0 55.3 ± 9.6 B9V78364* eta Lup 7.0 ± 0.1 39.8 ± 3.5 B2.51V79785HR 6066 2.5 ± 0.0 53.4 ± 3.5 F91a78364* eta Lup 7.0 ± 0.1 39.8 ± 3.5 B2.51V79783HD 145020B911178401* del Sco 19.6 ± 0.0 5.7 ± 0.4 B0.21V79830HD 145268 1.8 ± 0.1 12.3 ± 2.2 A2V78476V * S TrAG31b79932V * S Nor 7.2 ± 0.6 47.4 ± 7.3 F8/G01b78434HD 143119EF71b/1179974V* RV Cr8 1.4 ± 0.0 35.8 ± 5.6 A978476V * S TrAF76 ± 27.1B71b/1179974V* RV Cr8 1.4 ± 0.0 35.8 ± 5.6 A978540HD 143221 5.0 ± 0.0 15.9 ± 9.8 B5V79967HD 146899A511A511/11178552HD 143104 5.9 ± 9.8 B2V79967HD 146893A511A511/11178562HD 14327B8/B91/1180021HR 6687G6111A511/11178655	78279		11 + 00	318 ± 46	G0V:var	79573	HD 145283 * del TrA	3.1 ± 0.1	57.4 ± 23.9	G5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	78345	2MASS	0.8 ± 0.0	30.7 ± 12.3	Кр	79687	HD 146234			F6/F711
362827979740HD 146284HD 146284B911/1/V78351HD 142589 2.0 ± 0.0 2.0 ± 8.4 A1V/V7975HD 146332 6.3 ± 0.1 39.8 ± 3.8 B311178355HR 5937SB51V7975HR 6066 2.5 ± 0.0 5.3 ± 9.6 B9V78367HR 5945G51b79790HR 6058 6.5 ± 0.5 53.4 ± 3.5 F91a78408* eta Lup 7.0 ± 0.1 39.8 ± 3.5 B2.51V7974HD 146020 $V = V = V = V = V = V = V = V = V = V =$		J15594951-				79739	HD 146285	2.9 ± 0.1	$10.0\pm~7.1$	B8V
78351HD 142589 2.0 ± 0.0 20.1 ± 8.4 A1V/V7975HD 146332 6.3 ± 0.1 39.8 ± 3.8 B311178355HR 5937B5IV7976HR 6066 2.5 ± 0.0 55.3 ± 9.6 B9V78367HR 5945G51b79790HR 6058 6.5 ± 0.5 53.4 ± 3.5 F91a78401* del Sco19.6 \pm 0.0 5.7 ± 0.4 B0.21V79830HD 145585B911/11178404HD 143119G31bG31b79853HD 146815G71178405HD 143153B8111/V79864HD 142626 1.8 ± 0.1 12.3 ± 2.2 A2V78476V* S TrAF81179932V* S Nor 7.2 ± 0.6 47.4 ± 7.3 F8/G01b78483HD 143141 1.5 ± 0.1 9.6 ± 1.2 G0V79940HD 146501 3.8 ± 0.1 20.0 ± 11.7 B6·Vn78556HD 143028 3.1 ± 0.1 $5.7.6 \pm 27.1$ B71b/1179974V* RV CrB 1.4 ± 0.0 35.8 ± 5.6 A978562HD 143104B2V79992V* tau HerKallA511/111A511/111A511/11178664HD 143287B8/B91b/1180021HR 6087B911/111B6/B11/11B8/B91b/11B012HB 6087B911/11178663HD 143448 7.3 ± 0.4 38.5 ± 3.5 B31V80071HD 146295 3.0 ± 0.0 57.3 ± 12.3 B8/B9V78664HD 143577 2.0 ± 0.1 38.4 ± 1.1 G8V80071W 1046383U * 933 ScoB911/111<		3628279				79740	HD 146284			B9111/IV
78355HR 5937BSIV79785HR 6066 2.5 ± 0.0 55.3 ± 9.6 B9V78367HR 5945G51b79790HR 6058 6.5 ± 0.5 53.4 ± 3.5 F91a78384* eta Lup 7.0 ± 0.1 39.8 ± 3.5 B2.5IV79794HD 146020B91II78401* del Sco 19.6 ± 0.0 5.7 ± 0.4 B0.2IV79830HD 145585B91II78405HD 143119G31b 79864 HD 146020 1.8 ± 0.1 12.3 ± 2.2 $A2V$ 78476V* S TrAF81I79920V* S Nor 7.2 ± 0.6 47.4 ± 7.3 F8/G01b78483HD 143153F9.1 9.6 ± 1.2 G0V79940HD 146501 3.8 ± 0.1 2.0 ± 1.7 B6/Vn78526HD 143028 3.1 ± 0.1 57.6 ± 27.1 B7lb/II79974V* RV CrB 1.4 ± 0.0 35.8 ± 5.6 A978540HD 143321 5.0 ± 0.0 15.9 ± 9.8 B5V7997HD 146591 3.8 ± 0.1 2.0 ± 1.7 B6/Vn78526HD 143104F8B9III80009HD 146973F8A5II78652HD 143287B8/VB9IV80021HR 6087G8II78664HD 143287B6(G)8B0021HD 146973Sc.A5II/IIII78662HD 143448 7.3 ± 0.4 $3.8.5 \pm 3.5$ B3IV80071HD 146973Sc.A5II/IIII78683HD 143448T.3 0.4 $3.8.5 \pm 3.5$ B3IV80071HD 146973Sc. $1.3.9 \pm 4.6$ <	78351	HD 142589	$2.0\pm~0.0$	$20.1\pm$ 8.4	A1IV/V	79775	HD 146332	6.3 ± 0.1	39.8 ± 3.8	B3111
78304* et a L up 7.0 ± 0.1 39.8 ± 3.5 B2.5IV 79790 HR 6036 0.3 ± 0.5 0.3 ± 0.5 5.4 ± 5.5 P3478304* del Sco 19.6 ± 0.0 5.7 ± 0.4 $B0.2$ IV 79830 HD 145620 1.8 ± 0.1 12.3 ± 2.2 $B91$ II78405HD 143119G31b79864HD 146268 1.8 ± 0.1 12.3 ± 2.2 $A2V$ 78476V* S TrAF81I79932V* S Nor 7.2 ± 0.6 47.4 ± 7.3 F86G0Ib78483HD 143113 1.5 ± 0.1 9.6 ± 1.2 GOV79940HD 146501 3.8 ± 0.1 20.0 ± 11.7 B6 Vn78526HD 143028 3.1 ± 0.1 5.6 ± 27.1 B71b/II79974V* RV CrB 1.4 ± 0.0 35.8 ± 5.6 A978540HD 143321 5.0 ± 0.0 15.9 ± 9.8 B5V79987HD 146899A51I78522HD 143104B2V79992V* tau HerS1VS81V78592* ups HerB911180009HD 146697G81I78664HD 143287B6[H]/IV80021HR 6087B91/III78665HR 5967G6/G81I80052HD 146383B91II78681HD 143448 7.3 ± 0.4 38.5 ± 3.5 B3IV80071HD 146295 3.0 ± 0.0 57.3 ± 12.3 B6/B9V78682HD 143448 7.3 ± 0.4 38.5 ± 3.5 B3IV80071HD 146295 3.0 ± 0.0 57.3 ± 12.3 B6/B7Vn78684HD 143677 2.0 ± 0.1 3.8 ± 1.1	78355	HR 5937			B5IV	79785		2.5 ± 0.0	55.3 ± 9.6	B9V
78401* del Sco * 19.6 \pm 0.019.6 \pm 0.05.7 \pm 0.4B0.21V79830HD 145585B01/11178405HD 143119G31b79853HD 146815G71178404HD 143153B8111/1V79864HD 146268 $1.8 \pm$ 0.1 $12.3 \pm$ 2.2A2V78476V* S TrAF81179932V* S Nor $7.2 \pm$ 0.6 $47.4 \pm$ 7.3F8/G01b78483HD 143441 $1.5 \pm$ 0.1 $9.6 \pm$ 1.2G0V79940HD 146501 $3.8 \pm$ 0.1 20.0 ± 11.7 B6.Vn78526HD 143028 $3.1 \pm$ 0.1 57.6 ± 27.1 B71b/1179974V* RV CrB $1.4 \pm$ 0.0 $35.8 \pm$ 5.6A978540HD 143221 $5.0 \pm$ 0.0 $15.9 \pm$ 9.8B5V79987HD 146899A511A511/11178592* ups HerB2V79922V* tau HerB51VB611/111B611/11178604HD 143287B611/11V80021HR 6087G811B11/11178663HD 143899G6/G81180052HD 146383B911/11178682HD 143448 $7.3 \pm$ 0.4 $38.5 \pm$ 3.5B31V80071HD 146295 $3.0 \pm$ 0.0 57.3 ± 12.3 B8/B9V78683HD 143566 $2.4 \pm$ 0.1 $3.8 \pm$ 1.1G8V8012V* sig Sco $19.2 \pm$ 0.0 $8.2 \pm$ 0.2B111/11178684HD 143977 $2.0 \pm$ 0.1 $3.8 \pm$ 1.1G8V8012V* sig Sco $19.2 \pm$ 0.0 $8.2 \pm$ 0.2B111/11178704HD 143927 $2.8 \pm$ 0.1	78384	* etalun	70 ± 01	398 + 35	B2 5IV	79790	HD 146020	0.5 ± 0.5	55.4 ± 5.5	F91a B9111
78405HD 143119G31b79853HD 146815G71178404HD 143153B3111/IV79864HD 146268 1.8 ± 0.1 12.3 ± 2.2 A2V78476V* S TrAF8117992V* S Nor 7.2 ± 0.6 47.4 ± 7.3 F8/G01b78483HD 143441 1.5 ± 0.1 9.6 ± 1.2 G0V79940HD 146501 3.8 ± 0.1 20.0 ± 11.7 B6/Vn78526HD 143028 3.1 ± 0.1 57.6 ± 27.1 B71b/II79974V* RV CrB 1.4 ± 0.0 35.8 ± 5.6 A978582HD 143104 5.0 ± 0.0 15.9 ± 9.8 B5V79987HD 146899A511B51V78592* ups HerB2V79992V* tau HerKS511/IIIS51V78555HR 5967B611/IV80021HR 6087ScG81178682HD 143348 7.3 ± 0.4 38.5 ± 3.5 B31V80071HD 146295 3.0 ± 0.0 57.3 ± 12.3 B8/B9V78683HD 143448 7.3 ± 0.4 38.5 ± 3.5 B31V80071HD 146295 3.0 ± 0.0 57.3 ± 12.3 B8/B9V78684HD 143677 2.0 ± 0.1 3.8 ± 1.1 G8V8012V* sig Sco 19.2 ± 0.0 8.2 ± 0.2 B11II78644HD 143677 2.0 ± 0.1 3.8 ± 1.1 G8V8012V* sig Sco 19.2 ± 0.0 8.2 ± 0.2 B11II78644HD 143677 2.0 ± 0.1 3.8 ± 1.1 G8V8012HD 146920 2.7 ± 0.2 7.0 ± 2.9 B8V </td <td>78401</td> <td>* del Sco</td> <td>19.6 ± 0.0</td> <td>5.7 ± 0.4</td> <td>B0.2IV</td> <td>79830</td> <td>HD 145585</td> <td></td> <td></td> <td>B911/111</td>	78401	* del Sco	19.6 ± 0.0	5.7 ± 0.4	B0.2IV	79830	HD 145585			B911/111
78440HD 143153B8III/IV79864HD 146268 1.8 ± 0.1 12.3 ± 2.2 A2V78476V* S TrAF8II79932V* S Nor 7.2 ± 0.6 47.4 ± 7.3 F8/G0Ib78483HD 143441 1.5 ± 0.1 9.6 ± 1.2 GOV79940HD 146501 3.8 ± 0.1 20.0 ± 11.7 B6:Vn78526HD 143028 3.1 ± 0.1 57.6 ± 27.1 B7Ib/II79974V* RV CrB 1.4 ± 0.0 35.8 ± 5.6 A978526HD 143104 5.0 ± 0.0 15.9 ± 9.8 B5V79987HD 146899 $$	78405	HD 143119			G3Ib	79853	HD 146815			G711
78476V* S TrAF8II79932V* S Nor 7.2 ± 0.6 47.4 ± 7.3 F8/G0/b78483HD 143441 1.5 ± 0.1 9.6 ± 1.2 GOV79940HD 146501 3.8 ± 0.1 20.0 ± 11.7 B6:Vn78526HD 143028 3.1 ± 0.1 57.6 ± 27.1 B7/b/ll79974V* RV CrB 1.4 ± 0.0 35.8 ± 5.6 A978540HD 143321 5.0 ± 0.0 15.9 ± 9.8 B5V79987HD 146899 $$	78440	HD 143153			B8111/IV	79864	HD 146268	$1.8\pm~0.1$	12.3 ± 2.2	A2V
78833HD1434411.5 \pm 0.19.6 \pm 1.2GOV7940HD146501 $3.8 \pm$ 0.1 20.0 ± 11.7 B6:Vn78526HD143028 $3.1 \pm$ 0.1 57.6 ± 27.1 B7Ib/II79974V* RV CrB $1.4 \pm$ 0.0 $35.8 \pm$ 5.6A978540HD143321 $5.0 \pm$ 0.0 $15.9 \pm$ 9.8B5V79987HD146899A5II78526HD143104B2V79920V* tau HerB5IV78592* ups HerB9III80009HD146973A5II/III78604HD143287B8/B9Ib/II80021HR 6087G8II78655HR 5967G6/G8II80052HD145383B9III78681HD143448 $7.3 \pm$ 0.4 $38.5 \pm$ 3.5B3IV80071HD146295 $3.0 \pm$ 0.0 57.3 ± 12.3 B8/B9V78682HD143449B80079* omi Sco $7.9 \pm$ 0.1 $39.8 \pm$ 4.6A4II/IIII78683HD143956 $2.4 \pm$ 0.1 $3.8 \pm$ 1.1G8V8012V* sig Sco $19.2 \pm$ 0.0 $8.2 \pm$ 0.2B1III78702HD143956 $2.4 \pm$ 0.1 40.8 ± 15.0 B9V80126HD 146920 $2.7 \pm$ 0.2 $7.0 \pm$ 2.9B8V78731V* QY NorB1//HIP.80141HD146921S8 \pm 0.1 $3.3 \pm$ 0.1 $25.9 \pm$ 7.4B7V78774HD143978 $1.2 \pm$ 0.0 $25.4 \pm$ 4.7G0V80210HD1471001 $3.3 \pm$	78476	V* S TrA			F8	79932	V* S Nor	7.2 ± 0.6	47.4 ± 7.3	F8/G0∣b
78520HD 143020 3.1 ± 0.1 3.0 ± 21.1 BHD/H 1994 VNV 1.4 ± 0.0 3.3 ± 3.0 $A9$ 78540HD 143321 5.0 ± 0.0 15.9 ± 9.8 B5V 79987 HD 146899A51178522HD 143104B2V 79922 V*tau HerB51V78592* ups HerB9111 80009 HD 146973A511/11178604HD 143287B8/B91b/11 80021 HR 6087G81178655HR 5967G6/G811 80022 HD 146383B911/11178681HD 143899G6/G811 80052 HD 146383B911178682HD 143448 7.3 ± 0.4 38.5 ± 3.5 B31V 80071 HD 146295 3.0 ± 0.0 57.3 ± 12.3 B8/B9V78683HD 143449B 80079 * omi Sco 7.9 ± 0.1 39.8 ± 4.6 A411/11178702HD 143956 2.4 ± 0.1 40.8 ± 15.0 B9V 80126 HD 147196 38.8 ± 0.1 13.6 ± 8.6 B6/B7Vn78710HD 143548 7.9 ± 0.6 37.4 ± 8.2 K111/111S0132HD 146920 2.7 ± 0.2 7.0 ± 2.9 B8V78731V* QY NorB911/111pS0141HD 146921B8/B9111B912B8/B911178754HD 143978 1.2 ± 0.0 25.4 ± 4.7 G0V80210HD 146152G011/11178774HD 143978 1.2 ± 0.0 25.4 ± 4.7 G0V80210HD 146152G011/111	78483	HD 143441	1.5 ± 0.1 2.1 ± 0.1	9.6 ± 1.2		79940	HD 146501	3.8 ± 0.1	20.0 ± 11.7	B6:Vn
78582HD 143104B2V7992V* tau HerB5IV78582* ups HerB9III80009HD 146973A5II/III78604HD 143287B8/B9lb/II80021HR 6087G8II78655HR 5967B6III/IV80024V* V933 ScoB9IIII78681HD 143899G6/G8II80052HD 146383B9III78682HD 1434487.3 \pm 0.438.5 \pm 3.5B3IV80071HD 1462953.0 \pm 0.057.3 \pm 12.3B8/B9V78683HD 143449B80079* omi Sco7.9 \pm 0.139.8 \pm 4.6A4II/IIII78764HD 1439562.4 \pm 0.140.8 \pm 15.0B9V80126HD 1471963.8 \pm 0.113.6 \pm 8.6B6/B7Vn78710HD 1435487.9 \pm 0.637.4 \pm 8.2K1II/III80132HD 1469202.7 \pm 0.27.0 \pm 2.9B8V78731V* QY NorB9II/IIIp80141HD 146921B8/B9IIIB8/B9III78754HD 1439781.2 \pm 0.025.4 \pm 4.7G0V80210HD 146152G0II/III	78540	HD 143321	5.0 ± 0.0	15.9 ± 9.8	B5V	79987	HD 146899	1.4 1 0.0	JJ.0 ⊥ J.0	A5
78592* ups HerB9III80009HD 146973A5II/III78604HD 143287B8/B9lb/II80021HR 6087G8II78655HR 5967B6III/IV80024V* V933 ScoB9II/III78681HD 143899G6/G8II80052HD 146383B9III78682HD 1434487.3 \pm 0.438.5 \pm 3.5B3IV80071HD 146295 $3.0 \pm$ 0.0 57.3 ± 12.3 B8/B9V78683HD 143449B80079* omi Sco $7.9 \pm$ 0.1 $39.8 \pm$ 4.6A4II/III78684HD 143956 $2.4 \pm$ 0.1 40.8 ± 15.0 B9V8012V* sig Sco $19.2 \pm$ 0.0 $8.2 \pm$ 0.2B1III78704HD 143957 $2.8 \pm$ 0.1 $3.2 \pm$ 0.7B8/B9V8012HD 146921B8/B9IIIB8/B9III78754HD 143978 $1.2 \pm$ 0.0 $25.4 \pm$ 4.7G0V8014HD 146152G0II/IIIG0II/III78774HD 143976 $1.2 \pm$ 0.0 $25.4 \pm$ 4.7G0V80210HD 146152G0II/III	78582	HD 143104			B2V	79992	V* tau Her			B5IV
78604HD143287B8/B9lb/II80021HR6087G8/I78655HR5967B6/II/IV80024V*V333 ScoB9/I/III78681HD143899G6/G8/I80052HD146383B9/II78682HD1434487.3 \pm 0.438.5 \pm 3.5B3/V80071HD146295 $3.0 \pm$ 0.0 57.3 ± 12.3 B8/B9V78683HD143449B80079* omi Sco $7.9 \pm$ 0.1 $39.8 \pm$ 4.6A4/I//III78684HD143956 $2.4 \pm$ 0.1 $3.8 \pm$ 1.1G8V8012V* sig Sco $19.2 \pm$ 0.0 $8.2 \pm$ 0.2B1/III78702HD143956 $2.4 \pm$ 0.1 40.8 ± 15.0 B9V80126HD 147196 $3.8 \pm$ 0.1 $13.6 \pm$ 8.6B6/B7Vn78710HD143548 $7.9 \pm$ 0.6 $37.4 \pm$ 8.2K111/III80132HD 146920 $2.7 \pm$ 0.2 $7.0 \pm$ 2.9B8V78731V* QY NorB911/IIIp80141HD 146921 B8/B91IIB7V78754HD143927 $2.8 \pm$ 0.1 $3.2 \pm$ 0.7B8/B9V80142HD 147001 $3.3 \pm$ 0.1 $25.9 \pm$ 7.4B7V78774HD143978 $1.2 \pm$ 0.0 $25.4 \pm$ 4.7G0V80210HD 146152 G011/III	78592	* ups Her			B9111	80009	HD 146973			A511/111
78655 HR 5967 B6III/IV 80024 V* V933 Sco B9II/III 78661 HD 143899 G6/G8II 80052 HD 146383 B9III 78682 HD 143448 7.3 \pm 0.4 38.5 \pm 3.5 B3IV 80071 HD 146295 $3.0 \pm$ 0.0 57.3 ± 12.3 B8/B9V 78683 HD 143449 B 80079 * omi Sco $7.9 \pm$ 0.1 $39.8 \pm$ 4.6 A4II/IIII 78684 HD 143956 $2.4 \pm$ 0.1 3.8 ± 1.1 G8V 8012 V* sig Sco $19.2 \pm$ 0.0 $8.2 \pm$ 0.2 B1IIII 78702 HD 143956 $2.4 \pm$ 0.1 40.8 ± 15.0 B9V 80126 HD 147196 $38.8 \pm$ 0.1 $13.6 \pm$ 8.6 B6/B7Vn 78710 HD 143548 $7.9 \pm$ 0.6 $37.4 \pm$ 8.2 K111/III 80132 HD 146920 $2.7 \pm$ 0.2 $7.0 \pm$ 2.9 B8V 78731 V* QY Nor B9II/IIIp 80141 HD 146921 B8/B9III B7V 78754 HD 143927 $2.8 \pm$ 0.1 $3.2 \pm$ 0.7 B8/B9V 80142 HD 147001 $3.3 \pm$ 0.1 $25.9 \pm$ 7.4 B7V	78604	HD 143287			B8/B916/11	80021	HR 6087			G811
78081 HD 143899 G6/G8II 80052 HD 146383 B9III 78682 HD 143448 7.3 ± 0.4 38.5 ± 3.5 B3IV 80071 HD 146383 B9III 78683 HD 143449 B 80079 * omi Sco 7.9 ± 0.1 39.8 ± 4.6 A4II/IIII 78684 HD 143677 2.0 ± 0.1 3.8 ± 1.1 G8V 8012 V* sig Sco 19.2 ± 0.0 8.2 ± 0.2 B1III 78702 HD 143956 2.4 ± 0.1 40.8 ± 15.0 B9V 80126 HD 147196 38.8 ± 0.1 13.6 ± 8.6 B6/B7Vn 78710 HD 143548 7.9 ± 0.6 37.4 ± 8.2 K1II/III 80132 HD 146920 2.7 ± 0.2 7.0 ± 2.9 B8V 78731 V* QY Nor B9II/IIIp 80141 HD 146921 B8/B9III 78754 HD 143927 2.8 ± 0.1 3.2 ± 0.7 B8/B9V 80142 HD 147001 3.3 ± 0.1 25.9 ± 7.4 B7V 78774 HD	78655	HR 5967			B6111/IV	80024	V* V933 Sco			B911/111
Totol 1	78681	HD 143899	724 04	38 F 1 3 F	G6/G8 B3 1/	80052	HD 146383	304 00	57 2 ± 10 2	B8/P0V
78684HD 143077 2.0 ± 0.1 3.8 ± 1.1 G8V80112V* sig Sco 19.2 ± 0.1 $3.8.1 \pm 0.2$ B1///78702HD 143956 2.4 ± 0.1 40.8 ± 15.0 B9V80126HD 147196 3.8 ± 0.1 13.6 ± 8.6 B6/B7Vn78710HD 143548 7.9 ± 0.6 37.4 ± 8.2 K11//1180132HD 146920 2.7 ± 0.2 7.0 ± 2.9 B8/78731V* QY NorB911/11p.80141HD 146921B8/B911178754HD 143927 2.8 ± 0.1 3.2 ± 0.7 B8/B9V80142HD 147001 3.3 ± 0.1 25.9 ± 7.4 B7V78774HD 143978 1.2 ± 0.0 25.4 ± 4.7 G0V80210HD 146152G011/111	78683	HD 143448	7.3 ± 0.4	JU.J T 3.5	B	80071	* omi Sco	3.0 ± 0.0 7.9 ± 0.1	31.3 ± 12.3 39.8 ± 4.6	A4 /
78702 HD 143956 2.4 ± 0.1 40.8 ± 15.0 B9V 80126 HD 147196 3.8 ± 0.1 13.6 ± 8.6 B6/B7Vn 78710 HD 143548 7.9 ± 0.6 37.4 ± 8.2 K111/111 80132 HD 146920 2.7 ± 0.2 7.0 ± 2.9 B8V 78731 V* QY Nor B911/111p 80141 HD 146921 B8/B9111 78754 HD 143927 2.8 ± 0.1 3.2 ± 0.7 B8/B9V 80142 HD 147001 3.3 ± 0.1 25.9 ± 7.4 B7V 78774 HD 143978 1.2 ± 0.0 25.4 ± 4.7 GOV 80210 HD 146152 G011/111	78684	HD 143677	2.0 ± 0.1	3.8 ± 1.1	- G8V	80112	V* sig Sco	19.2 ± 0.0	8.2 ± 0.2	B1
78710 HD 143548 7.9 ± 0.6 37.4 ± 8.2 K1II/III 80132 HD 146920 2.7 ± 0.2 7.0 ± 2.9 B8V 78731 V* QY Nor B9II/IIIp 80141 HD 146921 B8/B9III 78754 HD 143927 2.8 ± 0.1 3.2 ± 0.7 B8/B9V 80142 HD 147001 3.3 ± 0.1 25.9 ± 7.4 B7V 78774 HD 143978 1.2 ± 0.0 25.4 ± 4.7 GOV 80210 HD 146152 G0II/III	78702	HD 143956	2.4 ± 0.1	40.8 ± 15.0	B9V	80126	HD 147196	3.8 ± 0.1	13.6 ± 8.6	B6/B7Vn
78731 V* QY Nor B9II/IIIp 80141 HD 146921 B8/B9III 78754 HD 143927 2.8 ± 0.1 3.2 ± 0.7 B8/B9V 80142 HD 147001 3.3 ± 0.1 25.9 ± 7.4 B7V 78774 HD 143978 1.2 ± 0.0 25.4 ± 4.7 G0V 80210 HD 146152 G0II/III	78710	HD 143548	$7.9\pm~0.6$	37.4 ± 8.2	K1 /	80132	HD 146920	2.7 ± 0.2	7.0 ± 2.9	B8V
$(8754$ HD (43921) 2.8 ± 0.1 3.2 ± 0.7 $B3/B9V$ 80142 HD 147001 3.3 ± 0.1 25.9 ± 7.4 $B7V$ 78774 HD 143978 1.2 ± 0.0 25.4 ± 4.7 $G0V$ 80210 HD 146152 $G011/111$	78731	V* QY Nor		20 0 -	B911/111p	80141	HD 146921	22 0		B8/B9111
	18154 78771	HD 143927	2.8 ± 0.1 12 ± 0.0	3.2 ± 0.7 25.4 ± 4.7	60V	80142 80210	HD 14/001	3.3 ± 0.1	25.9± 1.4	в/ v G011/111
78805 HD 143906 F3 / 80212 HR 6085 G2 b	78805	HD 143906	1.2 1 0.0	-3.7 - 7.1	F3 /	80212	HR 6085			G2lb

Table C.1: - Continued. -

HIP	other D	mass [M _☉]	ag e [Myr]	ЅрТ	HIP	other D	mass [M _☉]	age [Myr]	ЅрТ
80224	HD 147384	20+00	20.0 ± 8.3	Δ 0\/	81427	HD 149455	33 ± 01	20.6 ± 7.4	
80244	HD 146827	2.0 ± 0.0 3.0 ± 0.1	48.7 ± 7.4	B8/B911/111	81438		5.5 ± 0.1	20.0 1 7.4	M4/M511/111
80304	HD 147157	4.0 ± 0.0	50.1 ± 16.6	B6V	81472	V* V1003 Sco	5.9 ± 0.1	19.7 ± 5.1	B2.5 V
80305	HD 147417	7.5 ± 0.7	40.3 ± 9.9	G3111CN	81508	V* V954 Sco	10.0 ± 0.6	17.6 ± 2.9	B2IV
80308	HD 147434			B611/111	81620	HD 150090	$6.3\pm~0.7$	60.5 ± 13.7	G8Ib
80311	HD 147592	2.0 ± 0.0	20.1 ± 9.3	A0V	81624	HD 150193	2.5 ± 0.1	2.5 ± 0.7	A1V
80322	HD 147980			K1 -	81630	HD 150537	2.0 ± 0.0	11.0 ± 0.9	A0
80338	HD 147648	$2.6\pm~0.1$	$10.0\pm~5.7$	B811	81639	HD 150151			B5111
80361	HD 147347	6.3 ± 0.6	50.1 ± 6.2	B5	81645	HD 150093			B4 /
80371	HD 147701	3.9 ± 0.0	10.0 ± 2.7	B5	81678	CCDM			B6111
80377	HD 147702	2.0 ± 0.0	31.6 ± 19.2	A1/A2IV		J16411-4745AB			0-14
80401	HD 147550	65 00	20.0 / 4.5	B 8/ B 911/111	81696	HD 150135	15.1± 9.9	2.2 ± 2.2	070
80405		0.5 ± 0.2	39.8 ± 4.5	B4V K0/1\/, ⊥	01722	HK 0190	125 - 05	15 8 - 04	G811/111 P111
00440	HD 147033	1.0 ± 0.0	10.0 ± 2.5	F	01735 81736	HD 150107	12.5 ± 0.5 15.0 ± 1.1	15.0 ± 0.4 0.2 ± 0.1	Daip
80458	HD 147911	2.0 ± 0.0	11.0 ± 0.9	AOV	81741	HR 6192	13.0 1 1.1	0.2 ± 0.1	G1
80461	HD 147888	5.6 ± 0.4	12.6 ± 1.6	B3/B4V	81807	HD 150200			B611/111
80462	HD 147889	7.4 ± 1.6	$0.4\pm~0.2$	B2III/IV	81814	HD 150085			G3III
80473	CCDM	$8.7\pm~0.2$	$14.0\pm~6.4$	B2V	81823	HD 150097	$6.2\pm~0.1$	63.1 ± 15.8	K3
	J16255-2327AB				81832	HD 150456	$7.0\pm~0.2$	$10.0\pm~2.2$	B2111:
80493	HD 147955	$2.4\pm~0.0$	59.7 ± 26.1	B9V	81847	HR 6197	$8.2\pm~0.7$	33.3 ± 6.1	F5lab
80557	V* V374 Nor	$3.8\pm~0.2$	$3.9\pm~2.7$	B5111	81850	HD 150250			B8111/1V
80563	V* V348 Nor	$8.0\pm~0.2$	$18.4\pm~4.2$	B1/B2 /	81861	HD 150765	$6.2\pm~0.7$	63.6 ± 23.2	K5
80569	* chiOph	10.0 ± 0.9	22.5 ± 3.4	B2Vn e	81904	HR 6210			B911/111
80575	HD 147569	$2.9\pm~0.2$	14.2 ± 10.7	B8V	81928	BD-06 4491	$5.7\pm~0.5$	$50.1\pm~6.9$	B5
80582	* eps Nor	$6.3\pm~0.1$	$50.1\pm$ 5.0	B4V	81963	HD 151352	$6.2\pm~0.7$	63.5 ± 22.5	K5
80675	HR 6114			B9	81971	HD 151029	$1.9\pm~0.0$	13.0 ± 1.8	A2
80721	HD 148259	7.4 ± 0.2	25.4 ± 2.1	B2Ve	81972	HR 6214	$5.8\pm~0.2$	$3.5\pm~2.8$	B3V
80752	HD 147694			F5 /	81997	HD 150577			B7 /
80763	V* alt Sco	12.1 ± 0.5	16.1 ± 1.0		82000	* 46 Her		10 0 00	F811+
90770	UD 149101			B2.5V	82034	HD 150548	5.0 ± 0.0	1.0 ± 0.6	B3V B0 EUU
80772	HD 148191				82037	* 10 Opn			B9.5III
80782	HD 146499 HR 6131	181 + 17	83+ 05	B15lap	02030 82100	BD±41 2747	18 ± 01	12.0 ± 1.0	A 2
80702	HD 148562	10.1 ± 1.7 1.9 ± 0.0	13.0 ± 1.8	Δ21/	82110	HR 6215	1.0 ± 0.1 8.1 ± 0.2	12.0 ± 1.9 21.6 \pm 3.0	B2IV-V
80815	* i Sco	1.9 ± 0.0 6.1 ± 0.0	13.0 ± 1.0 11.2 ± 1.3	B3V	82133	HD 151355	30 ± 0.2	21.0 ± 3.0 22.5 ± 18.4	B8
80820	HD 148382	0.1 1 0.0	11.2 1 1.5	B8111	82140	* 25 Sco	3.0 ± 0.2	22.5 ± 10.4	KOLL
80851	HD 148701			A511/111	82171	HR 6219	15.5 ± 1.1	10.7 ± 1.0	B0 ab
80858	HD 148081			, B9III	82195	HD 151097			F8lab
80865	HD 146967	$3.0\pm~0.0$	$11.3\pm$ 8.0	B8/B9111	82204	HD 153372	$6.3\pm~0.5$	63.7 ± 14.6	K0
80874	HR 6125			K011/111CN.	82216	V* V776 Her			B9p (Cr)
80911	HR 6143	$7.8\pm~0.1$	20.9 ± 2.1	B2 - V	82217	HD 151346			B811
80913	HD 148473			B811	82221	HD 151173	$6.3\pm~0.3$	41.7 ± 7.6	B4 /
80917	HD 149067			G 811	82254	HD 151395	$5.0\pm~0.0$	$12.6\pm~3.2$	B4V
80940	HD 148860			B9.5111	82273	* alf TrA	8.4 ± 0.6	31.7 ± 6.9	K2 b- a
80941	HD 149132	1.5 ± 0.7	0.0 ± 0.0	K2	82304	HD 151782	7.5 ± 0.8	42.3 ± 10.6	K5
80945	V* V1058 Sco	19.2 ± 0.0	8.3 ± 0.1	B1la D0111	82323	V* V1121 Oph	0.9 ± 0.1	1.4 ± 0.7	K5Ve(T)
80948	HD 148359	20 01	100 - 70	B9III B5/D6III	82324	* 48 Her	120 00	01 00	
80950	HD 148549	3.9 ± 0.1	10.0 ± 7.0	B3/ B0111	023/0	V* V1290 Sco	12.0 ± 0.8	0.1 ± 0.0	
80970	HD 148969	14+ 00	41.9 ± 29.6		82303	HD 152052	69 ± 05	47.9 ± 2.1	K2
80990	V* UV Oct	1.4 1 0.0	41.5 ± 25.0	A9:la/lab	82442	V* V2355 Oph	0.5 ± 0.5	41.5 1 2.1	B5V
81007	* n Her			B9.5111	82443	HD 151865			B9111
81031	HD 148597			B9111	82453	HR 6244			B8 /
81100	HD 148937	15.4 ± 9.7	$2.2\pm~2.2$	Obe	82472	HD 151977			A1
81104	HD 150142	$6.9\pm~0.3$	45.8 ± 6.4	K0	82475	HD 152115	$2.0\pm~0.0$	25.1 ± 13.8	A0
81122	V* mu. Nor	26.4 ± 3.9	4.2 ± 0.3	B0la	82504	* 51 Her			K2 -
81144	HD 149019	$6.3\pm~0.9$	$50.1\pm~6.4$	A0la	82514	V* mu 01 Sco	10.0 ± 0.1	20.2 ± 0.4	B1.5IV +
81145	HD 149382			B5					В
81168	HD 148740			B6	82517	HR 6233			B811/111
81172	HD 149077			АОІЬ	82526	V* V823 Her			B9.5p (Cr)
81214	HD 149231		00.0 1	B3V	82528	HD 151688	5.0 ± 0.0	39.3 ± 4.9	B4/B5111
81216	HD 149100	$9.0\pm~0.3$	23.0 ± 2.1	B3V:n	82545	HR 6252	8.6 ± 0.2	18.3 ± 3.4	B2IV
81221	HD 149247			G811 B1.17	82561	HD 152002	7.6± 0.4	1.1 ± 0.81	B2III B4IU
01250 81266	пр 149313 * tau See	1504 01	571 17	B1:Ve B0V	82590 82604	HD 152180	614 06	52 0 ± 00	154111 K 5
01200 81290	tau 300 HR 6183	15.0 ± 0.1	5.1 ± 1.1	GBU	02004 82617	HD 152482	0.4 ± 0.0	52.2 ± 8.9 100 + 20	N3 B3111
81305	V* V918 Sco	24 2 + 0 7	4.7 + 0.6	091a	82640	HD 151571	5.0 ± 0.0	10.0 1 3.0	M10/00
81361	HD 149342	6.2 + 0.6	63.5 + 18.8	K2	82650	V* V1068 Sco			M3 1/111
81377	* zet Oph	19.8 + 0.0	3.0 ± 0.3	09.5V	82658	HD 151540	7.5 ± 0.7	39.8 + 4.4	B5V
	1								

Table C.1: - Continued. -

bill ntw ib no. no. no. no. no. no. no. no. 10000 V Vac00 Sa 21.51 4.5 5.0 0.0 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.0											
BONGV V VOID Som21.5 ± 4.225.8 ± 0.7All BYBOT <th>HIP</th> <th>other ID</th> <th>mass [M⊙]</th> <th>age [Myr]</th> <th>Sp⊤</th> <th>HIP</th> <th>other D</th> <th>mass [M_☉]</th> <th>age [Myr]</th> <th>Sp⊤</th>	HIP	other ID	mass [M⊙]	age [Myr]	Sp⊤	HIP	other D	mass [M _☉]	age [Myr]	Sp⊤	
BX070 M D 125201 M D 125201 M D 125201 M D 12504 B311 B315 B311 <	82669	V* V900 Sco	21.5 ± 4.2	5.9 ± 0.9	B1 a	83749	HD 154173	2.4 ± 0.1	31.2 ± 22.5	B9/B9.5V	
BADFA V*x+0.5 S.a. 21.4 ± 27. b 0.7 ± 0.0 ± 0.0 ± 0.8328 HD 15505 0.5 ±	82670	HD 152101			B5V	83801	HD 154547			B5	
BATC INP 2.60 0.7.2 1.0 0.5.2 0.15.45.0 0.7.2 D D 1.5.45.0 C <thc< th=""> C <thc< th=""> <thc< th=""></thc<></thc<></thc<>	82671	V* zet01 Sco	21.4 ± 2.7	$5.9\pm~0.7$	B1 ae	83834	HD 155061	$6.2\pm~0.5$	63.7 ± 13.8	K2	
BAT7 HD 153266 0.9 ± 0.3 45.8 ± 0.0 Fet Dec Cet Dec	82676	HR 6260	19.2 ± 0.9	7.3 ± 1.0	B0.5la	83858	HD 154589			F2	
BXFM HD 15244 FD 15244 FD 15244 FD 15244 FD 15421 FD 15421 <th< td=""><td>82677</td><td>HD 153166</td><td>$6.9\pm~0.3$</td><td>45.8 ± 8.0</td><td>К0</td><td>83895</td><td>* zet Dra</td><td></td><td></td><td>B6111</td></th<>	82677	HD 153166	$6.9\pm~0.3$	45.8 ± 8.0	К0	83895	* zet Dra			B6111	
BARRE PD 152749 Same PD 152749 PD 157749 PD 1777403	82678	HD 152046			B711	83910	HD 154374			G811/111	
80%0 V* V107 Sac 15.0 ± 0.0 ± 0.2 ± 0.7 0.7c 83922 HD 155346 HD 154453 B011/V 82716 HR 6265 0.0 ± 5 5.2 ± 2.6 VC+ F5.6-1 83973 HD 155164 12.0 ± 1.7 ± 0.4 A2 O.5 ± 2.8 0.5 KU/1.1 82717 HD 152404 1.5 ± 0.0 1.3 ± 2.6 FSV 83984 HR 03564 B.1 ± 0.3 2.4 ± 1.8 BIL BILI 82775 HR 62762 2.4 ± 1.0 5.9 ± 0.7 0.6 H.3 BILI	82686	HD 152748			G811	83920	HD 154921	$2.0\pm~0.0$	$20.1\pm~9.3$	A0V	
BZ70 HR 2625 U P 5 ± 1 5 ± 2 ± 2 ± 5 VC+ B394 HD 155316 18 ± 0 0 17.9 ± 6.4 A2 B2723 HD 15220 K1I B397 HD 155041 12.6 ± 0.6 1.5 ± 2.3 O.6 b b B2724 HD 15220 L5 ± 0.0 13.0 ± 2.0 O.6 b b MD 155041 L2.6 ± 0.6 1.5 ± 2.3 O.6 b b B2774 HD 15240 L5 ± 0.0 13.0 ± 0.0 O.8 ± 0.3 D.7 ± 1.3 25.1 ± 0.3 K/// H B2778 HD 15240 L5 ± 0.0 S.5 ± 0.7 D.8 ± 0.1 ± 0.0 2.0 ± ± 1.1 B4// SPI/// H B2787 HD 15240 L5 ± 0.1 B3.0 ± 0.0 D.2 ± 4.5 MV HA1401 1.1 ± 0.1 D.2 ± 1.1 B4// SPI//////////////////////////////////	82691	V* V1007 Sco	15.0 ± 0.0	$1.2\pm~0.7$	O7e	83932	HD 154853			B8111/IV	
B273 H P15 ki B377 H D155481 12.6 ± 6.8 ± 2.8 ± AS M(1) B277 H D15240 15.5 ± 0 13.5 ± 2.8 ± M(1) B374 H B3544 15.5 ± 0 B18 M(1) B374 H B3544 2.4 ± 15.5 ± 0 B18 M(1) B374 H B3544 2.4 ± 15.5 ± 0 B18 M(1) B374 H B3544 15.5 ± 0 B18 M(1) B333 H D15301 T M(1) B373 H D1531 S E3 D D15523 D D D24 M(1) B374 H D15523 D D D21 D D D15523 D D D1574 D D1574 D <td>82706</td> <td>HR 6265</td> <td>$9.0\pm~5.6$</td> <td>$5.2\pm~2.6$</td> <td>WC+</td> <td>83946</td> <td>HD 155316</td> <td>$1.8\pm~0.0$</td> <td>17.9 ± 6.4</td> <td>A2</td>	82706	HR 6265	$9.0\pm~5.6$	$5.2\pm~2.6$	WC+	83946	HD 155316	$1.8\pm~0.0$	17.9 ± 6.4	A2	
B2727 HD 152240 Li ± 0 Li ± 0 <thl 0<="" =="" th=""> <thl 0<="" =="" th=""> Li ± 0<!--</td--><td>82716</td><td>HR 6266</td><td></td><td></td><td>F5 b- </td><td>83973</td><td>HD 154811</td><td>12.6 ± 0.6</td><td>$1.8\pm~2.3$</td><td>O9.5lb</td></thl></thl>	82716	HR 6266			F5 b-	83973	HD 154811	12.6 ± 0.6	$1.8\pm~2.3$	O9.5lb	
B2775 HD 152404 15 ± 0.0 13.0 ± 2.6 FSV 8360 CCDM 83.0 ± 0.3 22.4 ± 1.8 B1/b 8275 HD 152424 20.4 ± 1.9 5.9 ± 0.7 001a 1770.5 4644AB B3.4 ± 0.3 22.4 ± 1.8 B1/b 82768 HD 152463 20.4 ± 1.9 5.9 ± 0.7 001a B375 HD 155015 B3.4 ± 0.3 22.4 ± 1.4 B3/b 82788 V V404 Hr. F91 8405 HD 155203 B3.4 ± 0.3 C5.76 ± 0.5 C6.76 ± 0.5 C6.75 ± 0.5 C6.75 ± 0.5 C6.75 ± 0.5 C6.76 ±	82723	HD 152220			K1	83976	HD 155048			K0 /	
B2775 NH 6272 24.4 0.8 3.9 ± 0.2 0.8 μ-1. 8000 CCDM 89 ± 0.3 22.4 ± 1.8 B1.b 8276 HD 152456 20.4 ± 1.9 $59.\pm 0.7$ 0% HJ 100.4444AB HJ 157015 B8/9911/11 8276 HD 152465 HD 152465 HD 152465 HD 152465 B8/9911/11 B4003 HV 9400 Hrd 9.7 ± 1.3 25.4 ± 0.4 C5/C66 8278 HD 152451 AJI B8/9911 B4003 HD 155203 B2.0 ± 0.5 ± 1.6 11.2 ± 0.2 15.7 ± 1.5 B4/4 HD 152274 TV 4.1045 Oph G811 B3/V B8/1 B4239 HD 155274 TV 1.1 ± 3.4 B4//1 B4239 HD 155274 TV 4.104 B1.6 ± 4.2 B7/V B204 HD 152467 G81.1 B3/V B3/V B3/V B21.9 ± 0.2 15.7 ± 1.5 B4/4 = b-b G81.1 B3/V	82747	HD 152404	$1.5\pm~0.0$	13.0 ± 2.6	F5V	83984	HR 6356			B811/111	
B2726 HD 152424 20.4 ± 1.9 5.9 ± 0.7 OPI J17103-444AB B276 HD 152456 B5 501/11 B65 501/11 B61 551/15 B71 12 S1 531 S4 56 (%) B2778 V V404 Hr. FS1 B405 501/11 B405 31 HD 15620 B5 ± 1.3 S5 ± 0.5 S5/C 61 F01/11 F	82775	HR 6272	24.4 ± 0.8	$3.9\pm~0.2$	081ab+	84010	CCDM	$8.9\pm~0.3$	22.4 ± 1.8	B1 b	
82767 HD 152456 B8 / 5911/m 84038 V V 940 Her B8 / 5911/m B4038 V V 940 Her B8 / 5911 B4038 V V 940 Her S5 / 571 B4038 V V 940 Her S5 / 571	82783	HD 152424	20.4 ± 1.9	$5.9\pm~0.7$	O9la		J17103-4644AB				
B2779 V* V404 Her P5 51/11 8403 V* V404 Her 97 ± 13 25.± 33 K5 B2800 HD 15203 AT1 84073 HD 155206 82 ± 0.5 (1/1) 55.5 (2.5 ± 1.1.1 55.7 (2.6 ± 1.1.1 55.7 (2.6 ± 1.1.1 55.7 (2.6 ± 1.1.1 55.7 (2.5 ± 1.1.1 55.7 (2.5 ± 1.1.1 55.7 (2.5 ± 1.1.1 55.7 ± 0.5 12.5 ± 1.5 13.8 ± 1.5 68.1 ± 0.1 68.1 ± 0	82786	HD 152456			B8/B9111sp.	84015	HD 155015			B8/B9 /	
82780 M V V644 Har, FS11 8403 H D 15433 SS7666 82804 H D 151261 ATI 84073 HD 155276 FI 14 B2IV F01/11 82827 W V1054 Oph 0.3 ± 0.0 9.2 ± 4.5 M3V 84134 HD 155276 5.6 ± 5.2 12.1 ± 0.2 15.7 ± 0.6 B1Ib 82822 HD 152524 7.0 ± 0.8 4.6 ± 7.3 K21/11 8107 8238 HD 15516 1.1 ± 0.5 1.6 ± 1.1 B1V 82828 HD 15240 B10 H 6 539 1.1 ± 0.5 1.6 ± 1.4 B41 8423 HD 15516 1.1 ± 7.5 B41V 82884 W 1075 Sco B10/1/11 84220 W F0 1510 7.7 ± 0.1 31.6 ± 4.2 B3N 82884 HD 152321 2.7 ± 0.1 1.7 ± 9.4 891/11/1 84220 W F0 15206 7.2 ± 0.1 31.6 ± 4.2 B3N 82911 W 105 Sco 1.5 ± 1.4 8.4 ∪ 7 10.0 ± 6.8 8830 HD 15506 7.4 ± 0.1 S11/1 Ø24 82924 HD 15240 Sco 0.0 0.1 1.1 1.1 8.1 ± 0.1	82787	HD 152603			B9.5 /	84038	V* V940 Her	9.7 ± 1.3	25.1 ± 3.3	K5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	82798	V* V644 Her			F5	84063	HD 154813			G5/G6lb	
B2806 HD 151356 MD 15236 MD 15237 82822 HD 152524 7.0 ± 0.8 48.9 ± 7.3 K21/M1 8426 HD 15536 12.1 ± 0.2 15.7 ± 0.6 B1b 82828 HD 152547 7.0 ± 0.8 48.9 ± 7.3 K21/M1 84228 HD 15516 11.7 ± 0.5 16.7 ± 1.5 B1b B1b 8288 HD 15240 F B01/M1 84228 HD 15510 7.7 ± 1.1 31.6 ± 4.2 B3N 82884 HD 152321 2.7 ± 0.1 17.1 ± 9.4 B01/M1 84220 V* FV & 6.2 ± 0.2 40.5 ± 2.8 B4N 82882 HD 152321 2.9 ± 0.1 10.0 ± 6.8 B80/M B4317 HD 155576 T B41/M 82991 HD 15240 S021.0 0.1 ± 0.0 O. M331 HD 15576 S1.1 32.8 ± 6.8 K5 83009 V* V47 Ara 40 ± 0.0 63.1.17.2 B811/M B4335 CCDM <td< td=""><td>82800</td><td>HD 152631</td><td></td><td></td><td>A711</td><td>84073</td><td>HD 155020</td><td>$8.8\pm~0.3$</td><td>20.4 ± 1.4</td><td>B2IV</td></td<>	82800	HD 152631			A711	84073	HD 155020	$8.8\pm~0.3$	20.4 ± 1.4	B2IV	
Base V* V1054 Oph O.3 ± 0.0 O.2 ± 4.5 M3Ve M314 HD 155273 S.6 O.5 I.2 ± 1.1 B3V B2822 HD 155265 F B0H 84134 HD 155273 S.6 I.5 ± 0.5 I.5 ± 0.1 I.7 ± 0.1 I.5 ± 0.1 B.0 ± 0.0 I.5 ± 0.1 D.2 ± 0.1 D.1 ± 0.0 B.0 ± 0.0 I.5 ± 0.1 D.2 ± 0.1 D.0 ± 0.0 D.1 ± 0.0 B.0 ± 0.0 I.7 ± 0.1 D.1 ± 0.0 B.0 ± 0.0 I.7 ± 0.1 D.1 ± 0.0 B.0 ± 0.0 I.7 ± 0.1 D.1 ± 0.0 D.0 ± 0.0 B.0 ± 0.0 D.0 ± 0.0<	82804	HD 151836			B8/B9III	84080	HD 155216			F0 /	
Base Base <th< td=""><td>82817</td><td>V* V1054 Oph</td><td>$0.3\pm~0.0$</td><td>$9.2\pm~4.5$</td><td>M3Ve</td><td>84134</td><td>HD 155273</td><td>$5.6\pm~0.5$</td><td>12.6 ± 11.1</td><td>B3IV</td></th<>	82817	V* V1054 Oph	$0.3\pm~0.0$	$9.2\pm~4.5$	M3Ve	84134	HD 155273	$5.6\pm~0.5$	12.6 ± 11.1	B3IV	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	82822	HD 152655			B9111	84139	BD+29 2958			G811-111	
8288 W1 012267 B811 84238 W1 015541 11.7 0.5 16.7 ± 1.5 86.1 ± .5 8286 W1 1070 5cc B71//11 84230 HD 155510 G811 8286 W1 015221 27.4 0.1 17.9 ± 1.9 B3V/P 84260 HD 155590 4.7 ± 0.1 31.6 ± 4.2 B3V/P 82821 W1 645 5cc 15.6 ± 1.4 8.4 ± 0.7 80.5 ± 8.8 430 HD 155590 S B9111 82922 HD 152373 20.4 ± 0.1 10.0 ± 6.8 B8V 8333 HD 155590 B9111/V B9111/V 82932 HD 152373 20.4 ± 0.1 0.0 C7 8333 HD 155590 S B9111/V 82032 HD 152340 3.9 ± 0.1 10.1 ± 3.0 B5111/V 8433 HD 155590 S C1 S S S 83030 HD 152363 3.9 ± 0.1 0.1 ± 3.0 B5111/V 8433 HD 155590 S 1.3 2.8 ± 8.8 K5 83030 <thhd 152630<="" th=""> 3.9 ± 0.1 0.</thhd>	82832	HD 152524	$7.0\pm~0.8$	48.9 ± 7.3	K2 /	84226	HR 6389	12.1 ± 0.2	$15.7\pm~0.6$	B1 b	
Base V * V1070 Sco. B711 B4239 HD 155876 C811 B2856 HB 6274 6.3 ± 0.1 17.9 ± 1.9 B3Vnpc B4068 HD 155101 7.7 ± 0.1 31.6 ± 4.2 B3Vn B2868 HD 155211 2.7 ± 0.1 17.1 ± 9.4 B41111 B422 V* V Sco. 6.2 ± 0.2 405 ± 2.8 B41V B2911 V* V661 Sco. 15.6 ± 1.4 8.4 ± 0.7 B0.5 %n B4310 HD 155567 B9111 B2932 HD 152733 2.0 ± 0.0 0.1 ± 0.0 O7. B4326 HD 155760 T.4.4 B2111 B2081 HD 152740 B5111 D.3 ± 0.7 B4336 CCDM T.7.5 ± 0.3 14.7 ± 4.4 B2111 B3022 HD 152843 0.1 10.1 ± 3.0 B111/V B4335 V* V942 Her 8.0 ± 1.1 3.2 & ± 8.4 K5 B3030 HD 152843 3.9 ± 0.1 10.1 ± 3.0 B111/V B4433 HD 155670 3.2 ± 2.9 ± 0.4 0.9 B3030 HD 152843 3.9 ± 0.1 10	82839	HD 152657			B811	84238	HD 155416	$11.7\pm~0.5$	16.7 ± 1.5	B8 ab-lb	
Base HD 152540 HD 152540 T/T 1 31.6 4.2 B3/n Base Ref HD 15321 27.4 0.1 31.7 1.9 B3/N Base HD 15323 2.7 1.0 17.1 9.4 B8/I/II B4/V B3/I/II B4/V Base HD 153373 2.9 0.1 10.0 6.8 B3/N B3/II HD 155700 B9/II/V Base V* V847 Ar.a 15.0 1.1 0.2 0.0 6.3.3 1.7.2 B1/V B4330 V* V41/V B0/II/V B3/II B4330 V* V41/V B3/II B4330 V* V42/V B0.1 1.1 22.8 ± 8.8 K5 B3030 V* V41/V B1/V B4430 HD 155060 1.8 0.1 1.2 2.8 A K3/V B3030 V* V42/V R 8.3 V* V42/V R 8.3 V* V42/V R 1.1	82848	V* V1070 Sco			B711	84239	HD 155878			G811	
B2866 HR 6274 6.3 ± 0.1 17.9 ± 1.9 B3Vnpc B4268 HD 155260 4.7 ± 0.3 9.1 ± 7.5 B4/V 62828 HD 155231 2.7 ± 0.1 17.1 ± 9.4 B(II)(II) 6220 VF V5co 6.2 ± 0.2 40.5 ± 2.8 B4/V B2921 HD 155737 2.9 ± 0.1 10.0 ± 6.8 B4%N B4310 HD 155567 HD 155700 HD 15570 B9/II//V B2936 HV V467 Ara 40.2 ± 0.0 63.3 ± 17.2 B5/II B438 HD 155700 7.3 ± 0.3 1.7.4 ± 4.8 B2/II/ M5110 M338 HD 155700 7.4.4 B2/II M5110 M5110 M330 ************************************	82850	HD 152540			B911/111	84260	HD 156110	$7.7\pm~0.1$	31.6 ± 4.2	B3Vn	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	82868	HR 6274	$6.3\pm~0.1$	17.9 ± 1.9	B3Vn pe	84268	HD 155298	$4.7\pm~0.3$	$9.1\pm~7.5$	B4IV	
degata V* V661 5co 15 bt 14 8 4 t 7 B0 5is 84310 HD 155567 B9111 2923 HD 152733 20 0 t 0.0 0.1 ± 0.0 07 84326 HD 155790 B9111/W 29265 V* V847 Ara 40 ± 0.0 0.3 ± 172 B5111 8438 HD 155609 7.3 ± 0.3 1.47 ± 4.4 B2111 29265 V* V847 Ara 15.0 ± 1.1 0.2 ± 0.1 0 J17146+1424AB K310vr K310vr 83002 HD 152630 3.9 ± 0.1 10.1 ± 3.0 B511/V 84385 V* V942 Her 8.0 ± 1.1 3.2 ± 8.8 K5 83039 HD 152642 3.0 ± 0.2 3.7 ± 3.5 B911/V 84433 HD 155066 1.8 ± 0.1 1.27 ± 2.5 A2V 83040 HD 152642 3.0 ± 0.2 3.7 ± 2.5 B9111 84443 HD 155066 1.8 ± 0.1 1.27 ± 2.5 A2V 83071 HD 152670 2.4 ± 0.1 3.7 ± 2.5 B9111 84443 HD 155066 1.8 ± 0.1 1.7 ± 2.5<	82882	HD 152321	$2.7\pm~0.1$	$17.1\pm~9.4$	B811/111	84282	V* FV Sco	$6.2\pm~0.2$	$40.5\pm~2.8$	B4IV	
B2923 HD 15273 2.9 ± 0.1 1.0.0 ± 6.8 BeVn B4317 HD 155790 B7111/V B2936 HD 156740 7.3 ± 0.3 1.4.7 ± 4.4 B2111 B2991 HD 156240 7.3 ± 0.3 1.4.7 ± 4.4 B2111 B3003 V * V341 Ara 15.0 ± 1.1 0.2 ± 0.1 0 1.7146+1424AB Kill B3012 HD 152936 3.9 ± 0.1 10.1 ± 3.0 B511/V 84380 * 67 Her 8.0 ± 1.1 3.2.8 ± 8.8 K5 B3022 HD 152936 3.9 ± 0.1 10.1 ± 3.0 B511/V 84380 * 67 Her 8.0 ± 1.1 3.2.8 ± 8.8 K5 B3030 HD 152842 3.0 ± 0.3 4.7 ± 3.5 B2111 84401 HR 6397 3.3.2 ± 1.5 2.9 ± 0.4 69 B7118 B4433 HD 155056 1.8 ± 0.1 1.2.7 ± 2.5 A2V B304 HD 1562670 2.4 ± 0.1 3.7.3 ± 2.4 B9V 84433 HD 155166 1.2.7 ± 6.8 B7/818 B312 HD 156166 3.0 ± 6.	82911	V* V861 Sco	15.6 ± 1.4	$8.4\pm~0.7$	B0.5la	84310	HD 155587			B9111	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	82932	HD 152373	$2.9\pm~0.1$	$10.0\pm~6.8$	B8Vn	84317	HD 155190			B7111/IV	
B2985 V* 0847 Ara 4.0 ± 0.0 63.3 ± 1.2 B5111 94338 HD 155400 7.3 ± 0.3 14.7 ± 4.4 B2111 83002 V* V341 Ara 15.0 ± 1.1 0.2 ± 0.1 0 J17146+124A8 MS 83012 HD 152936 3.9 ± 0.1 10.1 ± 3.0 B511V W 4830 * 67 Her K310* ar 83022 HD 152632 6.7 ± 0.3 4.7 ± 3.5 B211V 84401 HR 6397 33.7 ± 15.2 2.9 ± 0.4 O9 830360 HD 152642 3.0 ± 0.0 2.8 ± 9.3 B81V/V 84420 HD 155056 1.8 ± 0.1 1.2.7 ± 2.5 A2V 83050 V* NS co G016 84433 HD 155050 2.0 ± 0.0 38.8 ± 0.8 A2 83171 D 152670 Z.4 ± 0.1 37.3 ± 2.5 B9V 84443 HD 155689 10.0 ± 0.5 2.0 ± 1.1 B1/B2/D/II J155967 K K311 8454 HD 155689 10.0 ± 0.5 2.0 ± 1.1 B1/B2/D/II J15597 K K 6325 K.7	82936	HD 152723	$20.0\pm~0.0$	$0.1\pm~0.0$	07	84326	HD 155790			B9111/IV	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	82985	V* V847 Ara	$4.0\pm~0.0$	63.3 ± 17.2	B5111	84338	HD 155409	$7.3\pm~0.3$	14.7 ± 4.4	B2111	
	82991	HD 152640			B5111	84345	CCDM			M5IIvar	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	83003	V* V341 Ara	15.0 ± 1.1	$0.2\pm~0.1$	О		J17146+1424AB				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	83012	HD 329213			B1.5V	84380	* 67 Her			K3IIvar	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	83022	HD 152936	$3.9\pm~0.1$	$10.1\pm~3.0$	B5111/1V	84385	V* V942 Her	8.0 ± 1.1	32.8 ± 8.8	K5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	83039	HD 152853	6.7 ± 0.3	4.7 ± 3.5	B2111	84401	HR 6397	33.7 ± 15.2	2.9 ± 0.4	09	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	83040	HD 152642	$3.0\pm~0.0$	28.4 ± 9.3	B8IV/V	84420	HD 155056	1.8 ± 0.1	12.7 ± 2.5	A2V	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	83059	V* RV Sco			GOIP	84433	HD 156166	2.0 ± 0.0	39.8 ± 26.8	A2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	83071	HD 152670	2.4 ± 0.1	37.3 ± 25.4	B9V	84434	HD 155670			B7/B8	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	83132	HD 153105			B7111	84443	HD 156179	6.3 ± 0.6	63.7 ± 14.6	K2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	83173	ССОМ			B8111	84444	HD 155889	10.0 ± 0.5	20.2 ± 1.1	B1/B2lb/II	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00050	J16599-7325AB			NAO (NA A11	84483	HD 155896	9.9 ± 1.5	15.8 ± 1.3	B7Ve DFV	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	83250	V* V849 Ara	07 12		N13/N1416	84500	V* U Oph			B5Vnn D0/D0UU	
3226 HD 15362 Ball 3430 V* UPF 9.3 ± 0.2 7.0 ± 3.1 B13VP 3228 HD 153008 B9III/IV 84586 V* V824 Ara 1.4 ± 0.1 5.1 ± 1.8 K1Vp 83291 HD 15302 6.2 ± 0.4 63.7 ± 14.6 K2 84587 HD 156651 4.0 ± 0.0 28.2 ± 18.5 B5 83333 HR 6304 10.0 ± 0.6 22.5 ± 1.8 B2IVne 84599 HR 6430 7.1 ± 0.3 45.7 ± 8.0 K2 83333 HD 153562 8.3 ± 0.3 9.1 ± 1.7 B2/Vne 84625 HR 6425 G8/K0II 83347 HD 153695 2.7 ± 0.1 7.0 ± 2.9 B8V B4650 HR 6422 B5III S8/K0V 83438 HD 153662 $F0II$ 84687 HD 156292 9.3 ± 0.3 14.1 ± 2.7 B0V 83505 HD 152002 5.0 ± 0.0 34.0 ± 19.5 B5IV 84710 HD 156657 6.0 ± 0.8 63.1 ± 2.81 K5 83574 V* V1073 Sco 23.7 ± 1.5 4.0 ± 0.2 B2Iab 84731	83254	HR 0325	8.7 ± 1.3	28.9 ± 0.8	K3III DOLLI	84554	HD 120099		70 21	B9/B9III	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	03200	HD 153382			BOILL	04573	V* U Her	9.3 ± 0.2	7.0 ± 3.1	B1.5Vр К1V-	
3323HDHDHD54926 6.2 ± 0.4 6.7 ± 14.6 K2 64567 HDHD 4.0 ± 0.0 26.2 ± 16.5 B38333HR 6304 10.0 ± 0.6 22.5 ± 1.8 B2/Vne 84599 HR 6430 7.1 ± 0.3 45.7 ± 8.0 K28338HD 153262 8.3 ± 0.3 9.1 ± 1.7 B2/Vne 84612 HD 156201 14.6 ± 1.9 10.2 ± 0.7 $80.51a$ 8337HD 153262 2.7 ± 0.1 7.0 ± 2.9 B8V 84650 HR 6422 B5///B5///8343HD 153662 F0/IB8/V 84667 HD 156292 9.3 ± 0.3 14.1 ± 2.7 B0V8355HR 6320 5.0 ± 0.0 34.0 ± 19.5 B5//V 84710 HD 156675 60.4 83.1 ± 28.1 K58357HD 153080 3.4 ± 0.1 36.0 ± 12.0 B7/B8V 8473 HD 156409 7.1 ± 0.2 22.3 ± 2.6 B2////////////////////////////////////	03270	HD 153008	60 0 0 1	627 146	Бэнцик	04500	V V024 Ara	1.4 ± 0.1	5.1 ± 1.0	K IVP	
3333 HR 0304 10.0 \pm 0.0 22.5 \pm 1.8 B2/Vme 84399 HR 0430 1.4 \pm 0.3 45.7 \pm 8.0 R2 8338 HD 153262 8.3 \pm 0.3 9.1 \pm 1.7 B2/Vme 84612 HD 156201 14.6 \pm 1.9 10.2 \pm 0.7 B0.5 la 83340 HD 153575 12.0 \pm 0.8 0.1 \pm 0.0 B0111/IV 84622 HR 6425 0.0 42.5 \pm 14.2 G8/K0V 8347 HD 153695 2.7 \pm 0.1 7.0 \pm 2.9 B8V 84650 HR 6422 0.0 42.5 \pm 14.2 G8/K0V 83453 HD 153662 2.7 \pm 0.1 7.0 \pm 2.9 B8V 84650 HR 6422 0.0 42.5 \pm 1.0 G8/K0V 83453 HD 153662 2.7 \pm 0.1 7.0 \pm 2.9 B8V 84650 HR 6422 9.3 \pm 0.3 14.1 \pm 2.7 B0V 83565 HD 154002 B9.5111 84687 HD 156292 9.3 \pm 0.3 14.1 \pm 2.7 B0V 83574 V* V1073 Sco 2.3.7 \pm 1.5 4.0 \pm 0.2 B21ab 84711 HD 156292 9.3 \pm 0.3 14.1 \pm 2.7 B0V <tr< td=""><td>83291</td><td>HD 154928</td><td>0.2 ± 0.4</td><td>03.7 ± 14.0</td><td>N2 DOIN</td><td>84587</td><td>HD 150051</td><td>4.0 ± 0.0</td><td>28.2 ± 18.5</td><td>B0</td></tr<>	83291	HD 154928	0.2 ± 0.4	03.7 ± 14.0	N2 DOIN	84587	HD 150051	4.0 ± 0.0	28.2 ± 18.5	B0	
assade HD 153202 $a.3 \pm 0.3$ $b.1 \pm 1.7$ $b.2$ wine $b.4012$ HD 150201 10.4 ± 1.9 10.2 ± 0.7 $b0.314$ 83340 HD 153275 12.0 ± 0.8 0.1 ± 0.0 $b0.11/1V$ 84625 HR 6425 $G8/K011$ 83377 HD 153662 7.1 ± 0.1 7.0 ± 2.9 $B8V$ 84650 HR 6422 $B5111$ 83498 HD 153662 F011 84671 $* e Oph$ K411-111 83498 HD 153840 B8111 84680 V* V818 Her M 83505 HD 154002 B9.5111 84687 HD 156292 9.3 ± 0.3 14.1 ± 2.7 B0V 83574 V* V1073 Sco 23.7 ± 1.5 4.0 ± 0.2 B21ab 84717 HD 156275 6.0 ± 0.8 $6.3.1 \pm 28.1$ K5 83567 HD 152103 G3/G511 84731 HR 6408 8.2 ± 1.0 33.3 ± 6.8 K2111CN 83567 HD 154942 6.3 ± 0.4 0.9 ± 0.6 B211 84745 HD 156409 7.1 ± 0.2 22.3 ± 2.6 B211.1ce 83662 HD 154938 3.4 ± 0.1 <td>03323</td> <td>HK 0304</td> <td>10.0 ± 0.0</td> <td>22.5 ± 1.8</td> <td>B2IVne B2IVne</td> <td>84599</td> <td>HR 0430</td> <td>7.1 ± 0.3</td> <td>45.7 ± 8.0</td> <td></td>	03323	HK 0304	10.0 ± 0.0	22.5 ± 1.8	B2IVne B2IVne	84599	HR 0430	7.1 ± 0.3	45.7 ± 8.0		
assonHD15357312.5 \pm 0.80.1 \pm 0.0b011/1/V64023HR6423G8/K0183377HD152827K1II84642V* V857 Ara1.0 \pm 0.042.5 \pm 14.2G8/K0V83427HD1536952.7 \pm 0.17.0 \pm 2.9B8V84660HR6422B5III83453HD153662F0II84671* e OphK4II-IIIM83505HD154002B9.5III84687HD1562929.3 \pm 0.314.1 \pm 2.7B0V83535HR63205.0 \pm 0.034.0 \pm 19.5B5IV84710HD1566576.0 \pm 0.863.1 \pm 28.1K583574V* V1073 Sco23.7 \pm 1.54.0 \pm 0.2B21ab84717HD156275B9III/IV83567HD152103G3/G51I84731HR64088.2 \pm 1.033.3 \pm 6.8K2IICN83629HD1540426.3 \pm 0.40.9 \pm 0.6B2II84745HD15646812.5 \pm 0.510.0 \pm 1.1B2V:ne83643HD154035K0II84897HD156779B9IIIB9III83644HD154333B9II84897HD156779B9III/IV83644HD154355S0.450.1 \pm 0.709.51ab84970V* V647 Her0.2 \pm 0.011.8 \pm 3.2M483644HD15435G0II84897HD155716B9III/IVB9III/IV83	03330	HD 153202	0.3 ± 0.3	9.1 ± 1.7	D2: VIIIe	04012	HD 150201	14.0 ± 1.9	10.2 ± 0.7		
assarHD1536922.7 \pm 0.17.0 \pm 2.9R1134002VVV </td <td>03340</td> <td>HD 153575</td> <td>12.0 ± 0.0</td> <td>0.1 ± 0.0</td> <td>BUIII/IV</td> <td>04025</td> <td>HK 0425</td> <td>10 00</td> <td>40 E 14 0</td> <td>GO/KUII</td>	03340	HD 153575	12.0 ± 0.0	0.1 ± 0.0	BUIII/IV	04025	HK 0425	10 00	40 E 14 0	GO/KUII	
33421 HD 153633 2.1 ± 0.1 7.0 ± 2.9 BOV 34030 HR 6422 Boll Boll 83453 HD 153640 FOI 84671 * e Oph K4II-III 83505 HD 154002 B9.5III 84680 V* V818 Her M 83555 HR 6320 5.0 ± 0.0 34.0 ± 19.5 B5IV 84710 HD 156292 9.3 ± 0.3 14.1 ± 2.7 BOV 83575 HD 152103 G3/G5II 84717 HD 156275 6.0 ± 0.8 63.1 ± 28.1 K5 83602 HD 153980 3.4 ± 0.1 38.0 ± 12.0 B7/B8V 84733 HD 156409 7.1 ± 0.2 22.3 ± 2.6 B211/re 83602 HD 154042 6.3 ± 0.4 0.9 ± 0.6 B21I 84745 HD 156468 12.5 ± 0.5 10.0 ± 1.1 B2V:ne 83629 HD 154042 6.3 ± 0.4 0.9 ± 0.6 B2II 84745 HD 156468 12.5 ± 0.5 10.0 ± 1.1 B2V:ne 83643 HD 154035 12.5 ± 0.1 11.8 ± 1.6 B1V 84794 V* V647 Her 0.2 ± 0.0 $11.8 \pm $	03311	HD 152627	27 - 01	704 20		04042 94650		1.0 ± 0.0	42.5 ± 14.2	BEIII	
33433 HD 153002 HD 155002 HD 155002 HD 155002 HD 155002 HD 156022 9.3 ± 0.3 14.1 ± 2.7 BOV 83505 HD 152002 5.0 ± 0.0 34.0 ± 19.5 B5IV 84687 HD 156657 6.0 ± 0.8 63.1 ± 2.01 K5 83574 V* V1073 Sco 23.7 ± 1.5 4.0 ± 0.2 B2lab 84717 HD 156275 B9III/IV 83587 HD 153980 3.4 ± 0.1 38.0 ± 12.0 B7/B8V 84735 HD 156409 7.1 ± 0.2 22.3 ± 2.6 B2II:ne 83602 HD 154042 6.3 ± 0.4 0.9 ± 0.6 B2II 84745 HD 156468 12.5 ± 0.5 10.0 ± 1.1 B2V:ne 83662 HD 154042 6.3 ± 0.4 50.1 ± 6.1 B5III 84748 HR 6427 B9III B9III 83643 HD 154333 12.5 ± 0.1 11.8 ± 1.6 B1V 84794 V* V647 Her 0.2 ± 0.0 11.8 ± 3.2 M4<	03427	HD 153095	2.7 ± 0.1	7.0 ± 2.9	DOV	04050	HK 0422 * - O-b				
33405 HD 15340 B0H1 34030 V V0101 Her MIL. 83505 HD 154002 B9.5111 84687 HD 156292 9.3 ± 0.3 14.1 ± 2.7 B0V 83535 HR 6320 5.0 ± 0.0 34.0 ± 19.5 B51V 84710 HD 156292 9.3 ± 0.3 14.1 ± 2.7 B0V 83535 HR 6320 5.0 ± 0.0 34.0 ± 19.5 B51V 84710 HD 156275 B9111/IV 83576 HD 152103 G3/G51I 84731 HR 6408 8.2 ± 1.0 33.3 ± 6.8 K21ICN 83587 HD 154042 6.3 ± 0.4 0.9 ± 0.6 B21I 84745 HD 156409 7.1 ± 0.2 22.3 ± 2.6 B21Ine 83602 HD 154042 6.3 ± 0.4 0.9 ± 0.6 B2II 84745 HD 156468 12.5 ± 0.5 10.0 ± 1.1 B2V:ne 83635 HR 6353 12.5 ± 0.1 11.8 ± 1.6 B1V 84794 V* V647 Her 0.2 ± 0.0 11.8 ± 3.2 M4 83649 HD 154353 B911 84897 HD 156706 B211 B9111/IV<	03433	HD 153002				04071	· е Орп V* V919 Цек			N411-111 M	
05353HR 63205.0 \pm 0.034.0 \pm 19.5B51VB4710HD 1565276.0 \pm 0.863.1 \pm 2.1B5V83535HR 632023.7 \pm 1.54.0 \pm 0.2B21ab84710HD 1566576.0 \pm 0.863.1 \pm 2.1B9111/IV83576HD 152103G3/G51184731HR 6408 $8.2 \pm$ 1.033.3 \pm 6.8K211ICN83587HD 1539803.4 \pm 0.138.0 \pm 12.0B7/B8V84735HD 1564097.1 \pm 0.222.3 \pm 2.6B2111ne83602HD 1540426.3 \pm 0.40.9 \pm 0.6B21184745HD 15646812.5 \pm 0.510.0 \pm 1.1B2V:ne83629HD 1542936.5 \pm 0.450.1 \pm 6.1B511184748HR 6427B911183643HD 15463512.5 \pm 0.111.8 \pm 1.6B1V84794V* V647 Her0.2 \pm 0.011.8 \pm 3.2M483643HD 154635B01184829HD 156779B211B9111/IV83644HD 154383B91184897HD 156706B9111/IV83706V* V1074 Sco19.3 \pm 0.86.0 \pm 0.709.51ab84970V* tet Oph8.9 \pm 0.118.5 \pm 3.4B21V83721HD 1543859.6 \pm 0.311.1 \pm 2.9B11b85001HD 157056A311/111K283721HD 1543859.6 \pm 0.311.1 \pm 2.9B11b85001HD 157056A311/11183740HR 6354B8/B91185035V* V636 Sco6.4 \pm 0.853.7 \pm 1.4 \pm 3.5 </td <td>83505</td> <td>HD 153040</td> <td></td> <td></td> <td>BQ 5111</td> <td>84687</td> <td>HD 156202</td> <td>03 ± 03</td> <td>141 + 27</td> <td>BOV</td>	83505	HD 153040			BQ 5111	84687	HD 156202	03 ± 03	141 + 27	BOV	
3353 11 3.0 ± 0.3 3.0 ± 10.3 3.0 ± 10.3 34.3 ± 19.3 34710 HD 150307 0.0 ± 0.8 0.1 ± 0.8 <td>03505</td> <td>HD 134002</td> <td></td> <td>24.0 ± 10.5</td> <td>D9.511</td> <td>94710</td> <td>HD 156657</td> <td>9.3 ± 0.3</td> <td>14.1 ± 2.7</td> <td>B0V K5</td>	03505	HD 134002		24.0 ± 10.5	D9.511	94710	HD 156657	9.3 ± 0.3	14.1 ± 2.7	B0V K5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	83574	V* V1073 Sco	3.0 ± 0.0 23.7 ± 1.5	34.0 ± 19.3	B21ab	84717	HD 156275	0.0 1 0.8	03.1 ± 20.1	Rolli /IV	
assor HD 152103 assor assor bs/sin bs/sin bs/sin htt bs/sin htt bs/sin bs/sin htt bs/sin ht bs/sin htt bs/sin h	03574	UD 152103	23.7 ± 1.5	4.0 1 0.2		04721	HD 130275	×2⊥ 10	2224 60	Kallion	
83602 HD 154042 6.3 ± 0.4 0.9 ± 0.6 B2I B4745 HD 156468 12.5 ± 0.5 10.0 ± 1.1 B2V:ne 83602 HD 154042 6.3 ± 0.4 0.9 ± 0.6 B2II 84745 HD 156468 12.5 ± 0.5 10.0 ± 1.1 B2V:ne 83629 HD 154293 6.5 ± 0.4 50.1 ± 6.1 B5III 84745 HD 6427 B9III 83643 HD 154635 K0II 84897 HD 156779 B2III 83649 HD 154383 B9III 84897 HD 156706 B9III/V 83674 V* BF Oph G0II 84946 BD+40 3135 7.0 ± 0.7 47.6 ± 9.6 K2 83706 V* V1074 Sco 19.3 \pm 0.8 6.0 ± 0.7 O9.51ab 84970 V* tet Oph 8.9 ± 0.1 18.5 ± 3.4 B2IV 83701 HD 154385 9.6 ± 0.3 11.1 ± 2.9 B1b 85011 HD 157616 6.2 ± 0.5 $6.3.7 \pm 14.1$ K2 83773 BD-00 3226 2.0 ± 0.0 11.0 ± 0.9 A0 85015 HD 157059 A31//III A31//III 83740	83597	HD 153080	34 + 01	38.0 ± 12.0	B7/B81/	84725	HD 156409	71 ± 02	33.3 ± 0.0 22.3 ± 2.6	B2III ne	
83629 HD 154293 6.5 ± 0.4 50.1 ± 6.1 B5111 84748 HR 6427 B911 83639 HD 154293 6.5 ± 0.4 50.1 ± 6.1 B5111 84748 HR 6427 B911 83643 HD 154353 12.5 \pm 0.1 11.8 ± 1.6 B1V 84794 V* V647 Her 0.2 ± 0.0 11.8 ± 3.2 M4 83643 HD 15435 K011 84829 HD 156779 B211 83649 HD 154383 B911 84897 HD 156706 B9111/V 83674 V* BF Oph G011 84946 BD+40 3135 7.0 ± 0.7 47.6 ± 9.6 K2 83706 V* V1074 Sco 19.3 \pm 0.8 6.0 ± 0.7 O9.51ab 84970 V* tet Oph 8.9 ± 0.1 18.5 ± 3.4 B2IV 83721 HD 154385 9.6 \pm 0.3 11.1 ± 2.9 B1lb 85015 HD 157059 A311/H11 K2 83704 HR 6354 B8/B911 85035 V* V636 Sco 6.4 ± 0.8 53.4 ± 3.5 F7/F81b/11 83740 HR 6354 B8/B911 85035 V* V636 Sco 6.4	83602	HD 154042	63+ 01	0.0 ± 12.0	B2U	84745	HD 156468	125+05	10.0 ± 1.0	B2Vine	
83635 HR 6353 12.5 \pm 0.1 11.8 \pm 1.6 B1V 84794 V* V647 0.2 \pm 0.0 11.8 \pm 3.2 M4 83635 HR 6353 12.5 \pm 0.1 11.8 \pm 1.6 B1V 84794 V* V647 0.2 \pm 0.0 11.8 \pm 3.2 M4 83643 HD 154353 K0II 84829 HD 156779 B2II B9III 84897 HD 156706 B9III/IV 83674 V* BF Oph G0II 84946 BD+40 3135 7.0 \pm 0.7 47.6 \pm 9.6 K2 83706 V* V1074 Sco 19.3 \pm 0.8 6.0 \pm 0.7 O9.5 Iab 84970 V* tet Oph 8.9 \pm 0.1 18.5 \pm 3.4 B2IV 83721 HD 154385 9.6 \pm 0.3 11.1 \pm 2.9 B1Ib 85015 HD 157616 6.2 \pm 0.5 63.7 \pm 14.1 K2 83737 BD-00 3226 2.0 \pm 0.0 11.0 \pm 0.9 A0 85015 HD 157059 A311/III A311/III 83740 HR 6354 B8/B9III 85035 V* V636 Sco 6.4 \pm 0.8 53.4 \pm 3.5 F7/F81b/II	83620	HD 154293	5.5 ± 0.4	50.1 ± 6.0	B5111	84748	HR 6427	12.3 _ 0.3	10.0 1 1.1	B9111	
83643 HD 154635 HO 1 HO 1 84829 HD 156779 B21 83643 HD 154333 B91 84899 HD 156776 B211 83644 V* BF Oph G011 84946 BD+40 3135 7.0 ± 0.7 47.6 ± 9.6 K2 83706 V* V1074 Sco 19.3 ± 0.8 6.0 ± 0.7 O9.51ab 84970 V* tet Oph 8.9 ± 0.1 18.5 ± 3.4 B21V 83721 HD 154385 9.6 ± 0.3 11.1 ± 2.9 B11b 85015 HD 157616 6.2 ± 0.5 63.7 ± 14.1 K2 83740 HR 6354 B8/B911 85035 V* V636 Sco 6.4 ± 0.8 53.4 ± 3.5 F7/F81b/11 835049 HR 6438 G81b/11 85049 HR 6438 G81b/11	83632	HR 6353	125 ± 0.4	11.8 ± 1.6	B1V	84704	V* V647 Her	02+00	11.8 + 3.2	M4	
33649 HD 154383 B9II 84897 HD 156706 B9III/IV 83649 HD 154383 B9II 84897 HD 156706 B9III/IV 83674 V* BF Oph GOII 84946 BD+40 3135 7.0 ± 0.7 47.6 ± 9.6 K2 83706 V* V1074 Sco 19.3 ± 0.8 6.0 ± 0.7 O9.51ab 84970 V* tet Oph 8.9 ± 0.1 18.5 ± 3.4 B2IV 83721 HD 154385 9.6 ± 0.3 11.1 ± 2.9 B1lb 85001 HD 157616 6.2 ± 0.5 63.7 ± 14.1 K2 83737 BD-00 3226 2.0 ± 0.0 11.0 ± 0.9 A0 85015 HD 157059 A311/III 83740 HR 6354 B8/B9II 85035 V* V636 Sco 6.4 ± 0.8 53.4 ± 3.5 F7/F81b/II 85049 HR 6438 G81b/II G81b/II G81b/II G81b/II	83643	HD 154635	12.0 1 0.1	11.0 _ 1.0	KUII DIA	84820	HD 156779	0.2 _ 0.0	11.0 _ 3.2	B211	
83674 V* BF Oph G0II 84946 BD+40 3135 7.0 ± 0.7 47.6 ± 9.6 K2 83706 V* V1074 Sco 19.3 ± 0.8 6.0 ± 0.7 $09.5 ab$ 84970 V* tet Oph 8.9 ± 0.1 18.5 ± 3.4 $B2 V$ 83721 HD 154385 9.6 ± 0.3 11.1 ± 2.9 B1 b 85011 HD 157616 6.2 ± 0.5 63.7 ± 14.1 K2 83737 BD-00 3226 2.0 ± 0.0 11.0 ± 0.9 A0 85015 HD 157616 6.2 ± 0.5 63.7 ± 14.1 K2 83740 HR 6354 B8/B9 I 85035 V* V636 Sco 6.4 ± 0.8 53.4 ± 3.5 F7/F81b/II 88049 HR 6438 G81b/II	83640	HD 154383			B911	84807	HD 156706			B9 /IV	
83706 V* V1074 Sco 19.3 ± 0.8 6.0 ± 0.7 O9.51ab 84970 V* tet Oph 8.9 ± 0.1 18.5 ± 3.4 B21V 83721 HD 154385 9.6 ± 0.3 11.1 ± 2.9 B1lb 85001 HD 157616 6.2 ± 0.5 63.7 ± 14.1 K2 83737 BD-00 3226 2.0 ± 0.0 11.0 ± 0.9 A0 85015 HD 157616 6.2 ± 0.5 63.7 ± 14.1 K2 83740 HR 6354 B8/B911 85035 V* V636 Sco 6.4 ± 0.8 53.4 ± 3.5 F7/F81b/11 88049 HR 6438 G81b /11	83674	V* BF Oph			GOLL	84046	BD+40 3135	70+07	476 + 96	K2	
83721 HD 154385 9.6 ± 0.3 11.1 ± 2.9 B1lb 85001 HD 157616 6.2 ± 0.5 63.7 ± 14.1 K2 83737 BD-00 3226 2.0 ± 0.0 11.0 ± 0.9 A0 85015 HD 157059 A311/111 83740 HR 6354 B8/B911 85035 V* V636 Sco 6.4 ± 0.8 53.4 ± 3.5 F7/F81b/11 85049 HR 6438 G81b/11 G81b/11 G81b/11	83706	V* V1074 Sco	193 + 08	60 ± 07	09.5lab	84070	V* tet Onh	89+01	185 ± 34	B2IV	
83737 BD-00 3226 2.0 ± 0.0 11.0 ± 0.9 A0 85015 HD 157059 A31//11 83740 HR 6354 B8/B911 85035 V* V636 Sco 6.4 ± 0.8 53.4 ± 3.5 F7/F81b/11 88049 HR 6438	83721	HD 154385	19.5 ± 0.0	111 + 20	B11b	85001	HD 157616	62 ± 0.1	10.3 ± 3.4 63 7 \pm 14 1	K2	
83740 HR 6354 B8/B9/I 85035 V* V636 Sco 6.4 ± 0.8 53.4 ± 3.5 F7/F8/b/II 85049 HR 6438 G8/b/II	83737	BD-00 3226	2.0 ± 0.3	11.0 + 0.9	A0	85015	HD 157059	J.Z _ U.J	00.7 ± 17.1	A3 /	
85049 HR 6438 (64) (1) (64) (1) (64) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	83740	HR 6354	o 0.0	0.5	B8/B911	85035	V* V636 Sco	6.4 ± 0.8	53.4 + 3.5	F7/F8/b///	
					,	- 85049	HR 6438			G8 b/	

Table C.1: - Continued. -

45000 9 MD 45493 81 model 9 MD 45493 81 model 9 MD 45493 81 model 9 MD 45493 9 MD 454933 9 MD 45493 9 MD 45493	HIP	other D	mass $[M_{\odot}]$	ag e [Myr]	SpT	HIP	other D	mass [M⊙]	age [Myr]	SpT
Norm Norm Stat 0.4 0.4 2.4 1.0 0.1 0.9<	85069	HD 156693			B9/B9 511/1	86228	* tet Sco			E111
BODD V PN Apa 3 a ² / ₂ 0 a ² / ₂ 6 a BOD BOD 15952 7 4 a 0 a 3 a 4 a 4 a 7 a BW BS11 HD 159705 5 a b a 4 b a 0 a 0 b a 5 b a 4 b a 0 b a	85079	* iot Ara	8.3 ± 0.4	25.4 ± 1.0	B2 ne	86231	HD 159574			B9lb
Bills HD 159948 6.3.1 0.5.7.146 NO Bolail	85095	V* DW Aps	3.8 ± 0.2	10.0 ± 8.4	B6	86238	HD 159652	$6.5\pm~0.3$	31.6 ± 1.7	B3IV
Bills HR (456 JE (1560) 6.4 (1) 0.523 HD (1570) 6.5 (1) 0.5 (2) 7 (2) 1.5 (2) <th1.5 (2)<="" th=""> <th1.5 (2)<="" th=""> <th1.5< td=""><td>85103</td><td>HD 159048</td><td>$6.3\pm~0.5$</td><td><math display="block">63.7 \pm 14.6</math></td><td>K0</td><td>86246</td><td>HR 6557</td><td>$7.9\pm~0.6$</td><td>$35.5\pm~4.5$</td><td>G2Ib</td></th1.5<></th1.5></th1.5>	85103	HD 159048	$6.3\pm~0.5$	63.7 ± 14.6	K0	86246	HR 6557	$7.9\pm~0.6$	$35.5\pm~4.5$	G2Ib
Sills HD 159095 6.4 ± 0.3 0.81 ± 4.5 Bill Bill Bill Bill Bill Bill 8114 HD 15709 0.1 ± 0.4 0.3 ± 1.3 BIN TO ± 0.4 39.8 ± 4.8 BIN 8116 HD 157041 2.2 2.8 ± 3.8 BIN TO ± 0.4 39.8 ± 4.8 BIN 8233 HE 447 BIN	85112	HR 6485			B9.5III	86253	HD 159684	10.0 ± 0.6	14.6 ± 3.3	B2Vne
81358 HD 156709 5.0 ± 0.0 5.0 ± 0.0 85.0 ± 5.7 85.4 8624 * 57 Oph Bell 8119 HD 157241 0.1 ± 0.2 83.5 ± 3.8 BHV 8224 HD 155695 7.0 ± 0.4 95.5 ± 4.4 B111 8119 HD 157241 0.1 ± 0.2 83.5 ± 3.8 BHV 8224 HD 155695 7.0 ± 0.4 95.5 ± 4.4 B111 8111 HD 157241 D.15716 BHV 8642 Y 161503 1.4 ± 0.0 107.2 ± 2.5 A2 82538 HD 157167 BKV 8642 Y 161033 1.4 ± 0.0 107.2 ± 2.5 A2 82538 HD 157867 2.0 ± 0.0 0.1 ± 0.0 R457 HD 15013 7.4 ± 0.3 31.5 ± 0.8 BV/W 83331 HD 157857 2.0 ± 0.0 0.1 ± 0.1 R457 HD 15013 7.4 ± 0.3 31.5 ± 0.8 BV/W 83334 HD 157857 S.0 ± 0.0 0.1 ± 0.1 R457 HD 15013 7.4 ± 0.3 31.5 ± 0.8 BV/W 83334 HD 15785 BV BV/H BHV<	85116	HD 156905	$6.4\pm~0.3$	$50.1\pm~4.5$	B4111	86269	V* V950 Sco			F5lb
Bit P District District <thdistrict< th=""> District <th< td=""><td>85138</td><td>HD 156709</td><td>5.0 ± 0.0</td><td>55.0 ± 5.7</td><td>B5V</td><td>86284</td><td>* 57 Oph</td><td></td><td></td><td>B8II-</td></th<></thdistrict<>	85138	HD 156709	5.0 ± 0.0	55.0 ± 5.7	B5V	86284	* 57 Oph			B8II-
bills in D bill <	85147	HR 6440	9.1 ± 0.4	20.3 ± 1.9	B2IV					IIIMNp
05000 05000 05000 010 05000 05000 010 05000 05000 010 05000 0100000 05000 0100000 05000 000000 05000 000000 05000 000000 05000 000000 05000 000000 05000 000000 05000 0000000 05000 0000000 05000 0000000 05000 00000000 05000 000000000000000 000000000000000000000000000000000000	85159	HD 157241	6.1 ± 0.2	38.5 ± 3.9	B4IV B7III	86291	HD 159845	7.0 ± 0.4	39.8 ± 4.4	B3
Sisting HD ISPA16 BIN Kol	05102 85160	HR 6440			B816/11	86350	HD 158052	20+ 00	20.1 ± 0.3	A0V
BVZ BVV BVV <td>85171</td> <td>HD 157416</td> <td></td> <td></td> <td>B9 </td> <td>86414</td> <td>V* iot Her</td> <td>6.7 ± 0.1</td> <td>36.4 ± 5.6</td> <td>B3V SB</td>	85171	HD 157416			B9	86414	V* iot Her	6.7 ± 0.1	36.4 ± 5.6	B3V SB
BS28 * bat Ara 6.0 ± 0.7 6.7 ± 5.4 K31:L11 B6450 V* V994.5C 6.6 ± 0.3 35.4 ± 2.9 B31/V/V S227 HD 158064 6.9 ± 0.3 47.6 ± 0.0 HD 16.310	85223	HD 157317			B6V	86426	HD 160329	1.8 ± 0.0	12.7 ± 2.5	A2
B527 * gem Ara 12.5 ± 0.7 15.7 ± 0.2 B1b B450 V * G* D*a X = b K 2 b B329 HD 150804 -0 0.4 ± 0.2 K2 1 B467 H E 578 X = b B224 B450 H Z = b B471 B450 H Z = b B471	85258	* bet Ara	$6.9\pm~0.7$	45.7 ± 5.4	K3 b-	86432	V* V994 Sco	$6.6\pm~0.3$	35.4 ± 2.9	B3IV/V
65276 HD 158084 K2 6476 HR 6578 T K2.5 lb K2.5 lb 6533 HD 157857 20.0 ± 0.0 0.1 ± 0.0 O're 64400 HD 150150 T/t ± 0.3 3.6 ± 0.8 Styre 65357 HD 157751 2.0 ± 0.0 0.1 ± 0.0 O're 64567 HD 100323 Styre Styre K1 K3 65357 HD 157751 2.0 ± 0.0 41.8 ± 3.2 Ball 66577 HD 100323 Styre Styre <td>85267</td> <td>* gam Ara</td> <td>12.5 ± 0.7</td> <td>15.7 ± 0.2</td> <td>B1lb</td> <td>86450</td> <td>V* GT Dra</td> <td></td> <td></td> <td>А</td>	85267	* gam Ara	12.5 ± 0.7	15.7 ± 0.2	B1lb	86450	V* GT Dra			А
65204 HD 158038 HD 158039 7.4 ± 0.3 31.6 ± 0.8 B3Vec 65351 HD 157857 20.0 ± 0.0 0.1 ± 0.0 Or 6600 HD 100135 D 0.3 ± 2.0 B4V 65357 HD 157751 2.4 ± 0.0 6.9 ± 2.0.1 Ap 86575 HR 6500 6.3 ± 1.0 7.4 ± 0.0 A.0 65338 HD 157696 B8/101 86770 HD 100235 B311///V 65453 HD 157696 B8/101 86770 HD 100264 B311//V 65454 HD 157696 B8/101 86770 HD 100125 K111//V 65476 <thhd 15776<="" th=""></thhd>	85276	HD 158084	$6.9\pm~0.3$	47.6 ± 8.0	K2	86476	HR 6578			K2.5lb
8333 HD 157857 20 \pm 0.0 \pm 0.0 0.1 \pm 0.0 0.7e 86490 HD 160130 FF // F3I 65357 HD 157721 6.6 \pm 0.4 39.8 \pm 0.0 5311 6.6 \pm 0.4 39.8 \pm 0.0 5311 10.0 \pm 0.0 531 \pm 2.0 B2I 65377 HD 157751 2.6 \pm 0.0 41.8 \pm 3.2 B4II 86657 HD 160333 10.0 \pm 0.0 63.7 \pm 1.0 63.1 \pm 0.0 81/921 65387 HD 157765 D.1 \pm 0.0 47.4 \pm 6.6 B8V B6670 Y* ksp 5cc 10.0 \pm 0.0 2.1 \pm 3.7 AD 65387 HD 157865 B311 B677 HD 160013 2.0 \pm 0.0 2.1 \pm 3.7 AD 65397 HD 157865 B31 B776 HD 160013 2.0 \pm 0.0 2.1 \pm 3.7 HD 111 65404 HD 15786 B31 B779 HD 160013 D B111/1 117345 5701AB HD 16013	85294	HD 158038			K2	86487	HD 160319	$7.4\pm~0.3$	$31.6\pm~0.8$	B3Vne
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	85331	HD 157857	20.0 ± 0.0	0.1 ± 0.0	O7e Kau	86490	HD 160150		12.1 \ 2.6	F3/F511
	85355	* sig Opn HD 157624	66+ 04	30.8 + 6.0	R3IIVar R3III	80508	HD 160335	5.0 ± 0.0	13.1 ± 2.0	B4V B2II
	85372	HD 157751	24 ± 0.0	39.8 ± 0.0 61.9 \pm 28.1	An	86575	HR 6590	63 ± 05	63.7 ± 19.0	G7
15353 HD HD 15773 So ± 0.0 47.4 ± 8.6 B3(F) B6673 HD HD 10.0 ± 0.6 10.9 ± 0.0 20.1 ± 0.3 AD 65358 HD 157636 HD 157636 HD 16021 2.0 ± 0.0 20.1 ± 0.3 AD 65568 HD 157636 HD 165763 HD 16021 2.0 ± 0.0 20.1 ± 0.3 AD 6565 HD 157636 HD 16573 HD 160646 F. H HD	85377	V* V1229 Sco	5.0 ± 0.0	41.8 ± 3.2	B4111	86625	HD 160884	6.3 ± 1.0	63.1 ± 30.4	K5
BASE HR 6502 5.0 ± 0.0 47.4 ± 8.6 BSV B6670 V* kap Sce 10.0 ± 0.2 21.1 ± 1.7 B1.1111 B5587 HD 157665 B5V. B6683 HD 160825 20.1 ± 9.3 AO B5584 HD 157666 B3.1 ± 0.7 33.3 ± 5.9 B011 B6732 HR 6004 HD 160256 FB1 B011 B5453 V* V89 Are B3.3 ± 5.9 B011 B6732 HD 160666 FF K111 B5454 HD 157956 FF B011 B6774 CCDM HD 161256 FF B011 B5454 HD 157957 HD 15642 10.0 ± 0.1 20.2 ± 2.3 B2V B6784 HD 160633 4.4 ± 0.4 4.1 ± 5.4 B111 B5550 HD 155454 10.0 ± 0.1 20.2 ± 2.3 B2V B6784 HD 160573 4.2 ± 0.4 4.1 ± 5.4 B111 B556 HD 15542 10.0 ± 0.1 20.2 ± 2.0 B1.5 B711 B6653 HD 160574	85383	HD 157793			A1 /	86653	HD 160575	$10.0\pm~0.8$	$19.9\pm~0.9$	B1/B211
6537 HD 15769 B8 (B)III 6667 HD 160913 2.0± 0.0 20.1± 9.3 AD 6558 HD 15769 S01/1/II 8670 HF 016025 III MIII 65409 HR 6478 8.3± 0.7 33.3± 5.9 BOIII 8673 HD 16048 IIII MIII 65453 V* V859 Arc B3 ± 0.7 33.3± 5.9 BOIII 8673 HD 16048 IIII BOIII 68454 HD 157986 B3 ± 0.7 33.3± 5.9 BOIII BOIIII BOIIIII BOIIII BOIIIII </td <td>85385</td> <td>HR 6502</td> <td>$5.0\pm~0.0$</td> <td>47.4 ± 8.6</td> <td>B5V</td> <td>86670</td> <td>V* kap Sco</td> <td>10.0 ± 0.2</td> <td>25.1 ± 1.7</td> <td>B1.5 </td>	85385	HR 6502	$5.0\pm~0.0$	47.4 ± 8.6	B5V	86670	V* kap Sco	10.0 ± 0.2	25.1 ± 1.7	B1.5
b5568 HD 157699 HD 157694 HD 157697 HD 156424 HD 1111 HD 157697 HD 156424 HD 1111 HD 15653 HD 157674 HD 15663 HA 4.4 ± 0.4 H3.1 ± 5.4 HD 1111 85549 HD 156424 6.9 ± 0.4 H2.2 ± 5.2 B5111 B679 HD 160754	85387	HD 157865			B8/B9111	86678	HD 160913	2.0 ± 0.0	20.1 ± 9.3	A0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	85398	HD 157698			B5IV:	86683	HD 160825			B9111/1V
B5469 HR 6478 8.± 0.7 33.3 ± 59 B911 B6722 HR 6004 FR 6001 FR 6001 FR 6001 FR 6011	85405	HD 157969			K011/111	86709	V* V965 Her			M1
	85409	HR 6478	8.3 ± 0.7	33.3 ± 5.9	B911	86732	HR 6604			F5II
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	85435	V* V859 Ara				80735	HD 161269			B0111
Barrow B711 J1736-5701AB B711 J1736-5701AB B711 B713 B711 B713 B711 B713 B713 B711 B7	85471	HD 158120			B9/11	86747	CCDM			B9111
3534 HD 157500 4.0 ± 0.0 4.4 ± 5.6 $6/6$ [/]/II 6752 HD 16041 11.6 ± 0.4 14.4 ± 2.0 $B15V$ 85530 HD 155454 10.0 ± 0.1 20.0 ± 2.3 $B2V$ $B6784$ HD 160653 4.4 ± 0.4 43.1 ± 5.4 $B51I$ $G51I$ 85500 HD 158454 6.9 ± 0.7 50.1 ± 7.2 $K51$ $B6790$ HD 160754 $K1 \pm 0.7$ $G61/(11)$ 85600 HD 158374 $E.5$ $B710$ $B6807$ HD 161010 $C.0 \pm 0.0$ 11.0 ± 0.9 $B0$ ne 85767 * bet Dra 6.3 ± 0.5 6.7 ± 2.9 $G21I$ $B6037$ HD 151572 3.9 ± 0.7 $B/1/III$ $B6937$ HD 151572 3.9 ± 0.7 $B/1/III$ $B6694$ HD 161572 3.9 ± 0.7 $B/1/III$ $B6694$ HD 161572 3.9 ± 0.7 $B/1/III$ $B67891$ $B/1/III$ $B67891$ $B/1/III$ $B67891$ $B/1/III$ $B61/IIII$ $B/1/III$ $B/1/IIII$ $B/1/IIII$ $B/1/IIII$ $B/1/IIII$ $B/1/IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	85476	HD 157957			B7111	00111	J17436-5701AB			20111
8550 HR 647 GRI/III 8768 HR 6601 11.6± 0.4 14.4± 0.0 81.5V 8530 HD 158042 6.9± 0.4 43.2± 5.2 BSIII 8679 HD 160754 51.1 51.1 8550 HD 158042 6.9± 0.7 50.1± 7.2 K5 8679 HD 160754 561/III 571.1 8550 HD 15772 K11/III 8668 HD 15101 561/III 561/III 8566 * up Sco 11.4± 0.7 20.0± 3.4 B2/V 8694 HD 161552 0.0 10.0± 0.9 A0 8575 * the fos5 * c Oph 3.9± 0.1 11.0± 0.9 A0V 8694 HD 161573 6.0± 0.1 40.8± 4.3 B4V 8575 # R 650 B71/III 8694 HD 161573 6.0± 0.1 40.8± 4.3 B4V 8575 # D 159239 1.9± 0.0 13.0± 1.2 A2 8696 BD1+33220 0.0± 1.1± 6.8 B5V adop 8578 HR 651 1.9± 0.0 13.0± 1.2 A2 8696 BD1+33220 0.0± 5.0± 0.1 10.4± 0.1 B61/III	85484	HD 157560	4.0 ± 0.0	44.1 ± 5.6	B6/B7IV	86752	HD 160841			B9111
8553 HD 15544 10.0 ± 0.1 20.0 ± 2.3 B2W 8674 HD 15033 4.4 ± 0.4 43.1 ± 5.4 B5/11 8550 HD 158042 6.9 ± 0.7 50.1 ± 7.2 K5 8679 HD 160876 B7/11 8560 HD 158344 K11/1/11 8667 HD 161036 12.0 ± 0.6 0.2 ± 0.0 B0 ne 8566 HD 158374 S 63.7 ± 23.9 G211 8697 HD 15136 2.0 ± 0.0 11.0 ± 0.9 A0 85769 * bet Dra 6.3 ± 0.5 63.7 ± 23.9 G211 86941 HD 151572 3.9 ± 0.0 35.7 ± 16.7 B6V 85758 HD 158219 J J J A0 8654 B1/111 B6044 HD 151572 A0.4 ± 4.3 B4V 85758 HD 158219 J J J B1.2 B6060 W* V320 Oph S.0 ± 0.0 41.3 ± 6.8 B5V 85788 HD 15827 HO 15854 J J B2 B1/11 B7040 HD 161434 J J J A A0 85789 HD 158775 J J <td>85520</td> <td>HR 6487</td> <td></td> <td></td> <td>G811/111</td> <td>86768</td> <td>HR 6601</td> <td>11.6 ± 0.4</td> <td>14.4 ± 2.0</td> <td>B1.5V</td>	85520	HR 6487			G811/111	86768	HR 6601	11.6 ± 0.4	14.4 ± 2.0	B1.5V
85569 HD 158042 6.9 ± 0.4 43.2 ± 5.2 B5111 86790 HD 160875 S611 85560 HD 158874 K11/111 86807 HD 16101 G611/111 85660 HD 157772 B7/Bill 8684 HD 1610675 G611/111 85670 * bt Dra 6.3 ± 0.5 6.3 ± 0.5 6.3 ± 0.5 6.3 ± 0.5 6.3 ± 0.5 6.3 ± 0.5 6.3 ± 0.5 86941 HD 1610568 2.0 ± 0.0 0.0 M10 ± 0.9 A0 85768 HD 158219 B71/111 86944 HD 161572 3.9 ± 0.0 35.7 ± 0.7 A0/a 85753 HC 6505 B71/111 86944 HD 161573 6.0 ± 0.1 40.8 ± 4.3 B4V 85753 HD 159239 1.9 ± 0.0 13.0 ± 1.2 A2 86966 BH-39 3226 adOp adOp 85754 HD 158554 5.0 ± 0.0 8.7 ± 7.1 B311 87040 HD 161312 3.2 ± 0.1 56.4 ± 1.5 B6V 85851 HD 158754 5.0 ± 0.0 8.7 ± 7.1 B311 8706	85530	HD 155454	$10.0\pm\ 0.1$	20.0 ± 2.3	B2V	86784	HD 160653	4.4 ± 0.4	43.1 ± 5.4	B5111
B5550 HD 158869 6.9 ± 0.7 50.1 ± 7.2 K5 86799 HD 160170 B7/II B607 B7/II 85600 HD 155772 K11//III 66037 HD 16100 12.0 ± 0.6 0.2 ± 0.0 B0 ne G61//III 85666 * bet Dra 6.3 ± 0.5 63.7 ± 23.9 G2I 86937 HD 155522 F0I/w F0I/w 85757 * bet Dra 0.3 ± 0.5 63.7 ± 23.9 G2I 86941 HD 161572 3.9 ± 0.0 31.0 ± 0.9 A0 85758 HD 155219 B4/B9111 86944 HD 161573 6.0 ± 0.1 40.8 ± 4.3 B4V 85758 HC 159239 1.9 ± 0.1 1.1 ± 0.9 A0 86954 HD 161377 6.0 ± 0.1 40.8 ± 4.3 B4V 85783 HD 159239 1.9 ± 0.0 13.0 ± 1.2 A2 86966 B0 + 39 3226 sdOp sdOp 8579 * al Ara 8.6 ± 0.2 13.8 ± 6.2 B2/ne 87033 HD 161312 3.3 ± 0.3 10.0 ± 1.1 B61//II 85851 HD 158755 4.0 ± 0.0 8.7 + 7.1 B3II 87040	85549	HD 158042	$6.9\pm~0.4$	43.2 ± 5.2	B5III	86790	HD 160754			G511
bit	85560	HD 158869	$6.9\pm~0.7$	50.1 ± 7.2	K5	86799	HD 160876			B7111
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	85600	HD 158374				86807	HD 161101	120 06		G6 / B0:=-
bosing	85670	* bet Dra	63+ 05	63.7 ± 23.0	G211	00004 86937	HD 155522	12.0 ± 0.0	0.2 ± 0.0	E011w
85728 HD 158219 B8/B9III 86944 HD 161572 3.9 ± 0.0 35.7 ± 16.7 B6V 85751 HR 6505 S7 60.5 $57.5 \pm c$ 0.1 1.1 ± 0.9 $A0V$ 86944 HD 161573 6.0 ± 0.1 40.8 ± 4.3 $B4V$ 85755 $\pm c$ 0.1 1.1 ± 0.9 $A0V$ 86946 V^* V2320 Oph 5.0 ± 0.0 41.3 ± 6.8 $B5V$ 85783 HR 6513 $E8/G01b$ 87030 HD 161312 3.3 ± 0.3 10.0 ± 7.1 $B6II/III$ 85724 $* alf$ Ara 8.6 ± 0.2 13.8 ± 6.2 $B2Vne$ 87033 HD 161312 3.3 ± 0.3 10.0 ± 7.1 $B6II/III$ 85722 $* alf$ Ara 8.6 ± 0.2 13.8 ± 6.2 $B2Vne$ 87033 HD 161312 3.3 ± 0.3 10.0 ± 7.1 $B6II/III$ 8585 HD 158754 5.0 ± 0.0 8.7 ± 7.1 $B3III$ 87072 V^* X Sgr 6.5 ± 0.2 51.7 ± 6.8 $71I$ 85865 HD 158959 9.1 ± 0.5 23.6 ± 2.1 $B2II$ 87072 V^* X Sgr 6.5 ± 0.2	85696	* ups Sco	11.4 ± 0.7	20.0 ± 3.4	B2IV	86941	HD 161658	2.0 ± 0.0	11.0 ± 0.9	A0
85751 HR 6505 * c Oph 3.9 ± 0.1 1.1 ± 0.9 A0V 86949 HD 161327 6.0 ± 0.1 40.8 ± 4.3 B4V 85763 HR 6520 3.9 ± 0.1 1.1 ± 0.9 A0V 8696 V* V320 Oph 6.0 ± 0.1 40.8 ± 4.3 B4V 85783 HR 6510 5.0 ± 0.0 41.3 ± 6.8 B5V sdOp 85786 HR 6513 $$	85728	HD 158219			B8/B9III	86944	HD 161572	3.9 ± 0.0	35.7 ± 16.7	B6V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	85751	HR 6505			B711/111	86949	HD 161327			A0 ab- b
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	85755	* c Oph	$3.9\pm~0.1$	$1.1\pm~0.9$	A0V	86954	HD 161573	$6.0\pm~0.1$	40.8 ± 4.3	B4V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	85783	HR 6520			B911/111	86960	V* V2320 Oph	$5.0\pm~0.0$	41.3 ± 6.8	B5V
85/88 HR 6513 F8/G01b 87030 HD 161434 4.0 ± 0.0 50.6 ± 11.5 B6V 85792 * alf Ara 8.6 ± 0.2 13.8 ± 6.2 B2Vne 8703 HD 161312 3.3 ± 0.3 0.0 ± 7.1 B6II/III 85827 HD 158364 5.0 ± 0.0 8.7 ± 7.1 B3II 8704 HD 161378 B3II B3III B3III B3III B3III B3IIII B3III B3IIIII B3IIII B3IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	85785	HD 159239	$1.9\pm~0.0$	13.0 ± 1.2	A2	86986	BD+39 3226			sdOp
3512^{-1} 1314^{-1} 3.5 ± 0.2 13.5 ± 0.2 31.7 ± 0.8 $311/11$ 85827 HD 158574 4.0 ± 0.0 20.0 ± 17.6 $B511/11$ 87068 HD 161644 $A311/11$ 85860 HD 158879 9.1 ± 0.5 23.6 ± 2.1 $B211$ 87073 HR 615 12.2 ± 0.1 16.5 ± 0.5 $F711$ 85867 HD 1588767 HD 53.5 ± 0.2 51.7 ± 6.8 $F711$ 85902 HD 158747 B911 87099 HR 6617 8.7 ± 0.6 30.3 ± 51 $63/6516$ 85902 HD 158747 B911 87107 HD 162094 6.3 ± 0.0 17.1 ± 1.8 $B3/7$ 85927 V* Iam Sco 12.5 ± 0.7 15.3 ± 0.6 $B1.5 V + \ldots$ 87107 $V \times V3236$ Oph 6.7 ± 0.3 $50.1 \pm$	85788	HR 6513	96 00	120 60		87030	HD 161434	4.0 ± 0.0	56.6 ± 11.5	B6V
3531HD15375 4.0 ± 0.0 20.0 ± 17.6 B511/11 87070 HD 161644 $3311/11$ 85851HD158960 $68/K011+$ 87072 $V^* X Sgr$ 6.5 ± 0.2 51.7 ± 6.8 $F711$ 85865HD158859 9.1 ± 0.5 23.6 ± 2.1 B211 87073 HR 6615 12.2 ± 0.1 16.5 ± 0.5 $F31a$ 85885HD158859 9.1 ± 0.5 23.6 ± 2.1 B211 87073 HR 6615 12.2 ± 0.1 16.5 ± 0.5 $F31a$ 85892HD158747B911/11 87089 HD 161561 8.7 ± 0.6 30.3 ± 5.1 $G3/G51b$ 85919HD158846 7.0 ± 0.4 32.3 ± 1.5 B51V: 87105 HD 6.3 ± 0.0 17.1 ± 1.8 B3V85927V*lam Sco 12.5 ± 0.7 15.3 ± 0.6 B1.5/V + 87107 V* $V2386$ Oph 6.7 ± 0.3 50.1 ± 4.3 M85937HD158781B7111 87134 HD161649B3/HB3/HB3/H86026HD159041B7111 87134 HD161667B3/HB3/H86031HD159504 2.4 ± 0.1 35.6 ± 23.7 B9B7111 87134 HD 61676 B3/H86046HD159504 2.4 ± 0.1 35.6 ± 23.7 B9B7111 87220 HR 6221 6.9 ± 0.2 48.8 ± 6.2 B3/H86068HR6530B91111 3.6 ± 2.3 <t< td=""><td>65792 85827</td><td>HD 158584</td><td>8.0 ± 0.2 5.0 ± 0.0</td><td>13.0 ± 0.2 8.7 ± 7.1</td><td>B3III</td><td>87040</td><td>HD 161312</td><td>5.5 ± 0.5</td><td>10.0 ± 7.1</td><td>B8II</td></t<>	65792 85827	HD 158584	8.0 ± 0.2 5.0 ± 0.0	13.0 ± 0.2 8.7 ± 7.1	B3III	87040	HD 161312	5.5 ± 0.5	10.0 ± 7.1	B8II
85860HD 158960G8/K0II+87072V* X Sgr 6.5 ± 0.2 51.7 ± 6.8 F7I85885HD 158859 9.1 ± 0.5 23.6 ± 2.1 B2II87073HR 6615 12.2 ± 0.1 16.5 ± 0.5 F3Ia85890HD 158747B9IB9III87085HD 161561B8IIB8II85902HD 158846 7.0 ± 0.4 32.3 ± 1.5 B5IV:87102HD 161575B9IIIsp.85913HD 158846 7.0 ± 0.4 32.3 ± 1.5 B5IV:87105HD 162094 6.3 ± 0.0 17.1 ± 1.8 B3V85927V* Iam Sco 12.5 ± 0.7 15.3 ± 0.6 B1.5IV+87107V* V2386 Oph 6.7 ± 0.3 50.1 ± 4.3 M85937HD 158781EB5III87127HD 161013EB8III85972HD 159091EB7III87139CCDM 4.0 ± 0.1 12.8 ± 4.4 B5/B6V86026HD 159041EB9II/III87139CCDM 4.0 ± 0.1 12.8 ± 4.4 B5/B6V86031HD 159504 2.4 ± 0.1 35.6 ± 23.7 B987181HD 161667B8Ib/II86046HR 6530B9IIII87191V* V393 Sco 7.7 ± 0.5 32.5 ± 6.4 B3III86107HD 159736 9.3 ± 0.8 27.8 ± 7.3 K587230HD 161654 2.4 ± 0.1 52.1 ± 39.1 B9V861617HD 159380EB8III87239HD 162633 7.9 ± 1.0 37.4 ± 10.2 K586162HD 159380 <td>85851</td> <td>HD 158775</td> <td>4.0 ± 0.0</td> <td>20.0 ± 17.6</td> <td>B511/111</td> <td>87068</td> <td>HD 161644</td> <td></td> <td></td> <td>A311/111</td>	85851	HD 158775	4.0 ± 0.0	20.0 ± 17.6	B511/111	87068	HD 161644			A311/111
85885 HD 158859 9.1 ± 0.5 23.6 ± 2.1 B2II 87073 HR 6615 12.2 ± 0.1 16.5 ± 0.5 F3Ia 85889 HR 6523 B9Ib/II 87085 HD 161561 B8II 85902 HD 158747 B9III 87099 HR 6617 8.7 ± 0.6 0.3 ± 5.1 G3/G5Ib 85903 HD 158846 7.0 ± 0.4 32.3 ± 1.5 B5IV: 87105 HD 161575 0.0 17.1 ± 1.8 B3V 85927 V*Iam Sco 12.5 ± 0.7 15.3 ± 0.6 B15V+ 87107 V* V2386 Oph 6.7 ± 0.3 0.0 ± 1.4 ± 4.4 B5/H5 85937 HD 159091 F3.3 ± 0.5 B5III 8714 87134 HD 161013 F3.4 B8/H1 85023 HD 159091 F3.3 ± 0.5 B9I//III 87139 CCDM 4.0 ± 0.1 12.8 ± 4.4 B5/B6V 86026 HD 159504 2.4 ± 0.1 35.6 ± 23.7 B9 87181 HD 16167 D2 48.8 ± 6.2 B3Vn 86046 HD 159504 2.4 ± 0.1 35.6 ± 23.7 B9 87181 HD 16167 D2 48.8 ± 6.2 <	85860	HD 158960			, G8/K0⊞+	87072	V* X Sgr	$6.5\pm~0.2$	51.7 ± 6.8	F711
85889 HR 6523 B9lb/II 87085 HD 161561 B8II 85902 HD 158747 B9III 87099 HR 6617 8.7±0.6 30.3±5.1 G3/G5lb 85903 HD 158806 7.0±0.4 32.3±1.5 B5IV: 87105 HD 162094 6.3±0.0 17.1±1.8 B3V 85927 V*lam Sco 12.5±0.7 15.3±0.6 B5III 87107 V*V2386 Oph 6.3±0.0 17.1±1.8 B3V 85937 HD 158781 FIS.3±0.6 B5III 87127 HD 161013 B8/H0 B8/H0 B8/H0 85023 HD 159091 FIS.3±0.6 B9/H/III 87134 HD 161649 12.8±4.4 B5/B6V 86024 HD 159041 FIS.3±0.6 B6/V 714 B711 87134 HD 161649 12.8±4.4 B5/B6V 86026 HD 159504 2.4±0.1 35.6±2.37 B9 87181 HD 16167 B81b/II B604 86046 HD 159504 2.4±0.1 35.6±2.37 B9 87181 HD 16167 B81b/II B6167 B81b/II 86068 HR 6525 <	85885	HD 158859	9.1 ± 0.5	23.6 ± 2.1	B211	87073	HR 6615	12.2 ± 0.1	16.5 ± 0.5	F3la
85902 HD 158747 B9III 87099 HR 6617 8.7 ± 0.6 30.3 ± 5.1 G3/G5lb 85903 HD 158800 A6II 87102 HD 161575 B1 B9IIIIsp 85919 HD 158846 7.0 ± 0.4 32.3 ± 1.5 B5IV: 87105 HD 162094 6.3 ± 0.0 17.1 ± 1.8 B3V 85927 V* Iam Sco 12.5 ± 0.7 15.3 ± 0.6 B5IV: 87107 V* V386 Oph 6.7 ± 0.3 0.01 ± 4.3 M 85937 HD 159761 B5III 87127 HD 161013 B8/H9 H9/H 86023 HD 159920 B7III 87134 HD 161649 0.1 12.8 ± 4.4 B5/B6V 86026 HD 159041 B9H/HI 87139 CCDM 4.0 ± 0.1 12.8 ± 4.4 B5/B6V 86046 HD 159504 2.4 ± 0.1 3.6 ± 23.7 B9 87181 HD 161667 B8Ib/II 86064 HR 6530 B9 S7181 HD 161854 2.4 ± 0.1 52.1 ± 39.1 B9IV 86107 HD 159736 9.3 ± 0.8 27.8 ± 7.3 K5 8720 <td>85889</td> <td>HR 6523</td> <td></td> <td></td> <td>B9 b/ </td> <td>87085</td> <td>HD 161561</td> <td></td> <td></td> <td>B811</td>	85889	HR 6523			B9 b/	87085	HD 161561			B811
85903HD158800A6II87102HD161575B9IIIspB9IIIsp85919HD158846 7.0 ± 0.4 32.3 ± 1.5 B5IV:87105HD162094 6.3 ± 0.0 17.1 ± 1.8 B3V85927V* Iam Sco 12.5 ± 0.7 15.3 ± 0.6 B1.5IV+87107V* V2386 Oph 6.7 ± 0.3 50.1 ± 4.3 M85937HD158761B5III87127HD161013EB8III85972HD159091B5III87134HD161649B8I/91b/II86023HD159320B9Ib/II87139CCDM 4.0 ± 0.1 12.8 ± 4.4 B5/B6/V86026HD159041B9Ib/II87139CCDM 4.0 ± 0.1 12.8 ± 4.4 B5/B6/V86046HD159504 2.4 ± 0.1 35.6 ± 23.7 B987181HD161667B8/b/II86046HD159504 2.4 ± 0.1 35.6 ± 23.7 B987181HD161667B8/b/II86046HD159504 2.4 ± 0.1 35.6 ± 23.7 B987181HD161667B8/b/II86088HR6525B5II/III87200HR6628B8/b/IIB8/b/II86126HD159380S7.8 \pm 7.3K587230HD161854 2.4 ± 0.1 52.1 ± 39.1 B9V86153V* V959 HerB8/II87239HD162060 1.8 ± 0.0 14.0 ± 3.7 A386155K <td< td=""><td>85902</td><td>HD 158747</td><td></td><td></td><td>B9111</td><td>87099</td><td>HR 6617</td><td>$8.7\pm~0.6$</td><td>$30.3\pm~5.1$</td><td>G3/G5Ib</td></td<>	85902	HD 158747			B9111	87099	HR 6617	$8.7\pm~0.6$	$30.3\pm~5.1$	G3/G5Ib
85919 HD 158846 7.0 ± 0.4 32.3 ± 1.5 B5IV: 87105 HD 162094 6.3 ± 0.0 17.1 ± 1.8 B3V 85927 V* lam Sco 12.5 ± 0.7 15.3 ± 0.6 B1.5IV+ 87107 V* V386 Oph 6.7 ± 0.3 50.1 ± 4.3 M 85937 HD 158761 B5III 87107 V* V386 Oph 6.7 ± 0.3 50.1 ± 4.3 M 85972 HD 159091 B5III 87127 HD 161013 B8I//B B8//B//B 86023 HD 159320 B9II/III 87139 CCDM 4.0 ± 0.1 12.8 ± 4.4 B5/B/I 86026 HD 159041 B9Ib/II J17482-3644AB J17482-3644AB B8//B B8//B/I 86031 HD 159111 3.6 ± 0.3 8.9 ± 6.0 B6IV 87163 HR 6621 6.9 ± 0.2 48.8 ± 6.2 B3Vn 86046 HD 159504 2.4 ± 0.1 35.6 ± 23.7 B9 87181 HD 161667 B8/b/II 86088 HR 6520 B5II/III 8720 HR 6628 B8/b/II B8/b/II 86107 HD 159736 9.3 ± 0.8 27.8 ± 7.3	85903	HD 158800	70 0 0 0	22.2 4 1 5	A6II	87102	HD 161575		171 1 1 0	B9 sp
35927 V*1411 3c0 12.3 \pm 0.7 15.3 \pm 0.0 B1.51V \mp 87107 V*12300 Opin 0.7 \pm 0.3 30.1 \pm 4.3 M 85977 HD 158781 B5111 87127 HD 161013 B8111 85972 HD 159001 B7111 87134 HD 161049 B8111 86023 HD 159320 B7111 87134 HD 161649 B8/B91b/11 86026 HD 159041 B91b/11 3.6 \pm 0.3 8.9 \pm 6.0 B61V 87163 HR 6621 6.9 \pm 0.2 48.8 \pm 6.2 B3Vn 86046 HD 159504 2.4 \pm 0.1 35.6 \pm 23.7 B9 87181 HD 161667 B81b/11 86086 HR 6530 B9111 87191 V* V393 Sco 7.7 \pm 0.5 32.5 \pm 6.4 B3111 86088 HR 6525 B511/111 8720 HR 6628 B81b/11 86080 HD 159736 9.3 \pm 0.8 27.8 \pm 7.3 K5 87230 HD 161854 2.4 \pm 0.1 52.1 \pm 39.1 ByU 86107 HD 159736 9.3 \pm 0.8 27.8 \pm 7.3 K5 87230 HD 161854	85919	HD 158846	7.0 ± 0.4	32.3 ± 1.5	B1EV	87105	HD 162094	6.3 ± 0.0	17.1 ± 1.8	B3V
63597 HD 150101 6111 6112 HD 160103 50111 6011 85972 HD 159001 B7111 87134 HD 161649 B8/B/II 86023 HD 159320 B7111 87134 HD 161649 B8/B/II 86026 HD 159041 B91b/II J17482-3644AB J17482-3644AB B5/B6V 86046 HD 159504 2.4 ± 0.1 35.6 ± 23.7 B9 87181 HD 161667 B8/b/II 86088 HR 6530 B911/11 87.6 ± 23.7 B9 87181 HD 161667 B8/b/II 86086 HD 159736 9.3 ± 0.8 27.8 ± 7.3 K5 87230 HD 161854 2.4 ± 0.1 52.1 ± 39.1 B9/V 86126 HD 159736 9.3 ± 0.8 27.8 ± 7.3 K5 87230 HD 161854 2.4 ± 0.1 52.1 ± 39.1 B9/V 86126 HD 159380 B8/II 87239 HD 162060 1.8 ± 0.0 14.0 ± 3.7 A3 86127 CCDM B8/II 87234 HD 162060 1.8 ± 0.0 14.0 ± 3.7 A3 86127 CCDM B8/II <td< td=""><td>03927 85037</td><td>V Tam 300</td><td>12.5 ± 0.7</td><td>15.5 ± 0.0</td><td>B1.5IV +</td><td>87127</td><td>V⁺ V2380 Орп НD 161013</td><td>0.7 ± 0.3</td><td>50.1 ± 4.5</td><td>B8III</td></td<>	03927 85037	V Tam 300	12.5 ± 0.7	15.5 ± 0.0	B1.5IV +	87127	V ⁺ V2380 Орп НD 161013	0.7 ± 0.3	50.1 ± 4.5	B8III
86023 HD 159320 B1// III 87139 CCDM 4.0 ± 0.1 12.8 ± 4.4 B5/B6V 86026 HD 159041 B9Ib/II J17482-3644AB J17482-3644AB B1// III 8.6 ± 0.3 8.9 ± 6.0 B6IV 87163 HR 6621 6.9 ± 0.2 48.8 ± 6.2 B3Vn 86046 HD 159504 2.4 ± 0.1 35.6 ± 23.7 B9 87181 HD 161667 B8Ib/II 86088 HR 6530 B9III 87191 V* V393 Sco 7.7 ± 0.5 32.5 ± 6.4 B3III 86086 HD 159736 9.3 ± 0.8 27.8 ± 7.3 K5 87230 HD 161854 2.4 ± 0.1 52.1 ± 39.1 B9V 86126 HD 159380 B8II 87239 HD 162060 1.8 ± 0.0 14.0 ± 3.7 A3 86127 CCDM B8III 87244 HD 162163 7.9 ± 1.0 37.4 ± 10.2 K5 86227 CCDM B8III 87251 HD 162318 7.4 ± 0.7 39.8 ± 2.9 K2 J17373-4915AB S7260 HD 161672 F2II	85972	HD 159091			B7111	87134	HD 161649			B8/B916/11
86026 HD 159041 B9b/II J17482-3644AB 86031 HD 159111 3.6 ± 0.3 8.9 ± 6.0 B6IV 87163 HR 6621 6.9 ± 0.2 48.8 ± 6.2 B3Vn 86046 HD 159504 2.4 ± 0.1 35.6 ± 23.7 B9 87181 HD 161667 B8Ib/II 86064 HR 6530 B9III 87191 V* V393 Sco 7.7 ± 0.5 32.5 ± 6.4 B3III 86088 HR 6525 B5II/III 87220 HR 6628 B8Ib/II 86017 HD 159736 9.3 ± 0.8 27.8 ± 7.3 K5 87230 HD 161854 2.4 ± 0.1 52.1 ± 39.1 B9V 86126 HD 159380 B8II 87239 HD 162060 1.8 ± 0.0 14.0 ± 3.7 A3 86153 V* V959 Her M1I 87244 HD 162163 7.9 ± 1.0 37.4 ± 10.2 K5 86227 CCDM B8III 87251 HD 162318 7.4 ± 0.7 39.8 ± 2.9 K2 J17373-4915AB S7260 HD 161672 F2II	86023	HD 159320			B911/111	87139	CCDM	4.0 ± 0.1	$12.8\pm~4.4$	B5/B6V
86031 HD 159111 3.6 ± 0.3 8.9 ± 6.0 B6IV 87163 HR 6621 6.9 ± 0.2 48.8 ± 6.2 B3Vn 86046 HD 159504 2.4 ± 0.1 35.6 ± 23.7 B9 87181 HD 161667 B8Ib/II 86064 HR 6530 B9III 87191 V* V393 Sco 7.7 ± 0.5 32.5 ± 6.4 B3III 86088 HR 6525 B5II/III 8720 HR 6628 B8Ib/II B8Ib/II 86017 HD 159736 9.3 ± 0.8 27.8 ± 7.3 K5 87230 HD 161854 2.4 ± 0.1 52.1 ± 39.1 B9V 86126 HD 159380 B8II 87239 HD 162060 1.8 ± 0.0 14.0 ± 3.7 A3 86127 CCDM B8III 87244 HD 162163 7.9 ± 1.0 37.4 ± 10.2 K5 86227 CCDM B8III 87251 HD 162318 7.4 ± 0.7 39.8 ± 2.9 K2 17373-4915AB F2 S7260 HD 161672 F2II F2II	86026	HD 159041			B9lb/II		J17482-3644AB			
86046 HD 159504 2.4 ± 0.1 35.6 ± 23.7 B9 87181 HD 161667 B8(h/l) 86064 HR 6530 B9(II) 87191 V* V393 Sco 7.7 ± 0.5 32.5 ± 6.4 B3(II) 86088 HR 6525 B5(I/II) 8720 HR 6628 B8(b/l) 86107 HD 159736 9.3 ± 0.8 27.8 ± 7.3 K5 87230 HD 161854 2.4 ± 0.1 52.1 ± 39.1 B9V 86126 HD 159380 B8(II) 87239 HD 162060 1.8 ± 0.0 14.0 ± 3.7 A3 86153 V* V959 Her M1/I 87244 HD 162163 7.9 ± 1.0 37.4 ± 10.2 K5 86227 CCDM B8/II 87251 HD 162318 7.4 ± 0.7 39.8 ± 2.9 K2 17373-4915AB S7260 HD 161672 F2/I F2/I	86031	HD 159111	3.6 ± 0.3	$8.9\pm~6.0$	B6IV	87163	HR 6621	6.9 ± 0.2	48.8 ± 6.2	B3Vn
86064 HR 6530 B9III 87191 V* V393 Sco 7.7 ± 0.5 32.5 ± 6.4 B3III 86088 HR 6525 B5II/III 8720 HR 6628 B8Ib/II 8607 HD 159736 9.3 ± 0.8 27.8 ± 7.3 K5 8720 HD 161854 2.4 ± 0.1 52.1 ± 39.1 B9V 86126 HD 159380 B8II 87239 HD 162060 1.8 ± 0.0 14.0 ± 3.7 A3 86153 V* V959 Her M1II 87244 HD 162163 7.9 ± 1.0 37.4 ± 10.2 K5 86227 CCDM B8III 87251 HD 162318 7.4 ± 0.7 39.8 ± 2.9 K2 17373-4915AB F2II S7260 HD 161672 F2II F2II	86046	HD 159504	2.4 ± 0.1	35.6 ± 23.7	B9	87181	HD 161667			B8 b/
80088 HR 6525 B5II/III 8720 HR 6628 B8Ib/II 86107 HD 159736 9.3 ± 0.8 27.8 ± 7.3 K5 8720 HD 161854 2.4 ± 0.1 52.1 ± 39.1 B9V 86126 HD 159380 B8II 87239 HD 162060 1.8 ± 0.0 14.0 ± 3.7 A3 86137 V* V959 Her M1II 87244 HD 162163 7.9 ± 1.0 37.4 ± 10.2 K5 86227 CCDM B8III 87251 HD 162163 7.4 ± 0.7 39.8 ± 2.9 K2 J17373-4915AB F2II 87260 HD 161672 F2II	86064	HR 6530			B9111	87191	V* V393 Sco	7.7 ± 0.5	32.5 ± 6.4	B3111
ool // HD 159730 9.3 ± 0.8 27.8 ± 7.3 K5 87230 HD 161854 2.4 ± 0.1 52.1 ± 39.1 B9V 86126 HD 159380 B8II 87239 HD 162060 1.8 ± 0.0 14.0 ± 3.7 A3 86153 V* V959 Her M1II 87244 HD 162163 7.9 ± 1.0 37.4 ± 10.2 K5 86227 CCDM B8III 87251 HD 162163 7.4 ± 0.7 39.8 ± 2.9 K2 J17373-4915AB 87260 HD 161672 F2II	86088	HR 6525		07.0 7.0	B5 /	87220	HR 6628	24 - 25	F0 1 / 00 F	B816/11
bit bit <td>86126</td> <td>HD 159/30</td> <td>9.3± 0.8</td> <td>21.8 ± 1.3</td> <td>K5 8811</td> <td>87230 87220</td> <td>HD 162060</td> <td>2.4 ± 0.1</td> <td>52.1 ± 39.1 14.0 \pm 2.7</td> <td>V3 RAA</td>	86126	HD 159/30	9.3± 0.8	21.8 ± 1.3	K5 8811	87230 87220	HD 162060	2.4 ± 0.1	52.1 ± 39.1 14.0 \pm 2.7	V3 RAA
86227 CCDM B8III 87251 HD 162318 7.4 ± 0.7 39.8 ± 2.9 K2 J17373-4915AB 87260 HD 161672 F2II	86153	V* V959 Her			M11	87244	HD 162163	1.0 ± 0.0 79+10	14.0 ± 3.7 37.4 + 10.2	K5
J17373-4915AB 87260 HD 161672 F2II	86227	CCDM			B8III	87251	HD 162318	7.4 ± 0.7	39.8 ± 2.9	K2
	-	J17373-4915AB				87260	HD 161672			F2

Table C.1: - Continued. -

HIP	other D	mass	age	ЅрТ	HIP	other D	mass	age	Sp⊤
		[M⊙]	Wiyr				[M⊙]	[Wiyr]	
87277	HD 161877			B611/111	88258	* 6 Sgr	$10.0\pm~2.1$	22.6 ± 4.7	K2
87280 87294	* z Her HR 6631	8.8± 0.2	29.8 + 3.3	Dpsn A6∣b	88270 88294	HD 164129 HR 6708			B7/B8 /
87298	HD 161931	0.0 ± 0.2	2010 1 010	B9111	88305	HD 164809			K0 -
87314	V* V539 Ara	7.9 ± 0.1	25.0 ± 0.6	B2V +	88309	HD 164320	5.6 ± 0.3	63.1 ± 15.7	B711
07045				B3V	88312	HD 164321	$6.8\pm~0.6$	43.2 ± 3.5	B511/111
87345 87370	V* RY Sco HR 6632			FOID B9 5111/1V	88328	HD 103878 * 96 Her	71 ± 01	39.8 + 8.5	G8II/III B3IV
87397	HD 162089	$6.5\pm~0.2$	$2.6\pm~2.2$	B2111	88346	* 97 Her	6.1 ± 0.1	11.7 ± 2.3	B3Vn
87430	HD 162648	$6.9\pm~0.8$	$50.1\pm~7.2$	K5	88369	HD 164455	$7.1\pm~0.3$	29.4 ± 1.6	B2111/IV
87436	HD 162559	$1.7\pm~0.0$	14.0 ± 3.7	A3	88380	* 7 Sgr			F2/F3 /
87460	V* V957 Sco			B0111/1V	88399	HD 164249	1.4 ± 0.1 5.5 ± 0.5	15.9 ± 4.9 31.6 ± 5.6	F5V B3111
87504	HD 163113	$6.3\pm~0.5$	63.7 ± 13.7	K0	88411	V* GX Dra	6.2 ± 0.8	51.0 ± 5.0 63.7 ± 17.6	K0
87505	HD 162418	7.0 ± 0.3	$20.0\pm~4.3$	B2	88434	V* V978 Her			M5 -
87508	HD 162494	7.3 ± 0.3	11.6 ± 5.9	B2/B3V	88439	HD 164738	7.2 ± 0.4	34.8 ± 5.9	B3111
87513	HD 162775	6.2 ± 0.7	63.7 ± 14.6		88443	HD 163927	5.0 ± 0.0	63.1 ± 13.2	B5111 B215 /11
87522	HR 6652			B9111	88475	HD 164546	<i>1.0</i> ⊥ 0.4	20.0 1.9	B811/111
87560	V* V958 Sco			B8/B9III	88496	HD 315032	$7.4\pm~0.4$	$1.5\pm~0.5$	B2Vne
87567	HR 6657	$5.4\pm~0.4$	63.1 ± 19.3	B4111	88504	HD 164945			B911/111
87588	HD 162779	$3.2\pm~0.1$	10.0 ± 7.1	B6:16+	88518	HD 166091		29.2 16.0	K5 - BE\/-
87673	HR 0008 HD 162381	3.0 ± 0.0	12.6 ± 9.5	B9.5/AUIII B8/B9III	88541	HD 164776 HD 164972	4.0 ± 0.0	28.2 ± 10.9	E5Vn F2/F3
87698	HD 162888			B9.5	88561	HD 165177	$1.9\pm~0.1$	42.9 ± 30.6	A2
87712	HD 163017	7.0 ± 0.2	$20.6\pm~4.2$	B2 /	88562	HD 165473			K0
87722	HR 6671			B9.5	88567	V* W Sgr			GOIB/II
87728	HD 162765			F3 / F2 5	88568	HD 165435 V* V354 Pay			F3 M3 /
87742	HD 157756			G811	88629	HD 165063	$6.2\pm~0.2$	39.0 ± 2.4	B4ne
87747	V* V441 Her	9.2 ± 0.5	26.7 ± 3.4	F2 avar	88652	HD 165319	14.8 ± 0.9	5.0 ± 1.3	O9.51ab
87788	LHS 3340	$0.9\pm~0.0$	50.1 ± 23.3	G4	88670	HR 6755			B8 -IV
87798	HD 163139 * tot Hor	70 06	271 - 56	B9.5 K1 yar	88671	HR 6757	01 + 08	<u>22 0 ⊥ 16</u>	G8IIp B3III
87809	HD 163227	7.9 ± 0.0	37.4 ± 5.0	B6/B7III	88702	HD 165293	9.1 ± 0.8	23.0 ± 4.0	БЗШ G8 / +
87812	V* V2052 Oph	10.0 ± 0.4	22.5 ± 3.6	, B2IV-V	88711	V* V712 CrA			M411
87819	HD 163296	2.3 ± 0.1	4.9 ± 1.1	A1V	88714	* tet Ara	$8.9\pm~0.1$	28.2 ± 5.1	B2lb
87821	HD 162895	21 01	100 71	B8	88720	HD 165365			B7/B8111
87844	HD 163273	5.1 ± 0.1	10.0 ± 7.1	В7 /	88738	HD 165383			B9111
87853	HD 163274			B9111/1V	88743	V* V832 Ara			G8/K0 / p
87864	HD 162806			K0	88760	HR 6762	$10.0\pm\ 1.7$	15.7 ± 1.0	B1/B2 b
87866	HR 6690			B9111	88774	BD-07 4561	2.0 ± 0.0	50.1 ± 36.3	A0
87869	HD 162932 HD 163428	9.8 ± 1.8	23.4 ± 6.8	F2117111 K511	88821	HR 6782 HD 166093	1.8 ± 0.0	14.0 ± 3.7	K3
87886	V* V1092 Sco	7.6 ± 0.2	8.5 ± 1.1	B5Vn	88824	HD 165470	$6.5\pm~0.2$	2.8 ± 1.8	B2111
87897	HD 163304	3.2 ± 0.1	10.0 ± 5.7	B7III	88828	HD 165688	15.0 ± 1.1	0.2 ± 0.1	W N
87928	HD 163071	$9.2\pm~0.5$	23.8 ± 2.9	B4111	88829	BD+15 3370	2.0 ± 0.0	20.1 ± 9.3	A0
87953 87074	HD 163072	28+ 03	10.0 + 6.8	A8 B8	88855 88856	V* AX Sgr HD 165763	7.1 ± 0.5 7.8 ± 5.1	47.6 ± 9.7 5.0 \pm 2.7	G5la WC
87998	V* nu. Her	6.5 ± 0.3	50.0 ± 0.0	F211	88859	HR 6759	1.0 1 3.1	J.0 ⊥ 2.1	B7/B811
88004	HD 163522	6.3 ± 0.1	1.2 ± 1.0	B1 ab:p	88876	V* V4381 Sgr	7.0 ± 0.4	44.7 ± 2.2	A2/A3lab
88012	HR 6692	$8.1\pm$ 0.5	28.8 ± 4.2	B3 /	88880	HD 166410	2.0 ± 0.0	67.2 ± 25.4	A0
88055	HD 164252	7.0 ± 0.4	39.8 ± 3.2	A1V	88884	V* V4382 Sgr * 102 Her	7.5 ± 0.3	1.2 ± 0.3	B1/B2 B2 \/
88109	HD 163745	1.9 1 0.0	J9.0 ⊥ 20.0	B5	88888	HD 164750	10.0 ± 0.1	20.0 1.1	K0 /
88111	HD 164235	2.0 ± 0.0	20.0 ± 8.3	A0	88943	HD 165921			В6Ш:
88123	HD 163868	8.9 ± 0.2	13.4 ± 1.7	B2/B3V∶n e	88966	HD 165794			A7/A811
88126	HD 164002	$9.2\pm~0.4$	$12.3\pm~2.5$	B1/B2	88981	HR 6785		106 20	K1II
08128 88137	ээ нег HD 164103	6.0 + 0.3	27.5 ± 2.5	B3IV	88982 88984	HD 166144	5.4 ± 0.4 7.9 ± 0.5	12.0 ± 3.9 32.7 ± 5.7	ылу К2
88147	HD 163900	0.0 - 0.0		B8/B911	88995	HD 314031			B0.5V
88149	* 66 Oph	8.8 ± 0.1	14.2 ± 3.6	B2Ve	89029	HD 166167			B9.5 ab
88156	HIP 88156	$12.0\pm~0.8$	$0.1\pm~0.0$	B Ba (Balli	89060	HD 166287	8.9 ± 0.8	19.0 ± 2.5	B1lb
88102	HD 104165 * 67 Oph	84 + 10	332 + 80	ва/ваш В21Р	89061 89107	HD 100291 HD 166417	5.0 ± 0.1	10.0 ± 8.4	взн В911/111
88193	HD 164188	8.2 ± 0.6	7.0 ± 4.2	B1 b/	89121	HD 166198			B7/B811
88201	HD 164222	7.0 ± 0.2	28.4 ± 2.8	B3V	89135	HD 166138	3.7 ± 0.1	2.5 ± 1.3	B511
88213	HR 6719	9.0 ± 0.1	21.0 ± 1.8	B2IV	89146	HD 166326			B9111

Table C.1: - Continued. -

HIP	other D	mass [M⊙]	age [Myr]	SpT	HIP	other D	mass [M _☉]	age [Myr]	Sp⊤
89164	V* V4159 Sgr	77 ± 03	155 ± 0.3	B11b	89956	V* V4029 Sgr	10.1 ± 2.0	15.8 ± 1.1	B4:lae
89176	HD 166425	36 ± 03	16 ± 0.5	B6III	89963	V* V4030 Sgr	12.4 ± 0.7	11.0 ± 1.1 11.4 ± 0.9	B2/5[a(e)
89189	HD 166450	7.2 ± 0.4	34.8 ± 3.4	B4111	89968	V* Y Sør	12.11 ± 0.1	11.1 1 0.5	F8
89217	HD 165938	4.7 ± 0.3	31.9 ± 7.0	B5	89975	HD 168957	7.4 ± 0.1	31.6 ± 5.2	B3V
89224	HD 166453	5.9 ± 0.4	50.1 ± 6.3	B5	89977	HR 6873	7.0 ± 0.1	30.8 ± 0.8	B3Ve
89263	HD 166803	6.6 ± 0.3	10.0 ± 0.9	B1/B2 b	89992	HD 168675	6.3 ± 0.3	0.9 ± 0.6	B2 b/
89279	HR 6826			, B9 n	90001	V* V4390 Sgr	10.1 ± 0.6	20.0 ± 4.2	, B9V:
89290	V* V692 CrA	$7.7\pm~0.3$	32.2 ± 5.6	B2.5111	90018	HD 167991			G5 /
89302	HD 166789			B6III	90034	HD 168814			A1 b
89330	HD 166790			B711	90062	HD 168917	$9.0\pm~0.2$	10.6 ± 2.7	B0/B0.5 /
89357	HD 166861			B8/B9111	90071	BD+04 3722	$2.7\pm~0.1$	$7.0\pm~2.9$	B8
89361	HD 166810			B8/B9111	90074	V* V4050 Sgr			B7 b/
89366	HD 166968			B811/111	90081	HD 168936			A1 p
89382	HR 6774			B7/B8 /	90096	HR 6881			B5V
89384	HD 167067	$3.3\pm~0.1$	1.6 ± 0.6	B6V	90113	V* V4393 Sgr	$6.8\pm~1.3$	48.1 ± 10.9	K5/M0111:
89386	HD 166751			K3la	90185	KAUS			B9.5III
89391	HD 167244	$2.0\pm~0.0$	$20.1\pm$ 8.4	A0		AUSTRALIS			
89392	HD 167016			B8111/IV	90200	HR 6875	$6.3\pm~0.2$	$0.9\pm~0.7$	B2.5Vn
89394	HD 166252			F0	90206	HD 168596			B7III
89397	HD 167279	7.4 ± 0.7	42.8 ± 8.9	K5	90228	HD 169417	$1.8\pm~0.0$	12.7 ± 2.5	A2
89404	HD 167003	9.6 ± 0.4	0.4 ± 0.3	B1 b/	90231	HD 168791			K3 /
89413	BD+14 3460	2.0 ± 0.0	20.1 ± 9.3	A 0	90252	BD+16 3492	2.8 ± 0.3	10.0 ± 6.8	B8
89453	HD 167335			B7111	90289	* 21 Sgr	7.9 ± 0.1	39.8 ± 4.6	A1/A2V
89492	HD 167782			GBII	90295	HD 169798	7.2 ± 0.2	23.2 ± 1.5	B2.5IV-V
89502	HD 167233	6.1 ± 0.1	40.8 ± 0.9	B3111	90314	HD 170027	6.9 ± 0.4	50.1 ± 6.5	K2
89511	HD 167433	501 00		B711/111	90336	HR 6893		100 00	B7111
89519	HD 167497	5.0 ± 0.0	3.3 ± 2.4	BZID	90361	HD 170028	6.2 ± 0.1	13.0 ± 2.3	B3V D1U
89535 90FF1	ESU 457-2	7.4 ± 0.5	4.0 ± 2.1		90309	HD 109073	9.0 ± 0.4	19.8 ± 1.1	BIID
09331	HD 169260	7.0 ± 0.1	0.9 ± 0.0		90377	HD 170051	0.0 ± 0.2	0.3 ± 0.2	D2V D2IL
80557	HD 167212	0.3 1 0.0	56.2 ± 11.0	R011/111	90302		6.0 ± 1.7	22.0 ± 4.4 21.1 ± 3.7	B3V
89557	HD 167633	15.0 ± 10.0	23 ± 22	06	90398	HD 169657	5.4 ± 0.1	21.1 ± 3.7 63 1 ± 13 9	B511
89605	HR 6819	63 ± 0.0	465 ± 64	B3IIIne	90422	* alf Tel	60 ± 0.0	241 ± 70	B3IV
89617	HD 167506	0.0 1 0.0	10.0 1 0.1	G8II	90426	HD 170287	2.0 ± 0.0	20.1 ± 8.4	A0
89630	HR 6841	17.9 ± 3.1	2.3 ± 0.7	08/09	90443	HD 170054	4.0 ± 0.0	33.5 ± 12.4	B6IV
89637	V* RS Sør	6.6 ± 0.1	26.3 ± 4.9	B3/B4IV/V	90452	HD 169679	6.2 ± 0.7	44.7 ± 5.1	B8/B9111
89641	HD 167838	13.7 ± 3.1	11.1 ± 1.5	, B3la/lab	90453	HD 170230	2.0 ± 0.0	12.9 ± 2.4	A0
89646	HD 167898	$2.0\pm~0.0$	$20.1\pm~9.3$	A0	90488	HD 170559	$8.4\pm~0.8$	32.5 ± 8.3	K0
89647	HD 167815	$8.5\pm~0.5$	$0.7\pm~0.5$	B1/B2	90494	HR 6919			B8111/1V
89659	HD 167863			B611/111	90497	HR 6928			B8111-1V
89660	HD 167686			B811	90507	HD 169791			B8III
89677	HR 6851	$6.4\pm~0.2$	$50.1\pm~6.4$	B5V	90515	HD 170015			B911
89678	HR 6842	$6.3\pm~0.6$	58.5 ± 17.8	K3III	90552	V* V493 Sct	$9.2\pm~0.6$	$19.1\pm~1.6$	B1 ab
89681	V* MY Ser	24.3 ± 7.7	$3.2\pm~0.5$	08/9f	90589	BD-04 4476			B3
89683	HR 6854	$7.9\pm~0.7$	37.4 ± 8.2	K5	90599	V* V451 Oph	$2.4\pm~0.1$	42.0 ± 29.8	B9V
89688	HD 168201	6.3 ± 0.9	63.1 ± 24.9	К5	90604	HR 6921			B9
89708	HD 167846			B7/B8111	90610	HR 6929	13.7 ± 1.9	11.4 ± 1.6	B2Vnne
89736	HD 168080	9.6 ± 0.3	15.8 ± 1.4	B1 b/	90661	HD 170429			B6/B7Ib/II
89737	HD 166925	2.6 ± 0.1	57.7 ± 30.2	B9111	90676	HR 6941	9.9 ± 0.1	19.5 ± 2.9	B2V
89743	BD-13 4930	15.0 ± 1.1	0.2 ± 0.1	09.50	90692	HR 6940			G811-111
89755	HD 108245				90701	HD 170510	22 00	E0.2 6.E	B9.5111
09775		204 01	224 07		90707	* 22 Sar	3.3 ± 0.2	50.5 ± 0.5	
80780	HD 168413	2.9 ± 0.1 6 2 \pm 0.0	3.2 ± 0.7 63.1 ± 20.8	K2	00740	25 Jgr	72+02	62 ± 36	B116
89828	HD 168393	0.2 1 0.9	05.1 ± 29.0	F511	90761	V* OT Ser	7.2 ± 0.2 7.6 ± 0.5	39.8 ± 4.4	B5
89831	HD 168352	63 ± 02	56 ± 41	B211	90768	HD 170714	96 ± 0.3	23 ± 19	B1Vne
89856	HD 168444	11.9 ± 1.0	6.3 ± 3.2	09.5/B0lab	90784	HD 170700	7.2 ± 0.2	0.5 ± 0.4	B1/B2 b/
89859	HD 168236	11.5 1 1.0	0.0 1 0.2	B5111	90791	V* X Sct	1.2 2 0.2	0.0 1 0.1	E5
89864	HD 167917			K1 /	90797	V* nu. Pav			B8111
89866	HD 168062			B6	90804	DS 18259-1052	10.0 ± 0.3	15.8 ± 1.4	B2V
89874	V* FK Ser	1.0 ± 0.2	0.5 ± 0.3	K5Ve+K7Ve	90815	V* V357 Pav			B8111
				Li	90821	HD 170502	$3.0\pm~0.0$	57.3 ± 12.1	B8V
89896	HD 168655	$6.2\pm~0.5$	63.1 ± 13.9	K5	90853	HR 6938	$7.7\pm~0.1$	39.8 ± 5.3	B3
89902	HD 167806	$7.0\pm~0.1$	$0.3\pm~0.2$	B2V	90871	HD 170640			B9
89910	HD 167918			B5	90872	HD 170798	$1.8\pm~0.1$	47.4 ± 33.9	A2
89920	HR 6856			K2	90886	HD 171383	8.9 ± 1.3	$30.5\pm~9.8$	K5
89933	HD 168552	$7.7\pm~0.5$	27.3 ± 4.0	B2/B3 b/	90897	HD 170904			B811
89938	HD 168567	6.3 ± 1.0	57.7 ± 24.9	K3111	90905	* d Dra	7.8 ± 0.2	39.8 ± 5.7	F7lb
89955	V* V715 CrA			A0 / (p)	90913	V* V450 Sct	12.5 ± 1.2	15.8 ± 1.3	K3lab

Table C.1: - Continued. -

			141						
HIP	other D	mass [M _☉]	age [Myr]	Sp⊤	HIP	other D	mass [M⊙]	age [Myr]	Sp⊤
90927	HD 170196			B9	92055	V* RZ Oph			F3lb e
90939	HD 170991			K0/K1 /	52000	t ne opn			comp
90950	V* V4398 Sgr	15.6 ± 1.7	8.4 ± 0.7	B0 a/ab	92056	HR 7117			K0 -
90953	HD 170978	6.2 ± 0.1	31.5 ± 2.3	, B3III/IV	92072	HD 173047			B8/B911
90970	HR 6971	$6.1\pm~0.2$	41.6 ± 7.9	B4V	92073	HD 174157	$1.8\pm~0.1$	12.0 ± 1.9	A2
90971	V* V2393 Oph			B8⊞p SiSr∷	92076	HD 173846	2.8 ± 0.1	2.7 ± 0.6	B8
90992	HD 170943			B5111	92123	HD 173705	$1.8\pm~0.0$	13.9 ± 3.6	A3
91003	HD 171198	$20.0\pm~0.0$	$0.1\pm~0.0$	07:	92130	HD 173357			M2/M311/111
91004	* 24 Sgr	12.1 ± 0.3	20.0 ± 4.2	K3111	92133	HR 7084	8.9 ± 0.2	24.6 ± 3.5	B2.5V
91014	HR 6960	10.0 ± 0.3	21.3 ± 1.8	B2III/IV	92136	HR 7055	9.2 ± 0.6	24.7 ± 2.0	F2lb-11
91043	V* V889 Her	1.2 ± 0.0	28.8 ± 4.5	GUV R2115	92154	HD 1/35/0 * bot Sot			B7III/IV G5II
91049		7.8 ± 0.2	23.5 ± 1.5	6211p	92175				G911
91050	* 25 Sgr	84 + 07	318+63	F211	92170	118472+3124AB			don (
91119	HR 6984	0.4 ± 0.1	51.0 ± 0.5	B5Vn	92202	V* R Sct	10.0 ± 0.7	25.1 ± 4.7	K0 bpvar
91130	HD 171348	7.9 ± 0.1	3.6 ± 3.0	B2Vnne	92216	HD 174125	2.6 ± 0.1	3.9 ± 1.6	A
91149	HD 171352			K1	92228	HD 174126			K2
91161	HD 171683	2.9 ± 0.1	14.2 ± 10.7	B8	92235	V* V356 Sgr			B9111
91233	HD 171874			F611	92243	HR 7081	6.6 ± 0.2	35.1 ± 4.9	B3IVp
91235	HR 6997			B8 - p	92271	HD 174180			K1 -
91238	HD 171611	$6.3\pm~0.4$	31.6 ± 1.5	B3IV	92301	HR 7072	$6.8\pm~0.5$	$53.4\pm~3.5$	A1V +
91251	HD 171662	$6.3\pm~0.6$	59.1 ± 17.2	K3/K4III					K1
91267	HD 171690			B9111:	92316	NOVA Aq 1918	12.0 ± 0.8	0.1 ± 0.0	sdB(Nova)
91276		70 0 0 0	22.2 5.6	GBID	92319	HD 174298	8.1 ± 0.2	18.4 ± 3.1	B1.5IV
91292	V* V/1/ CrA	7.9 ± 0.5	33.3 ± 5.0	GOLCINIV	92390	* 29 Sgr	5.9 ± 0.4	71.3 ± 20.1	K2111
91302	HD 171696	0.3 1 1.0	51.9 ± 23.1	R5	92391	HD 174391	0.3 ± 0.3 7 1 ± 0 1	20.8 ± 3.7	R3V
91352	CCDM	10.8 ± 1.6	14.2 ± 0.9	B2V	92398	* 8 Lvr	7.0 ± 0.0	39.8 ± 7.8	B3IV
	J18379-0023AB				92429	HD 174170			G511/111
91359	V* V534 Lyr			B91b	92434	HD 174485	$7.0\pm~0.2$	$50.1\pm~6.3$	A0
91369	HR 6989			B811/111	92456	HD 174328	$6.7\pm~0.5$	51.7 ± 12.5	K1 /
91373	V* XY Lyr			M4.511	92478	V* HS Her			B5111 SB
91380	HD 171878			B9.5111/IV	92486	HD 229700	$2.0\pm~0.1$	20.1 ± 9.3	A0V
91405	HR 6990			B8III	92488	HR 7094	7.9 ± 0.3	37.4 ± 5.5	F2lb
91444	HD 172470	7.4 ± 0.7	42.4 ± 8.7	K5	92490	CD-41 13159B	2.4 ± 0.1	36.5 ± 24.6	B9111
91477	V* V452 Sct			A3:la	92512	V* omi Dra			K0 - SB
91499	HR 7008		201 0 2	F8 b-	92521	HD 174467			A311
91556	HD 172425	2.0 ± 0.0	20.1 ± 9.5	FOULUU	92525	HD 174232 HD 174517			B5III
91598	HD 172508			K0 -	92550	HR 7112			K1 -
91599	HD 172488	9.6 ± 0.4	5.5 ± 4.7	B0.5V	92590	HD 175081	5.0 ± 0.0	34.0 ± 6.9	B5n
91659	HD 172744			K2	92609	*∣am Pav	$12.5\pm~0.8$	$15.8\pm~0.2$	B2 -
91677	HR 7014	$8.6\pm~0.7$	26.9 ± 4.3	F2/F3 b/	92657	HD 343306	$3.0\pm~0.1$	29.9 ± 25.2	B8
91707	HR 7033	$5.9\pm~0.2$	63.1 ± 15.3	B5V	92671	HD 174801			B8/B911
91713	HD 172535	$6.9\pm~0.3$	$32.8\pm~4.7$	B3IV/V	92680	V* PZ Tel	$1.2\pm~0.0$	12.8 ± 1.7	K0Vp
91777	HD 172579			B5111/1V	92687	HR 7093	$6.2\pm~0.1$	55.6 ± 10.9	B4111
91809	HD 173214	2.0 ± 0.0	11.0 ± 0.9	A0	92728	* 11 Lyr	7.9 ± 0.1	21.1 ± 2.3	B2.5V
91816	HD 173171	2.4 ± 0.0	23.9 ± 15.7	B9	92729	HD 175863	7.9 ± 0.1	34.6 ± 7.9	B4Ve
91820	HK /041	0.2± 0.1	03.5 ± 15.9	K.5 D.5	92733	HD 174919 * 22 Sav	0.2 ± 0.7	03.1 ± 21.6	K2111 C2 /K011
91022	HD 172854	66+ 04	385 + 12	вэ В3Ш	92747	33 Sgr HD 174073			30/ NUII B8111 / W
91828	BD+35 3342B	0.0 ± 0.4 20 + 01	30.5 ± 1.3 201 + 93	A0	92758	* 32 Sgr	79 ± 02	374 + 59	K1
91845	* eps Sct	2.0 1 0.1	20.1 2 0.0	G811	92763	HD 175060	1.5 ± 0.2	0111 1 0.0	B8/B9
91851	HD 173034	6.3 ± 0.5	63.7 ± 13.7	K0	92780	HD 174996	5.7 ± 0.3	17.9 ± 3.5	B3IV
91874	HD 172756	$4.0\pm~0.0$	$12.3\pm~3.5$	B5	92787	V* V913 Aq			M511
91879	HD 342867	$3.1\pm~0.1$	22.5 ± 18.4	B8	92791	V* del02 Lyr			M4IIvar
91898	HD 173525	$6.2\pm~0.2$	63.1 ± 16.2	K5	92808	HD 175046			B711
91909	HD 173274	2.0 ± 0.1	20.1 ± 9.3	A0	92814	HR 7119	$10.0\pm\ 0.2$	25.1 ± 1.7	B311
91910	V* V1331 Aq	$10.0\pm~0.1$	2.6 ± 0.5	B1Vvar	92834	HD 175142	$1.8\pm~0.0$	14.0 ± 3.7	A3:m
91911	HIP 91911	7.5 ± 0.4	4.0 ± 2.0	WC	92845	* 35 Sgr			K1 b/
91918	HR 7029	7.2 ± 0.1	0.7 ± 0.6	B2V	92852	HD 175277		01.6 1	B811/111
91964	HD 172583	$2.0\pm~0.0$	39.8 ± 26.8	A1mA8-F0	92855		7.6 ± 0.2	31.6 ± 6.2	B2.5V
91974	HR 7035			BOILI BOILI	92865	V* V1182 Aq	20.0 ± 0.0	0.1 ± 0.0	U8:Vnn Mave
91987	HD 173571			BAIII CAII	92871	VT V1285 Aql	0.4 ± 0.1	15.9 ± 0.6	IVIZVe ROV
01080 ATA99	HR 7031			G4∏ K1/K2∭⊥	92904 92010	11D 115344	1.0 ± 0.3 0.8 ± 0.0	3.0 ± 2.5 54.6 + 5.6	62 V
92034	HD 173388	6.8 ± 1.1	50.1 ± 12.6	G5 b	92919	HR 7128	0.0 1 0.0	J 4 .0⊥ 5.0	B6111
92038	HD 173375	6.8 ± 0.3	48.8 ± 4.9	B5111	92957	HD 175803	6.6 ± 0.2	23.6 ± 1.4	B3V
92041	* phi Sgr			B8.5III	92963	HR 7143			B9111
					92975	HD 174583			K0 /

Table C.1: - Continued. -

HIP	other ID	mass [M _O]	ag e [Myr]	SpT	HIP	other D	mass [M⊙]	age [Myr]	ЅҏҬ
02070	UD 175008	20 00	20.1 9.4	A (1) (02762	HB 7330			Dollin -
92979	V* V686 CrA	2.0 ± 0.0	20.1 ± 0.4	B3V	93769	HD 177427			B9IIIe
93000	HD 175623			B8 /	93796	HD 177812	6.8 ± 0.2	2.9 ± 1.9	B1 b
93014	HD 175478	$4.0\pm~0.1$	41.1 ± 20.5	B6V	93808	V* V550 Lyr	6.6± 0.1	25.8 ± 5.4	B3V
93015	V* kap Pav			F5lb-II:	93815	* rho Tel	2.6 ± 0.1	1.5 ± 0.2	F7V
93024	HD 176052	$2.7\pm~0.1$	$3.6\pm~0.8$	А	93836	HD 177880	4.0 ± 0.0	$15.9\pm~3.1$	B5V
93034	HD 176132	$6.3\pm~0.8$	63.1 ± 23.8	K5	93849	HD 177816			B7
93051	* 64 Ser * 36 Sar	70 - 01	20 8 - 4 5	В9Шр Во Бњ	93867	* 18 Aql			B0111
93065	HD 175773	4.6 ± 0.4	48.9 ± 1.2	B5.010	93895	HD 177907			B9111
93085	* 37 Sgr		10:0 1 1:2	G8/K011/111	93906	HD 177913			B811/111
93111	HD 176230			K1	93907	V* V551 Lyr	$5.0\pm~0.0$	$34.0\pm$ 8.0	В5
93118	HD 175876	19.9 ± 0.6	1.2 ± 1.3	07/08	93913	HD 178660	6.2 ± 0.5	63.7 ± 14.6	K2
93124	V* FF Aq	$7.0\pm~0.2$	$46.0\pm~3.8$	F8Ib	93934	HD 177989	6.3 ± 0.2	3.8 ± 3.2	B211
93132	HR 7155	10.0 1.5	15.0 1.0	B8III Dan(93941	BD+42 3250	12.0 ± 0.8	0.1 ± 0.0	B2 B2 (B0)
93171 93175	HD 176254 HR 7171	10.0 ± 1.5	15.8 ± 1.0	BZIV BZIULIV	93952 03074	HD 178070 HD 178540			B8/B9111
93177	V* V543 Lvr	6.4 ± 0.1	21.8 ± 3.1	B3V	93996	HR 7249	10.0 ± 1.0	21.5 ± 1.8	B2V
93194	SULAFAT			B9111	94014	HD 178268			K0
93210	V* V545 Lyr	$5.0\pm~0.0$	48.9 ± 3.0	B5IV	94094	V* FM Aq	6.2 ± 0.5	50.8 ± 3.0	F2IV
93213	HD 176063			B9.5111	94103	HD 178717	$8.1\pm~0.7$	34.1 ± 10.7	Кр
93218	HR 7173	12.5 ± 0.5	15.3 ± 1.3	B2Vp	94141	* 41 Sgr			F2 /
93225	HR 7166	5.0 ± 0.0	30.9 ± 6.9	B4V	94149	HR 7269	68 02	F0 1 7 1	B5Vn DEV
93234	HD 176185			BSIL/II	94157	ΠΚ 1251 * het CrA	0.8 ± 0.2	50.1 ± 7.1	
93264	HD 176165	4.0 ± 0.0	55.7 ± 25.7	B6IV	94198	CCDM			B911/111
93279	* lam Lyr	6.3 ± 0.7	58.4 ± 18.9	K3III		J19106-6003AB			,
93299	V* LV Dra	$6.6\pm~0.1$	$9.5\pm~2.8$	B2.5IV	94243	HR 7268			B7 /
93340	* 49 Dra			G5 bCN	94247	HD 179104	$6.9\pm~0.2$	$50.1\pm~6.5$	K0
93348	HD 176800	2.4 ± 0.1	25.1 ± 17.0	B9	94260	HD 179218	$3.0\pm~0.0$	$2.3\pm~0.6$	B9
93368	HD 176269	3.0 ± 0.0	2.9 ± 0.9	B7/B8V	94274	HD 178929		20.1 0.2	B711/111
93378	HR 7202	1.5 ± 0.0	9.5 ± 1.2	B5V	94301	HD 230855 HR 7273	2.0 ± 0.0	20.1 ± 9.5	F8/G0lb/II
93395	HD 176818	$9.2\pm~0.2$	$0.3\pm~0.2$	B1V	94351	HD 179959	$6.2\pm~0.5$	63.7 ± 14.6	K0
93396	HD 176914	$7.9\pm~0.7$	29.0 ± 6.4	B5	94356	HD 179007			B7/B8Ib
93404	HR 7200	$9.4\pm~0.3$	20.9 ± 2.3	B2IV-V	94378	HD 179029	4.0 ± 0.0	28.2 ± 16.0	B5V
93411	HD 176630	6.3 ± 0.2	47.1 ± 3.6	B4IV	94385	* 20 Aq	$8.6\pm~0.3$	$29.0\pm~4.2$	B3V
93412	HD 176383	1.3 ± 0.0	24.4 ± 4.5	F5V	94391	CCDM			B4
93413	HD 177000	5.0 ± 0.0 2.0 \pm 0.1	31.1 ± 8.1 0.1 ± 0.1	ВЭ К1Ш	01/3/	J19127-3351BC	63+ 06	60.1 ± 13.7	K2111
93417	HD 176737	2.0 1 0.1	0.1 ± 0.1	K4 -	94436	HD 179784	0.5 ± 0.0	00.1 ± 13.7	G5lb
93420	HD 176337			G811CN	94443	V* V366 Pav			M311/111
93423	HR 7182	$7.9\pm~0.7$	38.5 ± 6.7	K3	94445	HD 179785			K3 -
93425	HD 176386	$2.6\pm~0.1$	$3.0\pm~0.3$	B9IV	94477	V* V1288 Aq			B8 -
93437	HR 7212	$5.0\pm~0.0$	48.9 ± 2.9	B5IV	94481	* eta Lyr	10.0 ± 1.3	22.5 ± 3.3	B2.5IV
93449	V* R CrA			Abilevar	94492	HD 179298	62 - 07	60 1 ± 12 6	G8II/III K2IIICN
93458	HD 176745			A011/111	94524	HD 179987	0.3 ± 0.7 71 + 04	47.6 ± 9.7	K2
93480	HD 176661			B811/111	94528	HD 180656	111 2 0.1	11.0 1 3.1	K1
93484	HD 337487	$2.8\pm~0.3$	$10.0\pm~6.8$	B8	94550	HD 179770	$1.9\pm~0.1$	11.4 ± 1.3	A1V
93488	HR 7208	$6.3\pm~0.6$	60.3 ± 14.0	K2111	94589	HD 178000	1.9 ± 0.1	34.7 ± 23.0	A1m
93501	HD 176783			B8/B911	94611	HD 179391			F2/F3 /
93502	V* V599 Aq	7.9 ± 0.1	3.9 ± 2.8	B2V	94621	HD 179808			B9
93510	HD 177303	7.1 ± 0.0 1 0 \pm 0 0	43.3 ± 0.3 40.8 ± 34.2	KU A 2	94624	HR 7300 HD 180110			G811-111 B811
93536	HD 176923	1.9 1 0.0	49.0 ± 34.2	B8 b/	94679	HR 7305			B5V
93537	HR 7203	$6.3\pm~0.6$	58.6 ± 12.0	K011/111	94685	V* V473 Lyr			F6 b-
93581	HD 177015	$6.3\pm~0.3$	$36.1\pm~1.5$	B4Vn	94703	* 1 Vul	$6.9\pm~0.1$	$50.1\pm~8.9$	B4IV
93602	HD 176500			K0 /	94713	* tet Lyr	6.9 ± 0.1	$50.1\pm~8.9$	K0
93621	HD 177593			B5	94716	HD 181653	$8.0\pm~0.3$	$7.3\pm~2.0$	B1 -
93629	HD 176522	60 10	62 1 / 07 2	G6 / K5	94730	V* RY Sgr			Ср
93031 93634	BD+29 3460	0.2 ± 1.0 20 + 00	03.1 ± 27.3 201 + 84	ς 20	94740 94747	HD 180587			вэ В911
93642	HD 177433	2.0 1 0.0	20.1 _ 0.4	K011-111	94750	HD 180180	1.5 ± 0.1	41.9 ± 29.6	A8IV
93680	HD 177648	$9.0\pm~0.3$	$13.4\pm~3.0$	B2Ve	94761	V* V1428 Aq	0.2 ± 0.0	10.2 ± 3.2	M3.5V
93689	HD 177076	2.2 ± 0.1	6.2 ± 1.7	B9.5V	94773	HD 180660			K2II+
93732	V* V1441 Aq	7.0 ± 0.2	$31.6\pm\ 1.0$	B3V	94774	V* V342 Aq			A411
93740	HD 177423			B511	94793	V* V1449 Aq	7.1 ± 0.2	21.8 ± 3.1	B1.5 -
93750	HD 177700			B811	94805	HD 180740	2.0 ± 0.0	11.0 ± 0.9	A0
					94000	110 100/21	1.0 ± 0.1	12.0 _ 1.9	H4

Table C.1: - Continued. -

HIP	other D	mass [M -]	age [Myr]	SpT	HIP	other D	mass [M -]	age [Myr]	SpT
		[**:0]	[iviyi]				[[wiyi]	
94807	HD 180538			B8II	95898	HR 7412	6.3 ± 0.7	63.1 ± 13.9	K5 b
94822	V* RS Vu∣ V* ES Vu∣	126 ± 0.0	85 + 23	BO SIV	95911	HD 184239	7.7 ± 0.9	37.4 ± 10.5 30 ± 1.6	K5 B8/B0\/
94839	HD 180629	5.0 ± 0.1	7.3 ± 4.4	B3111	95940 95947	ALBIREO	2.0 1 0.0	5.9 ± 1.0	K3 +
94843	HD 182270	7.4 ± 1.3	43.8 ± 7.9	K5	95952	HD 183570			B5111
94859	HD 180699	$5.9\pm~0.2$	63.1 ± 13.9	B5V	95953	HR 7419			B9.5III
94876	HD 181164	6.1 ± 0.3	56.9 ± 7.7	B5	95961	HD 183734			В5
94885	* 23 Aq			K2 - var	95987	HD 183793	$6.3\pm~0.5$	63.7 ± 13.7	K0
94899	HD 180183	$5.6\pm~0.4$	$2.6\pm~1.8$	B3Vn	96003	V* V1817 Cyg			K2II-
94910	V ↑ U Sge * 24 A -			B8III + K	06045	UD 192000	75 00	41.4 \ 10.1	III comp
94915	HR 7335	91 ± 02	20.9 ± 1.6	B2IV	90045	* 8 Cvg	7.5 ± 0.9 7.3 ± 0.3	41.4 ± 10.1 30.8 ± 0.0	R2 B3IV
94937	HD 181330	9.3 ± 0.8	27.1 ± 6.3	K5	96075	HD 184108	1.5 ± 0.5	55.0 ± 5.0	B9111
94947	HD 181360	6.2 ± 0.2	15.8 ± 0.7	B3V	96115	HD 338529			B5
94962	HD 181492	$7.8\pm~0.1$	34.2 ± 2.4	B3V	96130	HD 183899			B1/B2
94986	HR 7316			B4111	96132	HD 182687			K0
95001	HD 181658			к	96150	HD 184176	$6.3\pm~0.8$	63.1 ± 19.7	K3
95073	* d Aql			B9111	96196	HD 184279	14.7 ± 0.9	7.5 ± 1.3	B0.5IV
95082	V* V1452 Aq			F5la	96221	HD 183861	1.9 ± 0.0	35.5 ± 22.8	AIV
95101	BD+34 3505	20 ± 00	110 ± 0.9	A0	96275	* 9 Vul	0.3 ± 0.7	23.0 1 4.5	B8IIIn
95138	HD 181574	6.3 ± 1.0	63.1 ± 28.1	K5	96313	HD 184761	1.9 ± 0.0	28.4 ± 21.7	A3
95147	HD 181963	$7.8\pm~0.2$	$2.5\pm~1.5$	B2V	96357	HD 185117	7.3 ± 1.0	42.8 ± 13.7	К5
95159	V* V4199 Sgr	5.0 ± 0.0	48.9 ± 13.2	B5111	96362	V* V1671 Cyg	$7.9\pm~0.1$	$3.5\pm~2.4$	B2V
95163	V* Z Vul	5.0 ± 0.1	$4.7\pm~3.7$	B5V	96428	HR 7449			K0 -
95176	* ups Sgr	6.3 ± 0.4	63.7 ± 14.7	F2p	96453	HD 184597			B4111
95197	CCDM	$5.3\pm~0.2$	$1.4\pm~0.7$	B2.5V	96468	* iot Aq			B5
05207	J19220+2230AB	4000	114 - 57	DE	96481	HR /450 * kon Ad	156 - 11	10.0 + 0.2	
95207	HD 182078	4.0 ± 0.0 6.8 ± 0.1	11.4 ± 0.7 04 + 03	B3 B2V	96491	HR 7467	15.0 1 1.1	10.0 1 0.2	B511-111
95219	HR 7347	5.0 ± 0.0	1.0 ± 0.6	B3IVp	96495	HD 184890			B8111/IV
95251	HD 181271			κοιι/ΙΙΙ	96503	HR 7466			в5V ́
95260	V* V377 Vu			B6111	96546	HD 185435	$7.9\pm~0.7$	37.4 ± 8.0	K5
95261	* eta Tel	2.2 ± 0.1	$5.3\pm~0.5$	A0Vn	96565	HD 185336			А
95270	HD 181327	$1.5\pm~0.0$	14.4 ± 2.6	F5/F6V	96599	V* V339 Sge			K3IIp
95306	HR 7381			B9	96608	HD 185418	12.6 ± 1.2	5.7 ± 3.6	B0.5V
95323	HD 182090	63 + 08	63.7 ± 14.6	GSIL	90018	HD 185003	2.0 ± 0.0 12.0 ± 0.6	59.0 ± 20.0 2 0 \pm 1 7	BOUU
95365	BD+27 3377	4.2 ± 0.2	31.3 ± 19.8	B5	96665	V* sig Ag	7.2 ± 0.3	31.8 ± 4.0	B3V +
95372	* 2 Cyg	7.0 ± 0.1	39.8 ± 7.8	B3IV		8 - 4			B3V
95400	HR 7374	4.0 ± 0.0	56.6 ± 26.0	B5V	96671	HD 185605	$7.8\pm~0.6$	29.0 ± 6.4	В5
95403	V* V370 Pav			M411	96688	V* V340 Sge	$10.6\pm~1.4$	22.5 ± 1.4	M0 ab- b
95408	HR 7355	$7.9\pm~0.0$	$5.2\pm~2.0$	B2Vnn					SB
95442	HD 182386			B9	96693	* 14 Cyg			B9111
95443 05476	HD 182519 HD 182781	24 + 00	53.6 ± 35.1	BO	90700	HD 185003	40+00	41.6 ± 7.0	R2II B6III/IV
95524	HD 183203	6.9 ± 0.8	50.1 ± 7.5	K5	96738	HD 185514	5.0 ± 0.0	25.1 ± 7.2	B4/B5III/IV
95537	V* V557 Lyr	7.9 ± 0.9	34.8 ± 11.2	K5	96744	HD 185757	2.6 ± 0.1	7.0 ± 2.9	B8
95551	HD 182953	$1.8\pm~0.1$	12.0 ± 1.9	A2	96757	* alf Sge			G011
95579	HD 182703			G811/111	96778	HD 185534			B5/B6IV
95585	* 32 Aq	11.7 ± 0.6	17.0 ± 0.9	F2lb	96779	HD 185571	1.9 ± 0.0	14.2 ± 3.0	A1V
95600	BD+33 3451	2.0 ± 0.0	20.1 ± 9.3	A0 DOIN	96789	HR 7482	15.2 ± 1.0	10.2 ± 0.7	B0.5la
95008	HD 183013	8.7 ± 0.5 28 ± 0.0	18.4 ± 3.2 3.2 ± 1.1	B2IV B8/B9V	90825	HR /495 * bet Sce			GBU
95624	HD 183058	8.1 ± 0.8	25.8 ± 4.7	B5	96851	HD 185842	5.7 ± 0.3	63.1 ± 15.3	B5
95648	HD 182631			G811/111	96856	HR 7490			K0lab:
95664	HR 7396			B4111	96859	HD 185959	2.0 ± 0.0	24.8 ± 12.9	A0
95673	HR 7403	10.0 ± 0.4	22.5 ± 2.2	B3Ve	96860	HD 185050			K0 /
95700	HD 183261	$6.0\pm~0.1$	47.1 ± 2.8	B3	96885	HD 186177			А5ІЬ
95702	V* BN Vu	$1.4\pm~0.0$	35.8 ± 5.6	A9.2	96910	HD 185652	$2.0\pm~0.0$	28.4 ± 16.1	A1IV/V
95732	нк /39/ нр 182001			B0111	96931	™ 45 Aql V* V2088 C··-			B9111 F211
95755	V* V4372 Sar	79+01	157 ± 12	B2IV	90900	v · v∠088 Cyg HD 186429	62 ± 04	637 + 146	F∠11 K2
95758	HD 183132	0.1	1.0.1 ± 1.4	G5Ib	97006	HD 186378	J.2 _ U.4	33.7 <u>1</u> 14.0	K2 -
95818	* 7 Vul			B5Vn	97029	HD 186506	$6.3\pm~0.5$	63.7 ± 17.6	K0
95820	V* U Aq			F5-G1 -	97045	HD 186618	14.8 ± 1.6	4.0 ± 3.1	B0V
95826	HD 183511	$6.9\pm~0.6$	48.9 ± 8.6	K5	97050	HD 186412	5.0 ± 0.0	39.5 ± 5.1	B5V
95873	HD 183753			K3	97059	HD 186296	$4.0\pm~0.0$	15.7 ± 7.4	B5
95884	HD 183430	2.4 ± 0.0	39.6 ± 18.3	B9V	97084	HD 185711			K011/111
					97086	HD 180/01	2.0 ± 0.0	50.1 ± 36.3	Am

Table C.1: - Continued. -

HIP	other ID	mass [M⊙]	ag e [Myr]	SpT	HIP	other D	mass [M _☉]	age [Myr]	ЅрТ
07007	UD 7510			Balli	07012	UD 100501			
97087	HR 7512	160 21	100 0 22		97913	HD 188501		201 0 2	Бр
51051	1111 1 500	10.9 1 3.1	10.0 1 2.5	G1:111	97936	HD 188629	65 ± 0.0	56.6 ± 8.2	K5
97117	HD 186456			B5	97948	HD 188503	0.0 1 0.1	00.0 1 0.2	B8111
97135	V* V342 Sge	$7.4\pm~0.8$	39.8 ± 4.1	M0	97957	HD 188541	$7.1\pm~0.4$	45.7 ± 8.0	K2
97138	HD 186332			F3 /	97979	HD 188507			K4 -
97139	* psi Aql			B9111-1V	97985	HR 7606			Fp
97141	HD 186548	$6.2\pm~0.9$	63.1 ± 27.7	K5	97994	HD 188612	4.0 ± 0.0	$50.0\pm~6.2$	B6V
97145	HD 186534	$1.9\pm~0.0$	50.1 ± 36.3	A 3	98068	* 22 Cyg	$7.9\pm~0.6$	35.3 ± 4.4	B5IV
97150	V* SU Cyg	$6.3\pm~0.4$	$50.1\pm~2.5$	F2 ab:	98073	HR 7633			K5 -
97165	* del Cyg			B9.5111	98085	V* S Sge	7.1 ± 0.5	47.6 ± 8.6	G5 bv SB
97189	HD 344873	10.2 ± 0.3	0.2 ± 0.1	BOIL	98128	HD 188433	1.9 ± 0.1	11.1 ± 1.0	A1IV/V
97198	HD 338909	684 04	425 ⊥ 26		98143	HR 7020 * b Sar	624 01	62 1 1 15 4	BOIN
97201	HR 7516	0.8 ± 0.4 63 ± 01	42.3 ± 2.0 45.2 ± 2.6	B3III	98163	HR 7586	0.2 1 0.1	05.1 ± 15.4	K411
97246	HD 186841	9.6 ± 0.1	20.4 ± 2.0	B1 a	98194	HR 7628	6.4 ± 0.1	56.9 ± 11.8	B5V
97260	HR 7507			B8111	98234	* 11 Sge			B9111
97275	BD+05 4285	$5.0\pm~0.1$	$50.1\pm~7.0$	В5	98242	HD 189301			K411
97276	HD 186930			K0 -	98286	HD 188960			A2/A311
97278	TARAZED			K3	98295	CCDM	4.0 ± 0.0	15.7 ± 6.0	B5
97365	V* del Sge			M211 + B6		J19583+2208AB			
97366	HD 187277	2.1 ± 0.0	52.9 ± 27.9	A0	98298	V* V1357 Cyg	15.7 ± 0.7	5.1 ± 0.7	В0ІЬ
97394	V* V3885 Sgr	15.0 ± 1.1	0.2 ± 0.1	DB:p	98313	HD 189114	12.1 ± 0.7	20.0 ± 5.0	K5
97395	HD 187342	6.3 ± 0.6	58.0 ± 9.5	К5	98320		5.9 ± 0.2	63.1 ± 14.7	BPIA
97402	HR 7540	62 02	621 104	KU11-111	09201	JI9586+3806AB		201 0 2	•
97432	HD 187238	0.2 ± 0.3	03.1 ± 10.4	K3 20 2	90321	HD 189433	2.0 ± 0.0	20.1 ± 9.5	A A Q
97434	HD 187299			G51a0-a	90323	HR 7618			G811/111
97450	HD 187258			Am	98360	HD 189818	7.7 ± 0.4	39.8 ± 4.6	B5
97454	HR 7542			F8 b-	98371	HD 189475			K2
97472	HD 187399			B7la∶e	98377	HD 189337	$7.2\pm~0.7$	44.6 ± 6.9	K0
97475	HD 184005	6.7 ± 1.0	49.2 ± 10.7	K3/K4III	98379	V* V2100 Cyg	4.6 ± 0.4	49.6 ± 25.4	B5111
97479	HD 187323			B5	98388	HD 189028	1.4 ± 0.0	41.9 ± 6.9	A9V
97516	HD 187428			F8 b-	98393	HD 345531	4.0 ± 0.1	14.0 ± 11.5	B5
97518	HD 186757			K0 /	98396	HD 333282			B7III
97545	HD 187350			B1Vne	98409	HD 189597			B611
97560	HD 187505		50.1	G 511	98412	HR 7623	6.6 ± 0.1	32.8 ± 4.7	B2.5IV
97572	V* V3/9 Vul	6.8 ± 0.2	50.1 ± 0.4	B5V B3EIV-	98418	HD 227018	20.0 ± 0.0	0.1 ± 0.0	
97607	HR 7527	9.4 ± 0.3	23.0 ± 2.0	B2.5IVe B5V	96425	HD 189550	8.1 ± 0.3 8.2 ± 0.3	33.2 ± 4.0 10.0 ± 2.0	B2V
97613	HD 187308			G811	98443	HD 189576	7.5 ± 0.7	40.3 ± 9.8	K0
97618	HD 187439			B6111	98458	HD 189671			G811
97624	HD 332812	$2.8\pm~0.2$	$10.0\pm~6.8$	B8	98495	* eps Pav	$2.2\pm~0.1$	$5.3\pm~0.5$	A0V
97629	V* chi Cyg			S7,1e:	98497	HD 189779	$7.0\pm~0.2$	$5.9\pm~3.8$	B2111
97634	V* V380 Cyg	12.5 ± 0.8	14.2 ± 2.0	B1	98541	HD 189848	$3.1\pm~0.1$	2.7 ± 0.6	B7III
97673	HIP 97673			B7	98558	HD 190025			B5
97678	V* Dra	9.7 ± 1.2	$25.1\pm~3.1$	K5	98571	* e Cyg			K1 -
97679	* 12 Vu	$6.8\pm~0.0$	27.3 ± 4.0	B2.5V	98593	HD 189983	3.0 ± 0.1	31.6 ± 20.9	B8V
97680	HD 187311	77 . 00	0.0 1 1 0	B3V	98609	HR 7656	6.2 ± 0.1	44.1 ± 5.6	B4V
97681	HD 187851	7.7 ± 0.3	2.3 ± 1.3	B2V:nn	98610	HD 190149	E 0 0 1	6E 1 1E 0	
97090	HD 187734	75+ 00	355 + 60	RU	96041	HD 109921	5.0 ± 0.1	05.1 ± 15.9 22.0 ± 2.2	B1 Jah
97713	HD 345104	1.5 ± 0.9	55.5⊥ 0.0	A 111	98680	HD 189853	3.0 ± 0.1 3.1 ± 0.1	22.9 ± 2.2 36.8 + 13.2	B8/B9111
97757	HR 7589	21.6 ± 2.8	5.6 ± 1.0	09.5 a	98697	HD 190275	0.1 1 0.1	50.0 ± 10.2	Am
97759	HD 345071	$4.8\pm~0.2$	47.4 ± 7.0	В5	98706	HD 190256	$3.4\pm~0.1$	40.5 ± 12.4	B7V
97765	HR 7573	$9.0\pm~0.3$	26.5 ± 2.2	A 1 ab	98721	HD 190133	$2.0\pm~0.0$	20.1 ± 9.3	A0
97774	HR 7591	8.8 ± 0.1	23.6 ± 3.1	B2111	98729	V* V2105 Cyg	$7.4\pm~0.8$	42.3 ± 10.0	F8lab:
97778	HD 331413	4.6 ± 0.4	39.8 ± 7.1	B5	98738	HR 7662			K3lab:
97804	V* eta Aq	$9.2\pm~0.8$	$26.4\pm~5.4$	F6lbv SB	98753	CCDM	24.4 ± 16.2	$2.2\pm~0.9$	0e+
97819	HR 7549	$1.9\pm~0.1$	12.7 ± 2.5	A2V		J20035+3602AB			
97836	HD 187857	10.0 1 0 -	451 00	B8111	98762	HD 190861	7.9 ± 0.8	37.9 ± 7.8	K2
97845	V* V819 Cyg	12.0 ± 0.6	4.5 ± 3.0	BU.5IIIn	98770	HD 227402	2.7 ± 0.2	10.0 ± 2.8	88
97852	HD 339102			B2 B2	98//3	HD 190466	15.5 ± 1.7	11.0 ± 1.1	A2V+
97870	* 23 (va			B5V	90110	HD 190407	5.0 ± 0.0	JJ.1 <u></u> ⊥ 15.4	G5 b-11
97874	нр 187762			G8 /	98786	HD 190468	2.0 + 0.0	54.5 + 34.0	Am
97886	CCDM			B9.5111	98817	HD 190536	0.0	<u>-</u>	G511
	J19535+2405AB				98835	HD 190405			F2lb
97895	HD 188461	$7.9\pm~0.1$	15.5 ± 2.5	B2IV	98869	HD 190604	$3.0\pm~0.0$	$2.7\pm~0.4$	B7V
97905	HD 345214	3.8 ± 0.2	$1.4\pm~0.4$	B5111	98872	HR 7695			A2 -

Table C.1: - Continued. -

space V <thv< th=""> V V <thv< th=""></thv<></thv<>	HIP	other ID	mass [M⊙]	age [Myr]	SpT	HIP	other D	mass [M _☉]	age [Myr]	SpT
Bible MD 22733 UD 22733 G4 H. Solar MD 757 Her 753	98910	V* V1401 Aql	$6.2\pm~0.2$	51.7 ± 7.8	F1	99923	V* V383 Vu			F3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	98914	HD 227535			G0:11:	99929	HR 7757			B6111
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	98924	HD 190593	$2.0\pm~0.0$	$20.1\pm~9.3$	A0+	99943	HD 192990	6.3± 1.2	44.7 ± 9.1	B9IV
Nome Nome No No </td <td>98950</td> <td>HD 190944</td> <td>12.1 ± 0.8</td> <td>11.5 ± 1.2</td> <td>B1.5Vne+</td> <td>99944</td> <td>HD 193032</td> <td>12.6 ± 0.7</td> <td>2.7 ± 3.4</td> <td>B0 </td>	98950	HD 190944	12.1 ± 0.8	11.5 ± 1.2	B1.5Vne+	99944	HD 193032	12.6 ± 0.7	2.7 ± 3.4	B0
99895 HD 198842 20 ± 0 21 ± 0 32 ± 0	98960	HR 7008 HD 190863	5.0 ± 0.0 3.0 ± 0.0	47.4 ± 2.5 31.6 \pm 22.9	B4III B8V	99953	HD 193009 HR 7759	12.3 ± 0.3	10.0 ± 0.8	B1V∶nnpe K5∐
9995 PD 30042 PD 30042 PD 30042 PD 30042 PD 3005 PD 30253 2.0 6.7 4.4 MOVy 9005 PD 30991 1.8 ± 0.0 6.5 ± 1.4 MOVy D0005 PD 30263 2.4 ± 0.0 5.7 ± 4.2 MOVy Stat A <td>98976</td> <td>HD 190864</td> <td>20.0 ± 0.0</td> <td>0.1 ± 0.0</td> <td>07 </td> <td>99982</td> <td>HD 193077</td> <td>15.0 ± 1.1</td> <td>0.2 ± 0.1</td> <td>W Ns</td>	98976	HD 190864	20.0 ± 0.0	0.1 ± 0.0	07	99982	HD 193077	15.0 ± 1.1	0.2 ± 0.1	W Ns
90005 BD-33 3955 11.9 ± 0.9 15.7 ± 0.9 B1.8 100005 HD 192653 2.0 ± 0.9 55.7 ± 2.4 60 V 99569 HD 19104 - G3.1 100054 HT 772 2.4 ± 0.9 55.2 ± 2.5 N3 99569 HD 19104 2.5 ± 0.0 33.5 ± 2.4 B9 HD 190255 2.4 ± 0.9 A1.2 ± 0.3 OPV 99569 HD 19104 2.5 ± 0.0 33.5 ± 2.4 B9 HD 190205 4.1 ± 0.3 OPV 9067 HD 19104 2.5 ± 0.0 1.4 ± 1.4 BS HD 190205 4.1 ± 0.3 OPV 90164 H1 74 - HI HD 191201 4.1 ± 0.0 HD 191201 HD 191203 C.4 ± 0.4 B1.4 B1.4 <td< td=""><td>98995</td><td>HD 190842</td><td></td><td></td><td>G811</td><td>99991</td><td>HD 334068</td><td>7.0 ± 0.1</td><td>0.9 ± 0.6</td><td>В</td></td<>	98995	HD 190842			G811	99991	HD 334068	7.0 ± 0.1	0.9 ± 0.6	В
90006 HD 19091 14.8 \pm 0.9 45 \pm 1.4 B0 Vp 100016 HD 19285 2.4 \pm 0.0 35 \pm 2.5 \pm 5.0 50 90067 HD 19104 2.5 \pm 0.0 30.0 \pm 7.1 \pm 0.0 47.7 \pm 0.8 400000 HR 7767 10.8 \pm 1.0 4.1 \pm 0.0 63.6 100007 HR 7767 10.8 \pm 1.0 4.1 \pm 0.0 90.7 Fish 90.7 90.8 \pm 0.0 10.9 \pm 0.1 10.9 \pm 0.1 10.0 \pm 0.0 90.7 90.2 \pm 0.0 20.2 \pm 0.0 20.4 \pm 0.0 10.9 \pm 0.0 90.1 \pm 0.0 10.0 \pm	99005	BD+35 3955	11.9 ± 0.9	15.7 ± 0.9	B1 b	100005	HD 192653	2.0 ± 0.0	56.7 ± 42.4	A0IV/V
9909 HD 191010 C511 10007 HT 762 K41 9007 HD 19102 25 ± 0.0 31.0 ± 21.4 BPII 10007 HT 767 $10.8 \pm 1.0.4$ $11.0.0.5$ G31 9007 HD 190210 $51.\pm 0.1$ <td< td=""><td>99008</td><td>HD 190991</td><td>14.8 ± 0.9</td><td>4.5 ± 1.4</td><td>B0IVp</td><td>100010</td><td>HD 192955</td><td>$2.4\pm~0.0$</td><td><math display="block">35.5 \pm 26.5</math></td><td>B9</td></td<>	99008	HD 190991	14.8 ± 0.9	4.5 ± 1.4	B0IVp	100010	HD 192955	$2.4\pm~0.0$	35.5 ± 26.5	B9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	99049	HD 191047			G5	100016	HR 7762			K4II:
99070 110 120 11 0.0 971.b 0.0 11.b	99067	HD 191010	25 - 00	22.0 ± 21.4	G3Ib B0III	100027	* 5 Cap	10.9 - 1.0	41 - 02	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	99008	HD 191004	2.3 ± 0.0 7.1 ± 0.9	47.7 ± 9.8	K3V	100080	HD 193205	19.0 1 1.0	4.1 ± 0.5	F6 ab
99900 * 17 Vui 6.1 ± 0.0 11.4 ± 1.1 B3V 100088 HD 193202 9.5 ± 0.4 18.2 ± 2.6 B1.5V 99120 * 1.6 Tel M11 100114 HD 191201 1.0 ± 1.5 3.9 ± 3.1 B011 100114 HD 23223 2.0 ± 0.0 2.0 ± 0.3 A0 99144 HB 7790 7.8 ± 0.1 3.4 ± 2.9 B0.11 100122 * 3.5 Cyg 10.0 ± 1.4 15.8 ± 1.0 B2V 99224 HR 7700 7.8 ± 0.1 3.4 ± 2.9 B31V1 100124 * 1.0 ± 1.4 15.8 ± 1.0 B2V 99225 V* V173 Aql 99111 100127 * 1.0 10344 HD 193433 2.0 ± 0.0 50.1 ± 7.2 K5 99226 V* V173 Aql 99111 100127 HD 193431 3.1 ± 0.6 65.2 ± 1.0 K11 99257 V* 173 Aql 91135 10.0 ± 1.0 10.0 ± 1.0 1.0 ± 1.0 K5 K5 99267 HD 191352 2.0 ± 0.0 2.0 ± 0.0 1.0 ± 0.4 3.1 ± 1.0 HD 191352 K5	99079	HD 239326	5.1 ± 0.1	5.6 ± 4.1	B3	100085	HD 228834	$6.2\pm~0.2$	$14.9\pm~0.5$	B3
99120 * ki Tal M11 10010 HD 19173 KD11/11 99124 HD 191201 1:0.1 ± 15 3 ± 31 B01 100115 HD 1928323 2.0 ± 0.0 20.1 ± 9.3 A0 99146 HD 191201 4.0 ± 0.0 5.9 ± 31 B01 100124 V* V173 Cyg 10.0 ± 0.5 25.1 ± 38 F51 9924 HR 700 7.8 ± 0.1 34.8 ± 2.9 B3.01 100127 HD 193432 2.2 ± 8.2 3.5 ± 0.5 0011 9925 CCDM V* V1473 Ag B711 100127 HD 193515 K11 B22 B1 100137 HD 193516 8.2 ± 1.5 A011 9925 CCDM V* V130 S(yg 0.4 ± 0.0 2.0 ± 6.4 A0 10014 V* V44 Cyg 8.2 ± 1.1 8.4 ± 1.6 B2 9937 HD 19156 10.0 ± 0.3 0.2 ± 6.4 A0 100214 HD 19363 5.6 ± 0.4 6.5 ± 0.4 8.5 ± 1.4 B5 HS 9933 HD 19172 C.5 ± 0.4 6.5 ± 0.4 6.5 ± 0.4	99080	* 17 Vul	6.1 ± 0.0	11.4 ± 1.1	B3V	100088	HD 193220	$9.5\pm~0.4$	18.2 ± 2.6	B1.5V
90125 HD 192201 13.0 \pm 13 3.9 \pm 3.1 B0/II 100114 HD 28252 $2.0 \pm$ 0.0 $2.1 \pm$ 3.8 All 99145 HR 7709 $4.0 \pm$ 0.0 $9.1 \pm$ 1.1 B0/II 100122 * 3.5 Cyg 10.0 \pm 1.4 15.8 \pm 1.0 B2V 9921 V * V Cap B9.5 III 100124 * 3.5 Cyg 10.0 \pm 1.4 15.8 \pm 1.0 B2V 9925 V * V173 Adl B9.5 III 100126 V * V173 Cyg 10.0 \pm 1.6 B2+ 99205 V * V173 Adl B9III 100127 V * V173 Cyg 6.9 \pm 0.9 5.0 \pm 5.1 \pm 5.0 6.9 \pm 5.0 6.0 \pm 5.1 \pm 5.0 B9III 99205 V * V108 Cyg B9III 100129 V * V173 Cyg 6.9 \pm 0.0 5.1 \pm 3.3 A0 is B2 99205 V * V108 Cyg B9III 100129 V * V148 Cyg 8.8 \pm 0.4 13.5 \pm 3.1 B B3	99120	* ksi Tel			M1	100110	HD 191973			K0 /
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	99122	HD 191201	$13.0\pm~1.5$	$3.9\pm~3.1$	B0	100114	HD 228852			K3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	99145	HR 7699	4000	50 1 ± 12 1	BOID	100115	HD 193223	2.0 ± 0.0	20.1 ± 9.3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	99221	V* AV Cap	4.0 1 0.0	59.1 ± 15.1	B9.5111	100122	V* V1773 Cvg	10.0 ± 0.3 10.0 ± 1.4	15.8 ± 1.0	B2V
99250 99255 V * V1473 Agi Ja0084-7738 B E7111 100172 HD 193517 6.9 ± 0.0 7.9 ± 1.1 0.4 ± 0.0 8.2 ± 1.3 8.0 99333 HD 191561 1.1 ± 0 7.5 ± 3.2 80 hpp 100396 HD 193663 5.6 ± 0.4 6.3 ± 1.0 B.5 4.0 3.5 ± 5.4 A.4 5.8 100396 HD 193663 5.6 ± 0.4 6.3 ± 1.0 A.4 5.8 A.4 5.8 ± 0.4 5.8 ± 0.4 5.8 ± 0.4 5.8 ± 0.4 5.8 ± 0.4 5.8 ± 0.4 5.8 ± 0.4 5.8 ± 0.4 5.8 ± 0.4 5.	99234	HR 7700	$7.8\pm~0.1$	$34.8\pm~2.9$	B3IV	100146	HD 193443	22.9 ± 8.2	3.5 ± 0.5	O9111
96255 CCDM B911 10038 HD 19347 6.9± 0.9 50.1± 7.2 K5 9926 HD 19137 B5 100395 * sig Cap 6.8± 0.4 13.9± 1.6 K2111 9927 V* V2106 Cyg 2.0± 0.0 20.1± 8.4 A0 100214 V* V444 Cyg 6.8± 0.4 23.1± 3.4 A0 Ib 99233 HD 191566 10.0± 0.3 2.0± 1.8 B0.5V 100239 V* V146 Cyg 7.9± 0.7 7.9± 1.1 0.4± 5.6 K5 99333 * 2.8 Cyg 9.4± 0.4 23.1± 2.6 B2.5V 100239 HR 7701 7.9± 0.7 7.8± 1.1 6.4± 5.6 K5 99334 HD 191220 .0± 0.4 6.3.1± 1.46 B5 100314 HD 194207 9.3± 0.4 13.5± 3.1 B 13.5± 3.1 B5 99334 HD 191270 .0± 0.1 13.5± 3.1 B3.1401 100364 HD 193276 7.2± 0.3 5.7± 3.4 A5.5 99437 HD 191270 .12± 0.7 1.2± 0.7 1.2± 0.7 1.2± 0.7 <td>99250</td> <td>V* V1473 Aq</td> <td></td> <td></td> <td>B7!!!</td> <td>100172</td> <td>HD 193515</td> <td></td> <td></td> <td>K1 </td>	99250	V* V1473 Aq			B7!!!	100172	HD 193515			K1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	99255	CCDM			B9111	100180	HD 193647	$6.9\pm~0.9$	$50.1\pm~7.2$	K5
Mage Model		J20088+7743AB				100193	V* V470 Cyg	8.8± 0.4	13.9 ± 1.6	B2+
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	99265	HD 191337			B5	100195	* sig Cap	6.3 ± 0.6	60.5 ± 16.0	K2111
9923 HD 100 ± 0.3 0.2 ± 0.1 B0.5 IV 100289 V * 11865 Cyg 7.9 ± 1.1 0.4 ± 0.0 B2.5 V 9933 * 20 Cyg 9.4 ± 0.4 23.1 ± 2.6 B2.5 V 100289 V * 11865 Cyg 7.9 ± 1.1 0.4 ± 0.0 B2.5 V 9934 HD 191761 1.7 ± 0.7 3.4 ± 5.6 K 5 99351 HD 191671 5.5 ± 0.4 6.3 ± 14.6 B5 100314 HD 194297 B3.5 ± 0.4 13.5 ± 3.1 B 99361 HD 191761 5.5 ± 0.4 6.3 ± 14.6 B5 100314 HD 194297 B9.5 II//V B9.5 II//V 99400 HD 19176 5.5 ± 0.4 18.3 ± 0.4 13.5 ± 3.5 B9.5 II//V 100325 4.6 Cap 6.6 ± 0.3 5.7 ± 3.4 A5.5 99415 V * V2111 Cyg 6.9 ± 0.2 2.9 ± 1.8 BV 100376 HD 19325 1.4 ± 0.0 38.8 ± 6.6 A9/F0V 99437 HD 19217 1.2 ± 0.8 8.1 ± 0.5 1.4 ± 0.0 38.8 ± 5.6 A9/F0V MA 5.8 1.6 ± 1.8 ± 0.8	99279	V* V2108 Cyg	20 ± 0.0	20.1 ± 8.4	8911 A0	100197	HD 193010 V* V444 Cvg	8.1 ± 0.8 8.0 ± 4.1	28.1 ± 3.3 45 ± 20	A0:1B: WN5 + O6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	99283	HD 191566	10.0 ± 0.3	0.2 ± 0.1	B0.5IV	100214	V* V1685 Cyg	7.9 ± 1.1	0.4 ± 0.0	B2e
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99303	* 28 Cyg	$9.4\pm~0.4$	23.1 ± 2.6	B2.5V	100295	HR 7791	$7.9\pm~0.7$	$38.4\pm~5.6$	K5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	99347	HD 191781	11.7 ± 0.7	$5.6\pm~2.2$	B0 bp	100296	HD 193683	$5.6\pm~0.4$	63.1 ± 13.6	B5
9953 HD 191671 5.6 0.4 63 100314 HD 19427 B1.8i 9953 HD 191746 8.5 0.4 16.3 3.5 B2 100325 HE 7775 6.6 0.3 51.7 ± 3.4 A5.n 99415 V* V2111 Cyg 6.9 6.2 2.2.4 2.1 B3V 100345 * bet Cap 6.6 0.3 51.7 ± 3.4 A5.n 99415 V* V2111 Cyg 6.9 2.2.4 2.1 B3V 100345 * bet Cap 6.6 0.3 51.7 ± 3.4 A5.n 99415 V* V2111 Cyg 6.9 0.4 1.1.8 1.4 B1.8i D193205 1.4 ± 0.0 35.8 ± 5.6 A9/F0V 99475 HR 7709 1.2.4 ± 0.1 1.1.8 ± 1.4 BIV 100391 HD 193216 -7.4 ± 2.3 S.6 B216 99457 HR 7709 1.2.4 ± 0.1 1.1.8 ± 1.4 BIV 100391 HD 194057 17.4 ± 2.6 8.3 ± 0.5 B116 99513 HD 192010 3.0 ± 0.0 2.8.4 ± 8.6 B81V 100441 HR 7795 CED B8111 <td>99349</td> <td>HD 191322</td> <td>5.0 ± 0.1</td> <td>7.6 ± 3.1</td> <td>B3/B4IV</td> <td>100308</td> <td>V* V2117 Cyg</td> <td>$9.3\pm~0.4$</td> <td>$13.5\pm~3.1$</td> <td>В</td>	99349	HD 191322	5.0 ± 0.1	7.6 ± 3.1	B3/B4IV	100308	V* V2117 Cyg	$9.3\pm~0.4$	$13.5\pm~3.1$	В
Jess HD	99361	HD 191671	5.6 ± 0.4	63.1 ± 14.6	B5	100314	HD 194297			B1.5 a
9915V* V2111 Cyg69 ± 0229.4 ± 2.1B3V10036HD 193767.2 ± 0.547.4 ± 7.3F9Vws99435HD 19257512.6 ± 0.85.7 ± 0.6B0.5V100376HD 1932551.4 ± 0.035.8 ± 5.6A9/FOV99437HD 19191711.2 ± 0.712.1 ± 1.0B1III100390HD 1932551.4 ± 0.035.8 ± 5.6A9/FOV99457HR 770912.4 ± 0.111.8 ± 1.4B1V100391HD 1933466.7 ± 0.423.2 ± 2.6B21b99467HD 192011K2II100409HD 19405717.4 ± 2.68.3 ± 0.5B1b99564HD 1921023.0 ± 0.028.4 ± 8.6B8IV100435* 25 VulB8IIn99513HD 1921023.0 ± 0.028.4 ± 8.6B8IV100435* 25 VulB8IIn99520HD 192202S.0 ± 0.028.4 ± 8.6B8IV100435* 25 VulB8IIn99527V * FG Sge7.0 ± 0.243.2 ± 7.8B4Ieq-K21b100453SADR12.0 ± 0.317.6 ± 2.5F8Ib99528HD 192043B51632.0 ± 0.020.1 ± 9.3A0VB8III100444HD 1930312.0 ± 0.020.5 ± 8.8A099584HD 1922054.0 ± 0.02.0 ± 0.32.0 ± 0.020.5 ± 8.8A0G51I-III99584HD 1922054.0 ± 0.02.0 ± 9.3A0VA0P100554HD 19435712.5 ± 1.314.1 ± 2.5B1ab99584HD 1922054.0 ± 0.02.0 ± 9.3A0P <td>99303 99400</td> <td>HD 191270 HD 191746</td> <td>85 ± 04</td> <td>183 + 35</td> <td>B2IV</td> <td>100325</td> <td>HR 1115 * bet Can</td> <td>66 ± 03</td> <td>517 + 34</td> <td>B9.5111/1V A5:n</td>	99303 99400	HD 191270 HD 191746	85 ± 04	183 + 35	B2IV	100325	HR 1115 * bet Can	66 ± 03	517 + 34	B9.5111/1V A5:n
9933 99437 99437 99437 HD 191917 HD 191917 112.2 ± 0.7 12.4 ± 0.1 12.6 ± 0.8 12.4 ± 0.1 5.7 ± 0.6 10.2 ± 1.1 11.1.8 ± 1.4 BI BI BI BI BS-111100300 10.00300 HD 193818 HD 193818 HD 193818 HD 193818 HD 193818 HD 193818 HD 193818 HD 193818 HD 192041 HD 193818 HD 192041 HD 193818 HD 192041 HD 193818 HD 192041 HD 194057 HD 194057 HD 192042 HD 192022 HD 192022 HD 192022 HD 192022 HD 19204311.8 ± 1.4 HS HI BSII BSII HD 192043 HD 19204311.8 ± 1.4 HS HD 192043 HD 19204311.8 ± 1.4 HS HD 192043 HD 192052 HD 1920433.0 ± 0.0 2.4 ± 0.1 HD 192051 HD 1920433.0 ± 0.0 2.4 ± 0.1 HD 192051 HD 1920433.0 ± 0.0 2.4 ± 0.1 HD 192052 HD 1920433.0 ± 0.0 2.4 ± 0.1 HD 192051 HD 192051 HD 1920523.0 ± 0.0 2.4 ± 0.1 HD 192051 HD 192051 HD 192052 HD 1920523.0 ± 0.0 2.4 ± 0.1 HD 192051 HD 192052 HD 1920523.0 ± 0.0 HD 192261 HD 192051 HD 192052 HD 192052 HD 192052 HD 192052 HD 192052 HD 192052 HD 192052 HD 192052 HD 192254 HD 192054 HD 192265 HD 192265 HD 192265 HD 1922653.0 ± 0.0 HD 192265 HD 192265 HD 192265 HD 192265 HD 192265 HD 192265 HD 192265 	99415	V* V2111 Cyg	6.9 ± 0.2	29.4 ± 2.1	B3V	100346	HD 193706	7.2 ± 0.5	47.4 ± 7.3	F9Vws
99437 99457 99457 99457 99457 99457 99457 99467 99467 99467 99467 99467 99467 99468 99468 10 192041 10 192102 10 192041 10 192102 10 10 10 10 10 10 10 10 10 10 10 10 10 1	99435	HD 192575	12.6 ± 0.8	$5.7\pm~0.6$	B0.5V	100376	HD 193525	$1.4\pm~0.0$	35.8 ± 5.6	A9/F0V
99457HR 7709 12.4 ± 0.1 11.8 ± 1.4 BIV 100391 HD 19346 6.7 ± 0.4 23.2 ± 2.6 $82.1b$ 99473* tet AqlB9.5111 100392 HD 235167 4.0 ± 0.1 20.8 ± 3.4 B599504HD 192041K211 100409 V* BC CygM3.51a99504HD 192102 3.0 ± 0.0 28.4 ± 8.6 B6IV 100435 17.4 ± 2.6 8.3 ± 0.5 B11b99513HD 192102 3.0 ± 0.0 28.4 ± 8.6 B6IV 100435 $*25$ VulB8IIInB8IIIn99520HD 192022B8III 100441 HD 193948 2.6 ± 0.1 44.2 ± 15.2 Ap99527V* FG Sge 7.0 ± 0.2 43.2 ± 7.8 B4Ieq-K2lb 100443 BAD 12.0 ± 0.3 17.6 ± 2.5 F8Ib99528HD 192043B11 0.02 ± 0.1 WN 100446 HD 194033 2.0 ± 0.0 20.1 ± 9.3 AOV99546HD 192163 15.0 ± 1.1 0.2 ± 0.1 WN 100442 HD 194301 2.0 ± 0.0 2.0 ± 8.8 AO99560HD 192281 44.5 ± 8.6 1.5 ± 0.6 O5e 100424 HD 194355 6.9 ± 0.6 47.8 ± 3.2 K599615V* V377 Pav 2.4 ± 0.1 47.4 ± 34.7 Ap 100554 HD 193933 7.9 ± 0.6 29.0 ± 4.4 B311/11199649HD 192220 1.5 ± 1.6 10.0 ± 1.6 B0.51b 100651 HR 7815B9511199659HD 192270 2.0 ± 0.0 10.7 ± 5.5 <td>99437</td> <td>HD 191917</td> <td>11.2 ± 0.7</td> <td>12.1 ± 1.0</td> <td>B1 </td> <td>100390</td> <td>HD 193818</td> <td>$6.9\pm~0.5$</td> <td>47.9 ± 8.3</td> <td>K5</td>	99437	HD 191917	11.2 ± 0.7	12.1 ± 1.0	B1	100390	HD 193818	$6.9\pm~0.5$	47.9 ± 8.3	K5
99473 * tet Aql B9 5111 100322 H 0 235197 4.0 ± 0.1 20.8 ± 3.4 B5 99466 H D 192041 K211 100404 V * BC Cyg M 35 ia 99504 CCDM 6.9 ± 0.3 47.6 ± 7.8 G511 100404 V * BC Cyg M 35 ia 99513 H D 192102 3.0 ± 0.0 28.4 ± 8.6 BiV 100435 * 25 Vul Billin 99520 V * FG Sge 7.0 ± 0.2 43.2 ± 7.8 B4leq-K21b 100441 HD 193948 2.6 ± 0.1 44.2 ± 15.2 Ap 99527 V * FG Sge 7.0 ± 0.2 43.2 ± 7.8 B4leq-K21b 100443 SADR 12.0 ± 0.1 7.6 ± 2.5 F81b 99527 V * FG Sge 7.0 ± 0.2 43.2 ± 7.8 B4leq-K21b 100443 SADR 12.0 ± 0.1 $1.4.2 \pm 5.8$ AOV 99527 V * FG Sge 7.0 ± 0.2 23.2 ± 7.8 B4leq-K21b 100476 HD 193031 2.0 ± 0.0 20.5 ± 8.8 AO 99528 HD 192043 2.0 ± 0.1 $4.4.2 \pm 15.2$ Ap 100474 HD 193631	99457	HR 7709	$12.4\pm~0.1$	$11.8\pm~1.4$	B1V	100391	HD 193946	6.7 ± 0.4	23.2 ± 2.6	B2lb
99504CCDM 6 ± 0.3 47.6 ± 7.8 GSI100409HD 194057 17.4 ± 2.6 8.3 ± 0.5 B1b99504CCDM 3.0 ± 0.0 28.4 ± 8.6 B8IV100434HR 7795GSII+GSII+99513HD 192102 3.0 ± 0.0 28.4 ± 8.6 B8IV100434HR 7795GSII+B8IIIn99520HD 192022B8III100441HD 193689 2.6 ± 0.1 44.2 ± 15.2 Ap99520HD 192023B8III100448HD 193689 2.0 ± 0.0 20.1 ± 9.3 AOV99527V* FG Sge 7.0 ± 0.2 43.2 ± 7.8 B4leq-K2lb100448HD 193689 2.0 ± 0.0 20.1 ± 9.3 AOV99528HD 192043B8III100476HD 194033 2.0 ± 0.0 20.5 ± 8.8 AO99584HD 192163 15.0 ± 1.1 0.2 ± 0.1 WN100482HD 193801 2.0 ± 0.0 20.5 ± 8.8 AO99584HD 192029 2.4 ± 0.1 44.3 ± 31.9 B9100534HD 194355 6.9 ± 0.6 47.8 ± 3.2 K599618HD 192025 4.0 ± 0.0 10.7 ± 5.5 B5100579HD 194357B9III99649HD 1922422 15.5 ± 1.2 8.6 ± 1.4 B0.51II100655BD+34 4005 3.0 ± 0.2 10.0 ± 6.8 B899669HD 192245 15.5 ± 1.2 8.6 ± 1.4 B0.51II100754HR 7801 0.2 ± 0.1 6.8 ± 0.5 99670HD 192245 10.2 ± 0.1 8.6 ± 3.2 B5 </td <td>99473</td> <td>* tet Aq</td> <td></td> <td></td> <td>B9.5III</td> <td>100392</td> <td>HD 235197</td> <td>4.0 ± 0.1</td> <td>20.8 ± 3.4</td> <td>B5</td>	99473	* tet Aq			B9.5III	100392	HD 235197	4.0 ± 0.1	20.8 ± 3.4	B5
J20116+3853ABID0434HR 7795ID0434HR 7795G51+99513HD 192102 3.0 ± 0.0 28.4 ± 8.6 B8IV100434HR 7795B8III99518* 19 VulK3II-III100441HD 193948 2.6 ± 0.1 44.2 ± 15.2 Ap99520HD 192022B8III100448HD 193089 2.0 ± 0.0 20.1 ± 9.3 AOV99527V* FG Sge 7.0 ± 0.2 43.2 ± 7.8 B4Ieq-K2lb100433SADR 12.0 ± 0.0 20.5 ± 8.8 AO99528HD 192013 15.0 ± 1.1 0.2 ± 0.1 WN100424HD 194033K2[1-III]99546HD 192163 15.0 ± 1.1 0.2 ± 0.1 WN100452HD 193011 2.0 ± 0.0 20.5 ± 8.8 AO99580HD 192211 44.5 ± 8.6 1.5 ± 0.6 O5e100484HD 194153 12.5 ± 1.3 14.1 ± 2.5 B1Iab99615V* V377 Pav 2.4 ± 0.1 47.4 ± 34.7 Ap100556HD 193333 7.9 ± 0.6 29.0 ± 4.4 B31//III99649HD 192205 4.0 ± 0.0 10.7 ± 5.5 B5100579HD 194357B91II99667HD 192242 15.5 ± 1.2 8.6 ± 1.4 B0.51II100651HR 7815B91II99669HD 192245 15.5 ± 1.2 8.6 ± 1.4 B0.51II100651HR 7801G21.01.0 \pm 6.8B899669HD 192341 3.0 ± 0.0 2.6 ± 3.2 B5100744HD 194457G21.01.0 \pm 6.5B8IV99670<	99460	CCDM	69 ± 03	476 ± 78	6511	100404	HD 194057	174 ± 26	83 ± 05	B11b
99513HD 192102 3.0 ± 0.0 28.4 ± 8.6 B8IV 100435 * 25 VulB8III99518* 19 VulK3I-III 100441 HD 193689 2.0 ± 0.0 20.1 ± 9.3 Ap99520HD 192022B8III 100448 HD 193689 2.0 ± 0.0 20.1 ± 9.3 AOV99527V* FG Sge 7.0 ± 0.2 43.2 ± 7.8 B4leq-K2IbB8III 100443 SADR 12.0 ± 0.3 17.6 ± 2.5 F8lb99528HD 192043 5.0 ± 1.1 0.2 ± 0.1 WN 100452 HD 194033 2.0 ± 0.0 20.5 ± 8.8 AO99580HD 192216 44.5 ± 8.6 1.5 ± 0.6 O5e 100444 HD 194153 12.5 ± 1.3 14.1 ± 2.5 B1lab99584HD 355163 2.0 ± 0.0 20.1 ± 9.3 A0p 100524 HR 7788G5II-III99615V* V377 Pav 2.4 ± 0.1 47.4 ± 34.7 Ap 100556 HD 193333 7.9 ± 0.6 29.0 ± 4.4 B3I//III99615V* V377 Pav 2.4 ± 0.1 47.4 ± 34.7 Ap 100556 HD 193333 7.9 ± 0.6 20.0 ± 4.4 B3I//III99619HD 192205 4.0 ± 0.0 10.7 ± 5.5 B5 100574 HR 7807 9.4 ± 0.2 17.4 ± 31 B2Vne99667HD 192242 15.5 ± 1.6 10.0 ± 1.6 B0.51b 100657 HD 19457B9.51I $59.51I$ 99669HD 192341 3.0 ± 0.0 30.8 ± 26.8 A2 100657 HD 194614 2.6 ± 0.0 7.0 ± 2.9 <td< td=""><td>55504</td><td>J20116+3853AB</td><td>0.5 ± 0.5</td><td>41.0 1 1.0</td><td>Gon</td><td>100434</td><td>HR 7795</td><td>11.4 1 2.0</td><td>0.5 1 0.5</td><td>G 511+</td></td<>	55504	J20116+3853AB	0.5 ± 0.5	41.0 1 1.0	Gon	100434	HR 7795	11.4 1 2.0	0.5 1 0.5	G 511+
99518 99520 99527 99527 99527 99527 99527 99527 99527 99527 99528 99528 99546 99546 HD 192043 (31.11) $(3.0\pm0.3]$ (3.0 ± 0.4) 	99513	HD 192102	3.0 ± 0.0	28.4 ± 8.6	B8IV	100435	* 25 Vul			B8IIIn
99520HD 192022B81II100443HD 193689 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.3 AOV 99527V* FG Sge 7.0 ± 0.2 43.2 ± 7.8 B4leq-K2lb100453SADR 12.0 ± 0.3 17.6 ± 2.5 F8lb99528HD 192263 15.0 ± 1.1 0.2 ± 0.1 WN100462HD 193801 2.0 ± 0.0 20.5 ± 8.8 AO99584HD 192281 44.5 ± 8.6 1.5 ± 0.6 OSe100484HD 194153 12.5 ± 1.3 14.1 ± 2.5 B1lab99584HD 355163 2.0 ± 0.0 20.1 ± 9.3 AOp 100524HR 7788G5II-III99605HD 192209 2.4 ± 0.1 44.3 ± 31.9 B9100534HD 194355 6.9 ± 0.6 47.8 ± 3.2 K599615V* V377 Pav 2.4 ± 0.1 47.4 ± 34.7 Ap100574HR 7807 9.4 ± 0.2 17.4 ± 3.1 B2V ne99649HD 192205 4.0 ± 0.0 10.7 ± 5.5 B5100579HD 194357B9.51IIB9.51II99667HD 192422 15.5 ± 1.2 8.6 ± 1.4 B0.51II100651HR 7815B9.51II99669HD 192245 15.5 ± 1.2 8.6 ± 1.4 B0.51II100657HD 194614 2.6 ± 0.0 7.0 ± 2.9 B899667HD 192289 9.3 ± 1.0 27.1 ± 6.8 K5100708HD 194614 2.6 ± 0.0 7.0 ± 2.9 G3I/1/III99676HD 192289 9.3 ± 1.0 27.1 ± 6.8 K5100765HD 194614 2.6 ± 0.0 0.0	99518	* 19 Vul			K3 -	100441	HD 193948	2.6 ± 0.1	44.2 ± 15.2	Ар
99527V* FG Sge (FG Sge 7.0 ± 0.2 43.2 ± 7.8 B4leq-K2lbID0453SADR (FD 12016) 12.0 ± 0.3 17.6 ± 2.5 F8lb99538HD 192043 5.0 ± 1.1 0.2 ± 0.1 WN 100476 HD 194033 $C.0 \pm 0.0$ 20.5 ± 8.8 A099546HD 192281 44.5 ± 8.6 1.5 ± 0.6 O5e 100484 HD 194153 12.5 ± 1.3 14.1 ± 2.5 B1lab99600HD 192029 2.4 ± 0.1 44.3 ± 31.9 B9 100554 HR 7788G5li-11199615V* V377 Pav 2.4 ± 0.1 47.4 ± 34.7 Ap 100556 HD 193333 7.9 ± 0.6 29.0 ± 4.4 B31//II199618HD 192205 4.0 ± 0.0 10.7 ± 5.5 B5 100579 HD 194357B91II99649HD 192422 15.5 ± 1.2 8.6 ± 1.4 B0.51II 100657 HD 194357B91II99669HD 1922170 2.0 ± 0.0 39.8 ± 20.8 A2 100655 BD+34 4005 3.0 ± 0.2 10.0 ± 6.8 B899669HD 192241 3.0 ± 0.2 3.5 ± 1.2 8.6 ± 1.4 B0.51II 100778 HD 194614 2.6 ± 0.0 7.0 ± 2.9 B899675V* V695 Cyg 6.5 ± 0.4 7.8 ± 11.6 K21 + 100778 HD 194833 10.0 ± 0.7 15.7 ± 1.3 B2Ve99741HD 192517 10.2 ± 0.5 20.5 ± 2.3 B21II 100775 PEACOCK 9.0 ± 0.1 10.0 ± 5.5 B8IV99760HD 192508 9.6 ± 0.5 20.5 ± 2.6 <td>99520</td> <td>HD 192022</td> <td></td> <td></td> <td>B8III</td> <td>100448</td> <td>HD 193689</td> <td>2.0 ± 0.0</td> <td>20.1 ± 9.3</td> <td>A0V</td>	99520	HD 192022			B8III	100448	HD 193689	2.0 ± 0.0	20.1 ± 9.3	A0V
99546HD 192013100410HD 194033HD 1940399546HD 19216315.0 \pm 1.10.20.1 \pm 9.3NON-10NON-1099586HD 19228144.5 \pm 8.61.5 \pm 0.6OSe100484HD 1940332.0 \pm 0.020.5 \pm 8.8A99586HD 1920292.4 \pm 0.144.3 \pm 3.1B2OS6HD 1943556.9 \pm 0.647.8 \pm 3.2K599618HD 1920292.4 \pm 0.147.4 \pm 34.7Ap100534HD 1943556.9 \pm 0.647.8 \pm 3.2K599618HD 1920292.4 \pm 0.147.4 \pm 34.7Ap100574HR 78079.4 \pm 0.217.4 \pm 3.1B2Vne99618HD 1922054.0 \pm 1.0 \pm 1.5 \pm 1.6100574HR 7815B9.511199650HD 19244515.5 \pm 1.28.6 \pm 1.4B0.5111100657HD 1946142.6 \pm 0.07.0 \pm 2.9 \pm 0.9B8 </td <td>99527</td> <td>V* FG Sge</td> <td>$7.0\pm~0.2$</td> <td>43.2 ± 7.8</td> <td>B4leq-K2lb</td> <td>100453</td> <td></td> <td>12.0 ± 0.3</td> <td>17.6 ± 2.5</td> <td>F8lb</td>	99527	V* FG Sge	$7.0\pm~0.2$	43.2 ± 7.8	B4leq-K2lb	100453		12.0 ± 0.3	17.6 ± 2.5	F8lb
99580HD192281 44.5 ± 8.6 1.5 \pm 0.6OSA100384HD19415312.5 \pm 1.314.1 \pm 2.5B1lab99584HD355163 2.0 ± 0.0 20.1 ± 9.3 A0p100524HR7788G511-11199600HD192029 2.4 ± 0.1 44.3 ± 31.9 B9100534HD194355 6.9 ± 0.6 47.8 ± 3.2 K599615V* V377 Pav 2.4 ± 0.1 47.4 ± 34.7 Ap100556HD193933 7.9 ± 0.6 29.0 ± 4.4 B31/11199618HD192205 4.0 ± 0.0 10.7 ± 5.5 B5100574HR7807 9.4 ± 0.2 17.4 ± 31.1 B2Vre99618HD192202 15.5 ± 1.6 10.0 ± 1.6 B0.51b100551HR7807 9.4 ± 0.2 10.0 ± 6.8 B899669HD192170 2.0 ± 0.0 39.8 ± 26.8 A2100655BD+344005 3.0 ± 0.2 10.0 ± 6.8 B899669HD192341 3.0 ± 0.0 39.8 ± 20.1 B8100664HD194737K011-11199675V* V695 Cyg 6.5 ± 0.4 57.8 ± 11.6 K211+100738HR7801G311/11199736HD333965 4.0 ± 0.0 12.6 ± 3.2 B5100744HD194833 10.0 ± 0.7 15.7 ± 1.3 B2Ve99741HD192517 10.2 ± 0.3 0.2 ± 0.1 B0.5V100765HD194310 2.9 ± 0.1 10.0 ± 5.5 B8IV<	99526 99546	HD 192043	15.0 ± 1.1	02 ± 01	WN	100470	HD 194033	20 + 00	205 ± 88	A0
99584HD 355163 2.0 ± 0.0 20.1 ± 9.3 A0p 100524 HR 7788G511-11199600HD 192029 2.4 ± 0.1 44.3 ± 31.9 B9 100534 HD 194355 6.9 ± 0.6 47.8 ± 3.2 K599615V* V377 Pav 2.4 ± 0.1 47.4 ± 34.7 Ap 100556 HD 193333 7.9 ± 0.6 29.0 ± 4.4 B311/11199618HD 19205 4.0 ± 0.0 10.7 ± 5.5 B5 100574 HR 7807 9.4 ± 0.2 17.4 ± 3.1 B2Vne99649HD 192422 15.5 ± 1.6 10.0 ± 1.6 B0.51b 100651 HR 7815B911199650HD 192170 2.0 ± 0.0 39.8 ± 26.8 A2 100655 BD+34 4005 3.0 ± 0.2 10.0 ± 6.8 B899667HD 192445 15.5 ± 1.2 8.6 ± 1.4 B0.5111 100657 HD 194737K011-11199670HD 192289 9.3 ± 1.0 27.1 ± 6.8 K5 100708 HD 194737K011-11199675V* V695 Cyg 6.5 ± 0.4 57.8 ± 11.6 K21+ 100738 HR 7801G811/11199736HD 333665 4.0 ± 0.0 12.6 ± 3.2 B5 100744 HD 194833 10.0 ± 0.7 15.7 ± 1.3 B2Ve99741HD 192517 10.2 ± 0.3 0.2 ± 0.1 B0.5V 100775 HD 194310 2.9 ± 0.1 10.0 ± 5.5 B8IV99760HD 192660 15.5 ± 1.6 8.4 ± 0.8 B01a 100771 HD 194329 23.7 ± 1.2 5.9 ± 0.9 B0.51a99744	99580	HD 192281	44.5 ± 8.6	1.5 ± 0.6	O5e	100484	HD 194153	12.5 ± 1.3	14.1 ± 2.5	B1 ab
99600HD192029 2.4 ± 0.1 44.3 ± 31.9 B9100534HD194355 6.9 ± 0.6 47.8 ± 3.2 K599615V* V377 Pav 2.4 ± 0.1 47.4 ± 34.7 Ap100556HD19333 7.9 ± 0.6 29.0 ± 4.4 B3I//III99618HD192205 4.0 ± 0.0 10.7 ± 5.5 B5100574HR7817 9.4 ± 0.2 17.4 ± 3.1 B2Vne99649HD192422 15.5 ± 1.6 10.0 ± 1.6 B0.5lb100651HR 7815B9.5lIII99650HD192170 2.0 ± 0.0 39.8 ± 26.8 A2100657HD 194357 B899667HD192445 15.5 ± 1.2 8.6 ± 1.4 B0.5III100657HD 194614 2.6 ± 0.0 7.0 ± 2.9 B899670HD192289 9.3 ± 1.0 27.1 ± 6.8 K5100708HD 194525 G2lb-1I99675V* V695 Cyg 6.5 ± 0.4 57.8 ± 11.6 K21+100738HR 7801G8II/III99736HD 192539 9.6 ± 0.5 20.5 ± 2.3 B21II100751PEACOCK 9.0 ± 0.0 0.2 ± 0.1 B2IV99746HD192660 15.5 ± 1.6 8.4 ± 0.8 B0Ia100771HD194339 23.7 ± 1.2 5.9 ± 0.9 B0.5la99824HR77.39 8.0 ± 0.0 34.8 ± 5.4 B3V100804HD194339 23.7 ± 1.2 5.9 ± 0.9 B0.5la99848V* V1488Cyg <td>99584</td> <td>HD 355163</td> <td>2.0 ± 0.0</td> <td>20.1 ± 9.3</td> <td>А0р</td> <td>100524</td> <td>HR 7788</td> <td></td> <td></td> <td>G 511-111</td>	99584	HD 355163	2.0 ± 0.0	20.1 ± 9.3	А0р	100524	HR 7788			G 511-111
99615V* V377 Pav 2.4 ± 0.1 47.4 ± 34.7 Ap CrEu(Sr)100556HD 193933 7.9 ± 0.6 29.0 ± 4.4 B3I//III99618HD 192205 4.0 ± 0.0 10.7 ± 5.5 B5100574HR 7807 9.4 ± 0.2 17.4 ± 3.1 B2Vne99649HD 192422 15.5 ± 1.6 10.0 ± 1.6 B0.5lb100557HD 194357B911199650HD 192170 2.0 ± 0.0 39.8 ± 26.8 A2100655BD+34 4005 3.0 ± 0.2 10.0 ± 6.8 B899667HD 192445 15.5 ± 1.2 8.6 ± 1.4 B0.5111100657HD 194614 2.6 ± 0.0 7.0 ± 2.9 B899669HD 192341 3.0 ± 0.0 39.8 ± 20.1 B8100684HD 194737K011-11199670HD 192289 9.3 ± 1.0 27.1 ± 6.8 K5100708HD 194525G21b-1199675V* V695 Cyg 6.5 ± 0.4 57.8 ± 11.6 K21+100738HR 7801G811/11199736HD 333965 4.0 ± 0.0 12.6 ± 3.2 B2111100751PEACOCK 9.0 ± 0.0 0.2 ± 0.1 B21V99746HD 192517 10.2 ± 0.3 0.2 ± 0.1 B0.5V100765HD 194310 2.9 ± 0.1 10.0 ± 5.5 B81V99824HR 7739 8.0 ± 0.0 34.8 ± 5.4 B3V100804HD 194339 23.7 ± 1.2 5.9 ± 0.9 B0.51a99853V* V1488Cyg 6.7 ± 0.3 50.5 ± 2.6 K3lb-11100845HD 195131 1.8 ± 0.0 20.0 ± 8.3	99600	HD 192029	$2.4\pm~0.1$	44.3 ± 31.9	B9	100534	HD 194355	$6.9\pm~0.6$	47.8 ± 3.2	K5
99618HD 192205 4.0 ± 0.0 10.7 ± 5.5 B5 100579 HD 194357B2/H99649HD 192422 15.5 ± 1.6 10.0 ± 1.6 B0.5lb 100579 HD 194357B9/III99650HD 192170 2.0 ± 0.0 39.8 ± 26.8 A2 100655 BD+34 4005 3.0 ± 0.2 10.0 ± 6.8 B899667HD 192445 15.5 ± 1.2 8.6 ± 1.4 B0.5III 100657 HD 194614 2.6 ± 0.0 7.0 ± 2.9 B899669HD 192341 3.0 ± 0.0 39.8 ± 20.1 B8 100684 HD 194737K0II-III99670HD 192289 9.3 ± 1.0 27.1 ± 6.8 K5 100708 HD 194525G2Ib-II99675V* V695 Cyg 6.5 ± 0.4 57.8 ± 11.6 K2II+ 100738 HR 7801G8II/III99736HD 333965 4.0 ± 0.0 12.6 ± 3.2 B2/III 100751 PEACOCK 9.0 ± 0.0 0.2 ± 0.1 B2/V99746HD 192517 10.2 ± 0.3 0.2 ± 0.1 B0.5V 100765 HD 194310 2.9 ± 0.1 10.0 ± 5.5 B8/V99760HD 192660 15.5 ± 1.6 8.4 ± 0.8 B0Ia 100771 HD 194339 23.7 ± 1.2 5.9 ± 0.9 B0.5Ia99824HR 7739 8.0 ± 0.0 34.8 ± 5.4 B3V 100864 HD 195131 1.8 ± 0.0 20.0 ± 8.3 A299853V* V1488Cyg 6.7 ± 0.3 50.5 ± 2.6 K3Ib-III 100845 HD 195131 1.8 ± 0.3 22.3 ± 4.3 B2.5V <td< td=""><td>99615</td><td>V* V377 Pav</td><td>$2.4\pm~0.1$</td><td>47.4 ± 34.7</td><td>Ap</td><td>100556</td><td>HD 193933</td><td>7.9 ± 0.6</td><td>29.0 ± 4.4</td><td>B311/111</td></td<>	99615	V* V377 Pav	$2.4\pm~0.1$	47.4 ± 34.7	Ap	100556	HD 193933	7.9 ± 0.6	29.0 ± 4.4	B311/111
99619HD1922034.0 \pm 0.010.1 \pm 0.3B310.0 \pm 0.010.1 \pm 0.310.1	00619	HD 102205	40±00	107 - 55	CrEu(Sr)	100574	HR 7807	9.4 ± 0.2	17.4 ± 3.1	B2Vne B0111
99650HD 192170 2.0 ± 0.0 39.8 ± 26.8 A2 100657 $HD 194614$ 2.6 ± 0.0 7.0 ± 2.9 B899667HD 192445 15.5 ± 1.2 8.6 ± 1.4 B0.5111 100657 HD 194614 2.6 ± 0.0 7.0 ± 2.9 B899669HD 192341 3.0 ± 0.0 39.8 ± 20.1 B8 100684 HD 194737K011-11199670HD 192289 9.3 ± 1.0 27.1 ± 6.8 K5 100708 HD 194525G21b-1199675V* V695 Cyg 6.5 ± 0.4 57.8 ± 11.6 K211+ 100738 HR 7801G811/11199736HD 333965 4.0 ± 0.0 12.6 ± 3.2 B5 100744 HD 194883 10.0 ± 0.7 15.7 ± 1.3 B2Ve99741HD 192539 9.6 ± 0.5 20.5 ± 2.3 B2111 100751 PEACOCK 9.0 ± 0.0 0.2 ± 0.1 B21V99760HD 192517 10.2 ± 0.3 0.2 ± 0.1 B0.5V 100765 HD 194310 2.9 ± 0.1 10.0 ± 5.5 B8IV99760HD 192660 15.5 ± 1.6 8.4 ± 0.8 B01a 100771 HD 194379 23.7 ± 1.2 5.9 ± 0.9 B0.51a99848V* V1488Cyg 6.7 ± 0.3 50.5 ± 2.6 K31b-11 100845 HD 195131 1.8 ± 0.0 20.0 ± 8.3 A299853V* QS VulG21b SB 100866 HR 7823 7.7 ± 0.4 39.8 ± 3.3 F111	99018	HD 192203	4.0 ± 0.0 155 + 16	10.7 ± 5.5 10.0 ± 1.6	B0 516	100579	HR 7815			B9.5111
99667HD 192445 15.5 ± 1.2 8.6 ± 1.4 B0.5111 100657 HD 194614 2.6 ± 0.0 7.0 ± 2.9 B899669HD 192341 3.0 ± 0.0 39.8 ± 20.1 B8 100684 HD 194737K011-11199670HD 192289 9.3 ± 1.0 27.1 ± 6.8 K5 100708 HD 194525G21b-1199675V* V695 Cyg 6.5 ± 0.4 57.8 ± 11.6 K21+ 100738 HR 7801G811/11199736HD 333965 4.0 ± 0.0 12.6 ± 3.2 B5 100744 HD 194883 10.0 ± 0.7 15.7 ± 1.3 B2Ve99746HD 192539 9.6 ± 0.5 20.5 ± 2.3 B2111 100751 PEACOCK 9.0 ± 0.0 0.2 ± 0.1 B21V99760HD 192660 15.5 ± 1.6 8.4 ± 0.8 B01a 100771 HD 194310 2.9 ± 0.1 10.0 ± 5.5 B81V99824HR 7739 8.0 ± 0.0 34.8 ± 5.4 B3V 100804 HD 194339 23.7 ± 1.2 5.9 ± 0.9 B0.51a99848V* V1488 Cyg 6.7 ± 0.3 50.5 ± 2.6 K31b-11 100845 HD 195131 1.8 ± 0.0 20.0 ± 8.3 A2comp 100858 HD 194739 7.8 ± 0.3 22.3 ± 4.3 B2.5V99853V* QS VulG21b SB 100866 HR 7823 7.7 ± 0.4 39.8 ± 3.3 F11199905HD 192968 9.0 ± 0.3 0.2 ± 0.1 B1Vn 100866 HR 7823 7.7 ± 0.4 39.8 ± 3.3 F111	99650	HD 192170	2.0 ± 0.0	39.8 ± 26.8	A2	100655	BD+34 4005	$3.0\pm~0.2$	$10.0\pm~6.8$	B8
99669HD192341 3.0 ± 0.0 39.8 ± 20.1 B8100684HD194737K011-11199670HD192289 9.3 ± 1.0 27.1 ± 6.8 K5100708HD194525G21b-1199675V* V695 Cyg 6.5 ± 0.4 57.8 ± 11.6 K21+100738HR7801G811/11199736HD333965 4.0 ± 0.0 12.6 ± 3.2 B5100744HD194883 10.0 ± 0.7 15.7 ± 1.3 B2Ve99741HD192539 9.6 ± 0.5 20.5 ± 2.3 B2111100751PEACOCK 9.0 ± 0.0 0.2 ± 0.1 B2Ve99746HD192517 10.2 ± 0.3 0.2 ± 0.1 B0.5V100765HD194310 2.9 ± 0.1 10.0 ± 5.5 B8IV99760HD192660 15.5 ± 1.6 8.4 ± 0.8 B0Ia100771HD194779 6.6 ± 0.3 50.1 ± 6.1 B31199824HR7739 8.0 ± 0.0 34.8 ± 5.4 B3V100804HD194839 23.7 ± 1.2 5.9 ± 0.9 B0.51a99848V* V1488Cyg 6.7 ± 0.3 50.5 ± 2.6 K31b-11100845HD195131 1.8 ± 0.0 20.0 ± 8.3 A2comp100858HD194739 7.8 ± 0.3 22.3 ± 4.3 B2.5V99853V* QS VulG2Ib SB100866HR 7823 7.7 ± 0.4 39.8 ± 3.3 F11199905HD192968 9.0 ± 0.3 0.2 ± 0.1 BIVn100866 <td>99667</td> <td>HD 192445</td> <td>15.5 ± 1.2</td> <td>8.6 ± 1.4</td> <td>B0.5111</td> <td>100657</td> <td>HD 194614</td> <td>2.6 ± 0.0</td> <td>$7.0\pm~2.9$</td> <td>B8</td>	99667	HD 192445	15.5 ± 1.2	8.6 ± 1.4	B0.5111	100657	HD 194614	2.6 ± 0.0	$7.0\pm~2.9$	B8
99670 HD 192289 9.3 ± 1.0 27.1 ± 6.8 K5 100708 HD 194525 G21b-11 99675 V* V695 Cyg 6.5 ± 0.4 57.8 ± 11.6 K211+ 100738 HR 7801 G21b-11 99736 HD 333965 4.0 ± 0.0 12.6 ± 3.2 B5 100744 HD 194883 10.0 ± 0.7 15.7 ± 1.3 B2Ve 99746 HD 192539 9.6 ± 0.5 20.5 ± 2.3 B2111 100751 PEACOCK 9.0 ± 0.0 0.2 ± 0.1 B2VV 99746 HD 192517 10.2 ± 0.3 0.2 ± 0.1 B0.5V 100765 HD 194310 2.9 ± 0.1 10.0 ± 5.5 B8IV 99760 HD 192660 15.5 ± 1.6 8.4 ± 0.8 B01a 100771 HD 194339 23.7 ± 1.2 5.9 ± 0.9 B0.51a 99824 HR 7739 8.0 ± 0.0 34.8 ± 5.4 B3V 100804 HD 194339 23.7 ± 1.2 5.9 ± 0.9 B0.51a 99848 V* V1488 Cyg 6.7 ± 0.3 50.5 ± 2.6 K31b-11 100845 HD 194339 23.7 ± 1.2 5.9 ± 0.9 B0.51a 99853	99669	HD 192341	$3.0\pm~0.0$	39.8 ± 20.1	B8	100684	HD 194737			K0 -
990/5 V* V095 Cyg 6.5 ± 0.4 $5/.8 \pm 11.6$ $K211+$ 100738 HR 7801 G81/7111 99736 HD 333965 4.0 ± 0.0 12.6 ± 3.2 B5 100744 HD 194883 10.0 ± 0.7 15.7 ± 1.3 B2Ve 99741 HD 192519 9.6 ± 0.5 20.5 ± 2.3 B2111 100751 PEACOCK 9.0 ± 0.0 0.2 ± 0.1 B2IV 99746 HD 192517 10.2 ± 0.3 0.2 ± 0.1 B0.5V 100751 PEACOCK 9.0 ± 0.1 10.0 ± 5.5 B8IV 99760 HD 192660 15.5 ± 1.6 8.4 ± 0.8 B0Ia 100771 HD 194310 2.9 ± 0.1 10.0 ± 5.5 B8IV 99862 HR 7739 8.0 ± 0.0 34.8 ± 5.4 B3V 100804 HD 194839 23.7 ± 1.2 5.9 ± 0.9 B0.51a 99848 V* V1488 Cyg 6.7 ± 0.3 50.5 ± 2.6 K3lb-II 100845 HD 195131 1.8 ± 0.0 20.0 ± 8.3 A2 comp 100858 HD 194739 7.8 ± 0.3 22.3 ± 4.3 B2.5V 99853 V* QS Vul	99670	HD 192289	9.3 ± 1.0	27.1 ± 6.8	K5	100708	HD 194525			G2lb-11
99740 HD 192539 9.6 ± 0.5 20.5 ± 2.3 B2III 100751 PEACOCK 9.0 ± 0.0 0.2 ± 0.1 B2/Ve 99740 HD 192537 10.2 ± 0.3 0.2 ± 0.1 B0.5V 100765 HD 194803 10.0 ± 0.7 10.7 ± 1.3 B2/Ve 99740 HD 192517 10.2 ± 0.3 0.2 ± 0.1 B0.5V 100765 HD 194310 2.9 ± 0.1 10.0 ± 5.5 B8IV 99760 HD 192660 15.5 \pm 1.6 8.4 ± 0.8 B0Ia 100771 HD 194779 6.6 ± 0.3 50.1 ± 6.1 B3II 99848 V* V1488 Cyg 6.7 ± 0.3 50.5 ± 2.6 K3Ib-II 100845 HD 195131 1.8 ± 0.0 20.0 ± 8.3 A2 099843 V* QS Vul	99675	V* V695 Cyg	0.5 ± 0.4	57.8 ± 11.6	K2II+ B5	100738	HK 7801	1004 07	157 - 13	G8 / B2\/a
99746 HD 192517 10.2 ± 0.3 0.2 ± 0.1 B0.5V 100765 HD 194310 2.9 ± 0.1 0.1 ± 0.1 B1V 99760 HD 192660 15.5 ± 1.6 8.4 ± 0.8 B01a 100771 HD 194310 2.9 ± 0.1 10.0 ± 5.5 B8IV 99848 V* V1488 Cyg 6.7 ± 0.3 50.5 ± 2.6 K3Ib-II 100865 HD 195131 1.8 ± 0.0 20.0 ± 8.3 A2 99853 V* QS Vul Comp 100866 HR 7823 7.7 ± 0.4 39.8 ± 3.3 F1II 99905 HD 192968 9.0 ± 0.3 0.2 ± 0.1 BIVn	99730 99741	HD 192539	4.0 ± 0.0 9.6 ± 0.5	12.0 ± 3.2 20.5 + 2.3	вэ В2	100744	PEACOCK	10.0 ± 0.7	15.7 ± 1.3 0.2 ± 0.1	B2Ve B2IV
99760 HD 192660 15.5 ± 1.6 8.4 ± 0.8 B0la 100771 HD 194779 6.6 ± 0.3 50.1 ± 6.1 B3/I 99824 HR 7739 8.0 ± 0.0 34.8 ± 5.4 B3V 100804 HD 194839 23.7 ± 1.2 5.9 ± 0.9 B0.5 la 99848 V* V1488 Cyg 6.7 ± 0.3 50.5 ± 2.6 K3lb-II 100845 HD 195131 1.8 ± 0.0 20.0 ± 8.3 A2 comp 100858 HD 194739 7.8 ± 0.3 22.3 ± 4.3 B2.5V 99853 V* QS Vul G2lb SB 100866 HR 7823 7.7 ± 0.4 39.8 ± 3.3 F1II 99905 HD 192968 9.0 ± 0.3 0.2 ± 0.1 B1Vn 100866 HR 7823 7.7 ± 0.4 39.8 ± 3.3 F1II	99746	HD 192517	10.2 ± 0.3	0.2 ± 0.1	B0 5V	100765	HD 194310	2.9 ± 0.1	10.0 ± 5.5	B8IV
99824 HR 7739 8.0 ± 0.0 34.8 ± 5.4 B3V 100804 HD 194839 23.7 ± 1.2 5.9 ± 0.9 B0.5 la 99848 V* V1488 Cyg 6.7 ± 0.3 50.5 ± 2.6 K3lb-II 100845 HD 195131 1.8 ± 0.0 20.0 ± 8.3 A2 99853 V* Q5 Vul G2lb SB 100866 HR 7823 7.7 ± 0.4 39.8 ± 3.3 F1II 99905 HD 192968 9.0 ± 0.3 0.2 ± 0.1 B1Vn B1Vn D10866 HR 7823 T.7 ± 0.4 39.8 ± 3.3 F1II	99760	HD 192660	15.5 ± 1.6	8.4 ± 0.8	B01a	100771	HD 194779	6.6± 0.3	$50.1\pm~6.1$	B3
99848 V* V1488 Cyg 6.7 ± 0.3 50.5 ± 2.6 K3lb-II 100845 HD 195131 1.8 ± 0.0 20.0 ± 8.3 A2 99853 V* QS Vul G2lb SB 100866 HR 7823 7.7 ± 0.4 39.8 ± 3.3 F1II 99905 HD 192968 9.0 ± 0.3 0.2 ± 0.1 B1Vn	99824	HR 7739	8.0 ± 0.0	34.8 ± 5.4	B3V	100804	HD 194839	23.7 ± 1.2	5.9 ± 0.9	B0.5la
comp 100858 HD 194739 7.8 ± 0.3 22.3 ± 4.3 B2.5V 99853 V* QS Vul G2lb SB 100866 HR 7823 7.7 ± 0.4 39.8 ± 3.3 F1II 99905 HD 192968 9.0 ± 0.3 0.2 ± 0.1 B1Vn E10866 HR 7823 7.7 ± 0.4 39.8 ± 3.3 F1II	99848	V* V1488 Cyg	6.7 ± 0.3	50.5 ± 2.6	K3lb-11	100845	HD 195131	1.8± 0.0	20.0 ± 8.3	A2
של סוגע און אין אין אין אין און אין אין אין און אין אין און אין אין אין און אין אין אין אין אין אין אין אין אין אי	00052	V* OS V -			COMP	100858	HD 194739	7.8 ± 0.3	22.3 ± 4.3	B2.5V
	99905 99905	v v v vu HD 192968	9.0 ± 0.3	0.2 ± 0.1	B1Vn	100000	1111 1023	1.1± 0.4	J9.0 ± 3.3	1 11

Table C.1: - Continued. -

HIP	other D	mass [M _☉]	age [Myr]	SpT	HIP	other ID	mass [M _☉]	age [Myr]	SpT
100881	* 10 Cap	5.0 + 0.1	30.0 + 0.5	BAV	102062	HR 7022			B6III
100001	HD 193607	5.5 ± 0.1	55.5 ± 5.5	K211/111	102066	$DS 20370 \pm 3157$			GBUL
100912	HD 195089	9.2 ± 0.3	21.2 ± 2.5	B2IV	102096	V* AV Mic			M311
100997	HD 194942	$2.0\pm~0.0$	$20.1\pm~8.4$	A0	102098	V* alf Cyg	15.5 ± 1.0	11.6 ± 0.6	A 2 a
101017	HR 7817			B8 /	102155	HR 7926			B8 -
101066	BD+46 2948			B1V:nne	102167	BD+42 3835	17.8 ± 2.7	3.3 ± 0.7	О9р
101067	* 42 Cyg	$8.6\pm~0.5$	30.5 ± 3.8	А1 Ь	102171	HD 197512	10.0 ± 1.3	$8.0\pm~2.4$	B1V
101076	* 41 Cyg			F5	102177	* 51 Cyg	10.0 ± 0.3	20.4 ± 1.0	B2V
101112	HD 195463	5.0 ± 0.0	54.8 ± 5.6	B5	102195	HR 7927	10.0 ± 0.4	18.0 ± 3.3	B2IV-Ve
101127	BD+47 3127	2.9 ± 0.0	25.1 ± 16.8	B3 EIV	102219	HD 197460	9.7 ± 0.7	18.6 ± 1.7	BU.516
101130	HD 195432	0.0 ± 0.3	33.2 ± 0.2	6011	102271	HD 197489 HD 197605			E511
101112	HD 195592	28.8 ± 9.7	3.8 ± 0.3	09.51a	102359	BD+43 3701	2.5 ± 0.1	60.7 ± 37.8	B9V
101196	HD 195171			A6 /	102376	HD 196786	2.7 ± 0.1	3.4 ± 0.9	B8/B9IV
101214	* 44 Cyg	9.8 ± 1.2	25.1 ± 4.6	F5lab	102377	HD 197850	$7.1\pm~0.3$	44.6 ± 8.9	кo
101219	HD 195480	8.4 ± 1.4	32.0 ± 11.0	K5	102381	HD 197402			K1 /
101241	HD 193441			F2 /	102387	HD 197403			K0/K1 /
101256	HD 239436	$6.9\pm~0.3$	39.8 ± 4.6	B5	102409	V* AU Mic	$0.8\pm~0.2$	17.0 ± 12.1	M1Ve
101265	HD 195746	3.0 ± 0.1	25.1 ± 20.8	A	102440	V* U Del			M5 -
101295	BD+47 3131	5.0 ± 0.0	55.8 ± 0.0	B5	102504	HD 197940	9.0 ± 0.7	27.0 ± 4.2	K2
101298	HD 195013	0.5 ± 0.5	60.8 ± 12.0	G5 M/III III	102531	HR 7947 HD 108105			A21a+ B0111
101328	HD 195455			B1/B2	102589	* Jam Cyg	62 ± 01	631 ± 143	B6IV
101339	HD 195617	6.3 ± 0.4	63.7 ± 14.0	K2	102609	BD+45 3279	4.0 ± 0.0	20.0 ± 17.6	B6V
101350	HD 195965	12.0 ± 0.6	0.1 ± 0.0	B0V	102626	V* BO Mic	1.0 ± 0.0	22.2 ± 1.6	K0V
101375	HD 195985	$5.0\pm~0.0$	42.5 ± 7.1	В5	102641	HD 197956			K1 /
101381	HD 195835			K0	102648	V* V367 Cyg			A7la
101383	HR 7861	$7.0\pm~0.1$	43.2 ± 6.4	B4111	102658	HD 198041			F5 /
101412	V* V2124 Cyg	7.4 ± 0.7	40.7 ± 6.5	M0	102686	BD+36 4254	5.7 ± 0.4	52.1 ± 4.4	B5
101419	VICYG 9	27.9 ± 5.9	2.5 ± 0.8	O5e	102687	HD 198414	3.2 ± 0.1	10.0 ± 7.2	B7IIIvar
101421	* eps Del			B0111	102700	HD 198512	12.5 ± 0.8	10.0 ± 0.9	B1Vnnpe B21-
101427	HD 196006	70 ± 01	0.6 ± 0.3	B2V	102724	HR 7993	15.5 ± 1.0 15.1 ± 0.5	12.0 ± 1.9 85 ± 0.8	B0 5V
101474	V* V2125 Cvg	12.2 ± 1.3	16.0 ± 1.1	K2 b comp	102772	HR 7961	13.1 ± 0.5	0.5 ± 0.0	B811
101491	LTT 16003	2.0 ± 0.0	20.1 ± 9.3	A0	102804	HD 198624	8.5 ± 0.9	33.4 ± 8.5	F7V: comp
101505	HR 7862	$5.8\pm~0.2$	$14.6\pm~5.0$	B3IV	102827	HR 7983	$7.0\pm~0.1$	40.5 ± 5.8	B4V
101526	HD 196025	$6.7\pm~0.3$	$1.4\pm~1.2$	B2IV-V	102912	HD 198794			КЗІЬ
101530	HD 196421	$9.4\pm~0.3$	20.9 ± 1.6	B2IV	102916	HR 7971			K3III
101544	HD 196197			K1 -	102918	BD+45 3303			AOIB
101565	BD+46 2985	2.7 ± 0.2	7.0 ± 2.9	BS	102926	HD 198895	10.7 ± 1.0	5.6 ± 0.7	B1V BE
101575	HD 190245 HR 7865			БЭ А511/111	102943	N* T Vul	5.0 ± 0.5	50.1 ± 0.4	60 6516
101634	HD 197637	8.3 ± 0.3	29.0 ± 4.5	B3	102949	*iot Ind			K1 /
101648	BD+36 4145	17.7 ± 2.7	2.3 ± 1.3	09V	102953	V* V1792 Cyg	$12.1\pm~0.9$	11.4 ± 1.2	B2V
101682	HD 334655			В	102978	* ome Cap	$6.8\pm~0.9$	47.9 ± 7.5	K4111
101692	* 70 Aq			K5	102979	HD 198504			A2 /
101746	HR 7878			B8 p	102993	HR 7996	$6.9\pm~0.1$	39.8 ± 4.0	B3111
101758	HD 196212	$2.0\pm~0.0$	28.4 ± 16.1	A0V	102999	V* Y Cyg	15.6 ± 1.4	5.6 ± 1.6	B0IVv SB
101765	* 48 Cyg	F 0 0 1	F77 70	B8IIIn DE	103005	* 5 Aqr			B9111
101790	BD+46 2991 HD 196507	5.0 ± 0.1 2.0 ± 0.0	57.7 ± 7.8 20.1 ± 0.3	B2	103035	HD 199120			GALL
101832	BD+41 3833	7.0 ± 0.0	43.1 ± 9.5	B8	103061	HD 199021	148 ± 15	45 ± 22	BOV
101841	HD 196819	6.8 ± 0.8	48.2 ± 8.8	K3	103085	HD 198934	1.9 ± 0.0	31.6 ± 19.2	A2
101868	* 28 Vu			B5IV	103087	HD 198864	15.0 ± 1.1	$0.2\pm~0.1$	O8.5
101870	HR 7895			K0 - +	103089	* 57 Cyg			B5V
101878	BD+12 4410	$3.2\pm~0.1$	45.0 ± 36.9	B8	103094	HR 8003			K011
101882	* tet Del			Кзір	103141	HD 199308	$10.0\pm~0.2$	21.2 ± 1.7	B2IV-V
101909	HR 7899	$7.1\pm~0.3$	31.6 ± 2.4	B3V	103143	HD 199216	13.3 ± 1.0	12.6 ± 1.1	B1
101921	HK 7890			B/111n B7111	103157	HD 198803	2.0 ± 0.0	34.7 ± 22.0	AIV
101923	120302 1457 A P			B7111	103107	HD 199206	6 ° ⊥ 0 1	42 - 21	B8II B2IIIwar
101934	HR 7912			B5IV	103191	HD 199290	0.0 ± 0.1	4.∠ 3.I	F2 b
101938	HD 197344	2.6 ± 0.1	7.0 ± 2.9	B8	103206	HR 7992			B5IV
101949	V* V2130 Cyg			B6⊞p Mn	103210	HD 199309	$3.0\pm~0.0$	39.8 ± 25.4	B8V
101953	HD 196972			K011	103214	HD 335300	2.9 ± 0.2	$10.0\pm\ 6.8$	B8
101967	HD 196884	6.8 ± 0.7	63.1 ± 20.8	K2	103242	HD 199251	6.5 ± 1.5	63.1 ± 21.5	M4
102000	HD 352826	$2.0\pm~0.1$	20.1 ± 9.3	A0	103263	HD 199394			G 511
102001	HD 235316	$4.5\pm~0.5$	27.3 ± 4.5	B5	103277	HD 199356	12.5 ± 0.6	$15.7\pm~0.9$	B2IVp:
102002	HD 235317			B5	103343	HR 8022			B5V

Table C.1: - Continued. -

HIP	other D	mass	age	ЅрТ	HIP	other ID	mass	age	ЅрТ
		[M _☉]	[Myr]				[M _☉]	Myr	
103346	HR 8029	$6.7\pm~0.1$	11.4 ± 1.1	B2.5IV	104643	HD 201912	5.0 ± 0.0	15.9 ± 8.8	В5
103355	BD+42 3914	14.7 ± 0.6	6.5 ± 3.5	B0III:	104650	HD 201279	70 01	00.2 2.0	G511/111
103358	HD 199378 HR 8026	0.3 ± 0.3	55.2 ± 5.7	GOIV:	104676	HD 239605 HD 202124	7.0 ± 0.1 14.8 ± 0.4	29.3 ± 3.8 50 + 12	B3 09.515
103380	HD 199739	7.0 ± 0.3	44.7 ± 5.1	B8	104000	HD 202163	7.9 ± 0.5	8.7 ± 2.9	B2V
103409	BD+45 3341	$7.5\pm~0.4$	$0.9\pm~0.6$	B1	104719	V* V419 Cep	$16.5\pm~2.1$	10.0 ± 1.4	М3ІЬ
103428	HD 199714			B8lb	104732	* zet Cyg			G8II SB
103471	V* DQ Cep			F2	104742	HD 202253	$8.3\pm~0.5$	22.4 ± 2.4	B2
103472	HD 199560	7.0 ± 0.4	47.6 ± 9.7	K2 R5V	104781	HD 202312	10.0 + 0.2	11-16	G5 - B0 5\/
103530	CCDM	5.9 ± 0.3	63.1 ± 16.1	B5Vn	104814	HR 8126	6.3 ± 0.5	4.4 ± 4.0 63.7 ± 14.6	G2 b
	J20585+5028AB				104871	HD 202583	6.3 ± 0.8	63.1 ± 26.8	K5
103532	HR 8036			B7III	104877	V* V386 Cyg			F5.5lb
103632	* 59 Cyg	15.5 ± 0.8	11.1 ± 0.9	B1ne	104883	HD 239618	10.0 ± 0.9	15.4 ± 1.5	B2Ve
103637	HD 200102	7.8 ± 0.7	38.5 ± 6.7	G 1 b B 5V	104962	HR 8136 * phi Cop	6.2 ± 0.1	50.2 ± 1.7	B4IV Kouzzu
103700	* 60 Cvg	12.4 ± 0.1	10.7 ± 1.4	B1V	104903	HD 202618			F2lb
103740	HD 199953			K2/K3 /	105037	BD+45 3479	$3.1\pm~0.1$	$10.0\pm~6.8$	B8
103761	HD 341423	3.2 ± 0.2	12.6 ± 6.6	B8	105091	HR 8153	12.5 ± 1.2	15.8 ± 0.9	B2
103763	HD 200775	$9.0\pm~0.2$	$0.2\pm~0.1$	B2Ve	105102	* sig Cyg	12.0 ± 0.3	16.1 ± 0.3	B9lab
103803	V* V388 Pav			F5II	105113	HD 239626	12.0 ± 0.8	0.1 ± 0.0	BOV
103810	121022+5640AB			Belli	105119	HD 202441 * ups Cvg	95 ± 04	174 + 31	B2Vne
103822	HD 200465	$8.2\pm~0.7$	29.9 ± 3.7	A1V comp	105100	* 30 Cap	510 ± 0.1	11.11 ± 0.1	B511/111
103828	V* V1981 Cyg			M31b-11:	105147	HD 202883			B5
103838	HD 200509	4.0 ± 0.0	$10.0\pm~4.3$	А	105164	* 15 Aqr			B5V
103850	HD 200576			K5 b	105182	HD 203135			K3 -
103868	HD 200393 HR 8064	9.7 ± 1.3 6.9 ± 0.1	25.1 ± 4.0 27.3 ± 4.0	M0 B3Vn	105186	V* V1809 Cyg	56.7 ± 17.8	2.4 ± 0.4	
103071	BD+41 3985	4.0 ± 0.0	12.3 ± 3.8	B5VII	105205	HD 202975	3.5 ± 0.5	0.2 ± 0.1	K0
103954	HD 199997			G3lab:	105219	HD 203137	7.8± 0.6	38.4 ± 6.2	K5
103966	HD 200857	11.7 ± 0.5	16.0 ± 1.6	B3IIIvar	105255	HD 203050	6.3 ± 0.7	63.7 ± 14.6	К2
103968	V* V1898 Cyg	9.6 ± 0.3	$10.1\pm~1.4$	B1IV:p	105259	V* V381 Cep			B3Vv comp
103971	HD 200804	6.1 ± 0.2	29.1 ± 1.2		105268	* 6 Cep	10.0 ± 1.3	22.6 ± 3.4	B3IVe E216
104010	HD 200203			A4/A511/111	105209	HD 201292	0.5 ± 0.4	49.0 ⊥ 0.5	A 3
104060	* ksi Cyg			K5lbv SB	105342	HD 203534	6.7 ± 1.4	54.0 ± 21.8	K5
104115	HD 201065			К5 Ь	105353	HD 202895			F5
104126	BD+30 4313	2.8 ± 0.1	10.0 ± 6.8	B8	105388	HD 202917	$1.0\pm~0.0$	41.0 ± 6.8	G5V
104168	HD 200719			F5 /	105404	V* BS Ind	1.0 ± 0.0	20.9 ± 2.9	K0V
104172	V* DT Cvg			F7.5lb-llv	105423	CCDM	2.5 ± 0.1	50.0 ± 24.5	Б9 F5 /
104187	HD 200589			F3 /		J21213-8419AB			,
104194	* 63 Cyg	$5.9\pm~0.4$	63.1 ± 16.3	K411	105489	HD 203484	1.8 ± 0.0	13.9 ± 3.6	A3
104205	HD 201094			K2	105493	HD 203472	6.2 ± 0.7	63.7 ± 14.6	К2
104208	HD 201232	2.0 ± 0.0	20.1 ± 9.3	A0 DE	105512	HD 203457	1.9 ± 0.0	39.8 ± 26.8	A2
104211	HD 235443 HD 200995			R011 B2	105565	HD 239644 HD 203731	6.9 ± 0.2 10.0 + 0.7	24.7 ± 3.3 44 ± 24	B3 B1Vne
104268	HD 201359	$2.6\pm~0.0$	$7.0\pm~2.9$	B8V	105581	V* D Oct	7.7 ± 0.8	37.4 ± 8.3	K5
104316	HD 201345	15.0 ± 1.1	$0.2\pm\ 0.1$	09р	105595	HD 203783	2.4 ± 0.0	39.2 ± 14.9	B9
104320	HD 201254	8.2 ± 0.6	$23.8\pm~2.6$	B3V	105607	HR 8189			F6 -
104337	HD 201018	1.8 ± 0.0	12.7 ± 2.5	Ар	105633	HD 203617	8.0 ± 0.6	11.1 ± 2.6	B2/B3V
104350	HD 239581 HD 201522	10.0 ± 1.0 12.0 ± 0.8	10.8 ± 2.2 0.1 ± 0.0	B2V B0V	105640	HD 203938 BD+63 1725	21.5 ± 3.2 3.0 ± 0.0	0.2 ± 0.5 28.4 ± 21.8	BU.5IV B8
104301	HD 2011022	3.1 ± 0.0	63.1 ± 17.1	B8IV/V	105669	HD 204022	7.5 ± 0.8	40.9 ± 10.0	GOIL
104444	HD 201335	6.9 ± 1.3	45.5 ± 5.3	K4III	105673	HD 203921			B9111
104449	HR 8109			B7III	105690	V* V424 Cep	6.8 ± 0.3	39.8 ± 3.2	B5
104454	HD 201666	9.7 ± 0.4	16.9 ± 3.1	B2Vn	105693	BD+35 4512	2.0 ± 0.1	20.1 ± 9.3	A0V
104516	нк 8103 НВ 8106	$5.0\pm~0.0$	4U.8 ± 8.5	841Vp 89111	105701	HD 204116 BD+35 4515	15.6 ± 1.7 3.0 ± 0.2	8.4 ± 1.4 100 + 69	B1Ve B8V
104510	HD 201409			G8II	105701	HD 204050	J.0 ⊥ 0.2	10.0 ± 0.8	K1 -
104548	HD 201795	10.8 ± 1.1	$5.6\pm~5.9$	B1V	105716	HD 203586	$1.6\pm~0.0$	$17.2\pm~6.7$	A5IV
104570	CCDM	1.8 ± 0.0	14.0 ± 3.7	A 3	105741	BD+43 3913	9.9 ± 0.1	11.5 ± 2.0	B1.5V∶nnpe
	J21110+0933AB				105881	* zet Cap			G4lbp
104573	V* V1425 Cyg	166 - 16	0.5 1.0	B9 + A0	105891	HR 8218	3.8 ± 0.0	22.6 ± 4.9	B6V
104579		15.5 ± 1.0 73 + 02	9.5 ± 1.0 31.6 ± 2.6	втур ВЗ	105912	v ° ВК №11С HD 239671	0.4 ± 0.2 83 + 04	10.0 ± 1.1 97 + 10	B2∏ B2V
104642	CCDM	30.5 ± 9.0	3.4 ± 0.3	B0V	105942	* 70 Cyg	8.4 ± 0.3	28.2 ± 3.8	B3V
	J21118+5959AB				105946	HD 204220			B9 / V

HIP	other D	mass [M _☉]	age [Myr]	ЅрТ	HIP	other D	mass [M⊙]	ag e [Myr]	SpT
105949	V* V426 Cep			M3II-III	107374	HR 8327	24.6 ± 6.9	$3.7\pm~0.1$	O9 11
105986	HD 204536	6.4 ± 0.1	45.9 ± 3.9	B3	107382	* c Cap			G811-111
106032	V* bet Cep	$9.9\pm~0.0$	23.7 ± 2.2	B2IIIv SB	107398	HD 207119	9.1 ± 1.0	29.2 ± 6.9	K5lb
106051	HD 203203			K0 /	107418	V* nu. Cep * 12 D	23.7 ± 1.2	6.5 ± 0.4	A 2 avar
106052	CCDM			F411	107472	* 81 Cvg	0.3 ± 0.7 84 + 05	33.2 ± 6.4	B3III
100055	J21289+1106AB				107538	HD 235618	9.7 ± 0.4	7.8 ± 4.2	B1IV
106071	HD 204710			B8lb	107588	HD 207171			A511/111
106079	HD 204722	$7.7\pm~0.4$	$5.1\pm~3.2$	B2V:nne:	107594	V* AP Cap			B9 sp
106134	HD 239683	6.2 ± 0.3	27.7 ± 6.5	B3IV	107649	HD 207129	$1.1\pm~0.0$	$27.3\pm~2.0$	G2V
106145	HD 204860	$5.4\pm~0.1$	65.7 ± 16.3	B5	107653	HD 207489			F5Ib
106227	HD 239089	122 ± 0.3	14.6 ± 1.0	B1.5V B1	107704	HD 207647			G416 M111 111
106265	HD 239693	5.1 ± 0.1	5.1 ± 3.8	B3V	107728	HD 207593	2.0 ± 0.0	20.1 ± 9.3	A0
106267	HR 8242			G2lb+	107733	HD 207728	$6.3\pm$ 0.5	50.1 ± 6.4	B8
106278	* bet Aqr			GOIB	107734	HR 8341	$8.6\pm\ 0.3$	13.3 ± 3.3	B2V
106284	HD 205060			B5	107751	HD 207625	$6.3\pm~0.6$	60.1 ± 11.5	K5
106285	V* V429 Cep	12.6 ± 1.2	10.0 ± 0.5	BOIL	107777	HD 207793	15.5 ± 0.6	10.3 ± 0.7	B0.5111
106306	HD 204728			F3II/III G8lb	107864	HD 207872 BD±28 4211	9.5 ± 0.8	21.3 ± 2.2	Bo
106307	HD 205285			AmA1-F0	107887	HR 8348			B8
106343	BD+64 1561	$3.1\pm~0.1$	28.4 ± 23.8	B8	107913	V* V383 Cep	$9.7\pm~0.2$	$19.1\pm~1.5$	B2Vnp
106349	HD 205329	$10.0\pm\ 0.2$	20.0 ± 1.7	B1.5V	107923	HD 207991			К5ІЬ
106420	HR 8248	$6.3\pm~0.7$	63.1 ± 27.3	K1 bvar	107952	HD 208742	$6.2\pm~0.2$	63.5 ± 16.6	K5
106448	HD 204886			K0 b/	107961	CCDM	10.0 ± 1.4	14.2 ± 1.3	B2V
106519	HR 8176	6.0 ± 0.0	27.7 ± 3.6	B3IV B0III	107094	J21523+6306AB	125 - 04	144 - 12	D 1111
106541	HD 205186			К2 / К2 /	107904	BD+47 3588	12.5 ± 0.4	14.4 ± 1.2	B15V
106564	HR 8244			B8IIIw	107998	HD 207715			K0 /
106620	HD 205618	10.0 ± 0.8	14.2 ± 3.9	B2Vne	108011	BD+45 3710	$3.1\pm~0.1$	50.1 ± 35.9	В8
106625	HD 205574	$6.2\pm~0.6$	63.7 ± 13.8	K2	108022	* 16 Peg	6.5 ± 0.1	23.6 ± 7.4	B3V
106643	HD 205603			G811	108029	HD 208219	$6.2\pm~0.7$	63.7 ± 14.6	K0
106712	HD 206135	8.0 ± 0.6	24.2 ± 3.7	B3V B2V/an a	108030	HD 208411	62 01	151 02	G8 B2
106723	HD 239712 * ens Can	10.0 ± 1.0 8.8 + 0.1	14.4 ± 1.4 28.2 ± 4.6	B2Vnne B3V∵n	108054	HD 235648 HD 208392	0.3 ± 0.1 126 + 09	15.1 ± 2.3 57 + 30	B1IV
106746	HD 205836	0.0 1 0.1	20:2 1 1:0	K0 -	108080	HD 208440	10.8 ± 1.0	6.2 ± 1.9	B1V
106774	HD 206081	$9.6\pm~0.4$	6.3 ± 4.7	B1Vn	108081	HD 207591			F2/F3 /
106843	HD 206183	15.0 ± 1.1	1.5 ± 1.9	B0V	108085	* gam Gru			B8111
106848	HD 206121			G511	108099	HD 208201			G8 -
106850	HD 205954	7.1 ± 0.6	50.1 ± 12.0	K2	108195		1.6 ± 0.1	10.6 ± 1.2	F1
106896	HD 206327	31.8 ± 9.0 8.2 ± 0.9	2.1 ± 0.7 137 ± 26	B2V	108215	HD 208213	51 ± 01	62 ± 35	B3IV
106905	HD 239725	6.3 ± 0.2	2.0 ± 1.6	B2V	108226	HR 8375	7.2 ± 0.2	35.5 ± 1.8	B2.5Ve
106916	BD+64 1579	$3.1\pm~0.1$	31.6 ± 26.8	B8	108233	HD 208563			K2 -
106917	HD 205805			B7111	108283	HD 208761	$6.2\pm~0.0$	$15.4\pm~0.4$	B3V
106937	HD 239729	12.0 ± 0.8	0.1 ± 0.0	B0V	108296	HR 8372	6.8 ± 0.4	47.8 ± 8.3	K5V
106956	HD 239731	4.8 ± 0.2	45.8 ± 8.5	B5	108317	V* VV Cep	9.6 ± 1.3	25.1 ± 1.1	M2 comp
106902	HD 206349	2.0 ± 0.0	20.1 ± 9.5	А0 К1Ш-Ш	108333	HD 208904	9.0 ± 0.7 7.0 + 0.1	15.0 ± 1.5 29.3 + 2.2	B3V
106974	HD 206312			K1	108364	HR 8384	9.7 ± 0.2	18.1 ± 3.1	B2V
106980	HD 206383			В5	108372	HD 208905	14.7 ± 1.0	9.0 ± 0.5	B1Vp
107012	HD 235586	$7.7\pm~0.4$	$3.0\pm~2.7$	B2	108374	HD 208785			K3 -
107123	HD 239738	5.0 ± 0.0	3.2 ± 2.3	B3	108376	HD 239809			B2IV
107136	* 80 Cyg	10.0 ± 0.2	25.1 ± 1.1	B3IV	108378	HD 208971	7.6 ± 0.6	38.3 ± 6.3	K5
107144	HD 206773	0.2 ± 0.0 17.7 ± 2.7	51 ± 23.3	R2III B0V:ne	108410	HD 208019	2.4 ± 0.1	51.5 ± 20.9	Б9 G8II/III
107173	HR 8292	5.0 ± 0.0	34.0 ± 14.0	B5IV	108425	HD 208893	2.0 ± 0.0	11.0 ± 0.9	A0
107186	HR 8304			G811	108427	V* CP Cep			F5 b-F7
107198	HD 206748			G8 b-	108485	HD 208800	1.9 ± 0.0	13.0 ± 1.8	A2
107209	HD 239742			B2V	108519	HD 209178	$2.6\pm~0.1$	$7.0\pm~2.9$	B8
107259	V* mu. Cep	24.4 ± 7.9	6.4 ± 2.5	M2Ia B2V	108531	HD 208973	$8.2\pm~0.6$	$10.6\pm~3.6$	B2V
107203	BD+53 2602	ö.ö± 0.3 3.0∔ 0.2	11.4 ± 2.8 10.0 ± 6.8	62V В8	108543	нк 83/9 HD 209006	10+00	130 + 19	κ11/111 Δ2
107295	V* eps Peg	9.2 ± 0.7	10.0 ± 0.0 27.8 ± 5.1	K2 bvar	108578	V* S Peg	12.0 ± 0.8	0.1 ± 0.0	B0
107316	HD 235602			B3	108597	HD 208886			B5
107325	BD+82 663	$6.9\pm~0.3$	46.0 ± 3.8	F2	108603	HD 209317	10.0 ± 0.5	25.1 ± 4.7	K5
107330	HD 207049			B8111	108612	* 18 Peg	6.2 ± 0.1	42.4 ± 6.4	B3
107348	* 9 Peg			G5Ib	108627	HD 209204	6.9 ± 0.4	46.7 ± 5.0	K0
107361	HD 207001	$5.8\pm~0.6$	$/1.3 \pm 24.1$	K5	108650	HR 8399	17.5 ± 2.6	5.3 ± 1.4	B0IV B2V
					100/20	110 209404	9.0 ± 0.5	10.9 _ 2.0	02V

Table C.1: - Continued. -

HIP	other D	mass [M⊙]	ag e [Myr]	SpT	HIP	other ID	mass [M _☉]	age [Myr]	SpT
108724	HD 239827	$2.0\pm~0.0$	20.1 ± 9.3	A0	110476	BD+42 4370	$3.1\pm~0.1$	35.7 ± 29.6	B8
108758	HR 8403			B5	110497	HR 8535			B8 - V
108766	HR 8397	6.3 ± 0.3	50.1 ± 6.4	B5 n	110504	V* RW Cep	15.5 ± 3.5	11.1 ± 2.0	G8lavar
108772	V* LZ Cep	22.4 ± 8.9	3.4 ± 0.4	090	110511	BD+46 3682	2.9 ± 0.3	10.0 ± 6.8	B8
108786	HD 209073	1.8 ± 0.1 64 + 11	12.0 ± 1.9 60.2 ± 22.6	A2m K5	110517	HD 212376 HR 8550	1.8 ± 0.0	12.0 ± 1.9	A2 B9.5III
108911	V* V395 Lac	8.1 ± 0.5	24.9 ± 2.2	B2lab:	110550	BD+24 4587p	$1.9\pm~0.1$	47.4 ± 34.8	A2
108925	* 15 Cep	$12.1\pm~0.3$	8.3 ± 1.3	B1V	110585	HD 212209			K1 / CN b
108934	HD 209655	2.0 ± 0.0	20.1 ± 9.3	A0	110590	HD 212399			K511
108938	V* V442 Cep			B8III	110599	HD 212308			K1 /
108969 108075	HR 8412	62 01	F0 1 2 0	G5la B2V (IB)	110603	HD 212545	11.9 ± 0.3	16.3 ± 0.5	B5lab B0l-L
100975	* 19 Cep	0.2 ± 0.1 24 2 + 0.7	46 ± 05	09.5lb	110632	4 Lac HD 212387	9.7 ± 0.0 1.2 ± 0.0	25.1 ± 2.3 48.5 ± 35.7	E3/E5IV/V
109051	HD 209684			B2/B3III	110662	HD 392525	7.8 ± 0.2	1.5 ± 0.6	B1.5IV-
109074	SADALMELIK	$6.3\pm~0.5$	63.7 ± 13.7	G 2lb					V:pe
109082	V* V365 Lac	$15.5\pm~1.8$	$8.2\pm~0.6$	B2V SB	110667	BD+45 3922	2.0 ± 0.0	20.1 ± 9.3	A0
109096	HD 209992	70100	27.4 1 10.0	K0IB	110672	* 52 Aqr	10.7 ± 0.9	10.0 ± 4.8	B1Ve
109114	HD 210014	7.9 ± 0.9 8.2 ± 0.2	37.4 ± 10.0 9.1 ± 3.8	R2V	110700	HD 212732 HR 8549	2.0 ± 0.0 8.9 ± 0.2	20.1 ± 9.3 14.9 + 2.2	AU B2V
109130	HD 210209	2.0 ± 0.0	20.1 ± 9.3	A0	110807	HR 8554	5.0 ± 0.0	48.9 ± 8.7	B5111
109247	HD 210222	7.3 ± 1.0	43.2 ± 14.2	K5	110817	* 26 Cep	19.7 ± 1.7	5.5 ± 1.2	B0.5Ib
109253	HD 210386	7.8 ± 0.3	25.5 ± 3.1	B1.5 -	110835	BD+43 4205	2.8 ± 0.2	10.0 ± 6.8	B8
109311	V* V446 Cep	10.8 ± 1.0	5.6 ± 2.9	B1V	110849	HR 8553	10.0 ± 0.8	16.9 ± 2.2	B2V
109332	* 35 Aqr	10.0 ± 1.5	21.4 ± 2.4	B2	110949	HD 213556	$6.2\pm~0.5$	63.1 ± 17.0	K5
109339	HIP 109339	2.0 ± 0.0 63 ± 0.5	20.1 ± 8.4 56.2 ± 6.4	AU A2	110975	HD 213177 V* del Cen			KUII G2lbyar
109393	* e Agr	0.5 1 0.5	30.2 <u>1</u> 0.4	B5	110991	HR 8564			K2II
109492	* zet Cep	$10.0\pm~0.2$	$25.1\pm~3.3$	K1 bv SB	110993	HD 213387	2.0 ± 0.0	39.3 ± 27.2	A0
109502	BD+62 2044	3.0 ± 0.0	50.1 ± 6.0	B8	110998	HD 213405	14.7 ± 0.1	8.5 ± 1.6	B0.5V
109503	HD 210696	$7.9\pm~1.0$	37.9 ± 9.0	K5	111003	HD 213672	7.4 ± 0.8	42.3 ± 9.7	K5
109533	HD 210761	22.4 17.6	20 1 10	G1 b-	111022	V* V412 Lac	9.1 ± 0.6	29.3 ± 5.2	MOII
109550	~ ⊺am Сер НD 210809	32.4 ± 17.0 15.1 ± 0.7	2.8 ± 1.0 1.8 ± 1.5		111042	HD 213481 HD 213571	7.0 ± 0.9 7.0 ± 0.1	43.3 ± 10.8 15 ± 0.5	B0 B1V
109589	HD 210748	2.0 ± 0.0	59.6 ± 36.8	A0	111071	V* V413 Lac	12.0 ± 0.8	0.1 ± 0.0	B0IVn
109602	HR 8466	14.7 ± 1.5	11.6 ± 1.2	K0	111086	* 56 Aqr			Ball
109603	HIP 109603	10.2 ± 0.3	$0.2\pm\ 0.1$	B0	111104	* 6 Lac	12.5 ± 0.8	15.7 ± 0.5	B2IV
109726	HD 210562			K2	111207	BD+42 4429	2.0 ± 0.0	38.9 ± 26.8	A0
109737	HR 8470				111257	V* XZ Cep	15.8 ± 1.3	3.9 ± 0.5	09.5V
109851	BD+45 3850	3.0 ± 0.2	10.0 ± 6.8	B8	111550	J22333-6049AB			Go/ K011+
109856	BD+60 2369	6.3 ± 0.3	50.1 ± 6.4	B5	111397	HD 213728			B7111
109864	HD 210712	2.0 ± 0.0	20.1 ± 9.3	A0V	111408	BD+36 4871	1.8 ± 0.1	$12.0\pm\ 1.9$	A2
109933	HD 211173			G811/111	111429	HD 213976	7.9 ± 0.1	0.5 ± 0.3	B1.5V
109960	HD 211278	$2.0\pm~0.0$	11.0 ± 0.9	A0V	111458	HD 214022	$3.0\pm~0.0$	2.7 ± 0.4	B7V
109989	HD 211496 HR 8492			A K1II/III	111522	HD 214011 HR 8606	80 ± 02	332 ± 50	B3V
109996	BD+54 2726	7.7 ± 0.5	3.9 ± 3.6	B1	111576	HD 214243	3.9 ± 0.1	10.0 ± 7.0	B6IV
110025	BD+53 2837			B2III:	111589	HD 214263	9.7 ± 0.2	18.4 ± 2.3	B2V
110073	HD 211606			K5	111683	HD 214432	6.8 ± 0.3	25.1 ± 1.1	B3V
110119	BD+62 2060	2.6 ± 0.1	7.0 ± 2.9	B8	111713	HD 214434			K211
110142	HD 211822	6.8 ± 0.3 15.1 \pm 0.0	50.1 ± 0.0 2.2 ± 2.2	G 2111 W/ N6	111785	HD 240010	10.0 ± 0.0	10.2 ± 1.3	B1:IV:nnpe
110134	HD 235795	9.0 ± 0.3	0.2 ± 0.0	B1:V:nne	111810	* 40 Peg			Gall
110200	V* V449 Cep	8.2± 0.8	25.8 ± 5.3	B3lb	111837	HD 214609	$1.8\pm~0.0$	12.7 ± 2.5	A2
110266	HD 212043			B611	111841	* 10 Lac	19.6 ± 0.1	4.5 ± 0.4	09V
110273	* rho Aqr			B8IIIMNp	111869	HR 8626			G3lb-
110275	HIP 110275	2.7 ± 0.1	10.0 ± 6.8	B8	111000				IICNe.
110287	HD 212044 * 30 Peg	11.9 ± 0.7 7.0 ± 0.1	9.4 ± 1.0 50.1 \pm 6.3	B1:V:nnpeva B5IV	111893	HD 214757 BD+37 4659	29+03	10.0 ± 6.8	RUII-III B8
110306	HD 211617	1.7 ± 0.0	14.0 ± 3.7	Fm	111946	V* T Tuc	2.5 1 0.5	10.0 1 0.0	M5e
110324	HD 211984	-		G 811-111	111950	HD 215024	$8.2\pm~0.6$	$24.6\pm\ 2.0$	В3
110356	HD 212183			B9 - V	111972	V* Z Lac			F6 bvar
110362	HD 235807	$10.0\pm~0.3$	$0.2\pm~0.1$	B0.5IV:n	111988	HD 214976	10.0 ± 0.6	25.1 ± 4.7	K2
110371	~ 32 Peg * 31 Pe~	1254 05	157 + 02	B3IN N	111999	BD+62 2105	2.0 ± 0.0	20.1 ± 8.4 23.4 ± 2.4	
110408	V* V405 Lac	4.0 ± 0.0	15.7 ± 0.2 56.6 ± 26.0	B5V	112031	HR 8648	9.3 ± 0.3 7.1 + 0.2	23.4 ± 2.4 45.7 ± 9.3	62111V 36 K2
110431	HD 212312		20.0	F2Ib	112138	HD 215128	6.9 ± 0.1	46.7 ± 7.3	K2
110441	HD 235813	12.0 ± 0.8	$0.1\pm\ 0.0$	B0	112141	HD 215286			А2ІЬ
110452	BD+63 1841			B5	112144	HR 8651	9.1 ± 0.1	$0.3\pm\ 0.1$	B1V
					112148	HD 215227			B5∶n e

Table C.1: - Continued. -

HIP	other D	mass [M _☉]	age [Myr]	SpT	HIP	other D	mass [M _O]	age [Myr]	ЅрТ
112159				C211.111	112726	* ami And	70 + 01	F0 1 ⊥ 6 4	P6ny SP
112150	HD 215371	81 ± 02	46 + 44	B1 5V	113720	HD 217583	7.0 ± 0.1	50.1 ± 0.4	K2
112170	HR 8652	7.8 ± 0.5	33.5 ± 1.7	A1V+	113772	HD 217817	$6.7\pm~0.1$	27.3 ± 4.0	B3V
112182	HD 215271	2.0 ± 0.0	20.1 ± 9.3	A0	113787	HD 217732	$6.9\pm~0.1$	44.7 ± 2.7	F0
112248	HD 215485	$8.9\pm~0.7$	28.6 ± 4.6	K2	113797	V* V638 Cas			B9 He
112250	V* QV Peg	7.2 ± 0.7	47.6 ± 7.1	K2					wk
112258	HD 215400	$1.8\pm~0.1$	31.6 ± 19.2	A2	113802	V* LN And	8.3 ± 0.3	9.1 ± 1.7	B2V
112272	HD 215300 BD+39 4920	30 ± 02	10.0 ± 6.8	RUIT/III B8	113825	HD 217919 BD+48 3916	12.0 ± 0.3 29 + 03	2.4 ± 1.1 10.0 ± 6.8	BUIV:n B8
112293	HD 235949	4.2 ± 0.2	25.8 ± 1.5	B5	113849	HD 217979	9.8 ± 0.3	7.2 ± 3.5	B1V
112415	HD 215555			G811	113853	V* V387 Cep	$9.1\pm~0.1$	$15.4\pm~2.8$	B2V
112440	*∣am Peg			G8 -	113881	V* bet Peg			M2 - var
112442	BD+69 1279			B5	113907	HD 218066	12.5 ± 1.2	$10.0\pm~0.8$	B1:V:var
112456	HD 215745	2.0 ± 0.0	20.1 ± 9.3	A0	113952	HD 218043			F411
112482	HD 215733	8.4 ± 0.4	8.1 ± 1.8	B1	113963				B9.5111
112558	BD+57 2615	3.7 ± 0.3	10.0 ± 7.0	B6Vne	114009	V* KU Peg			G8II
112562	V* AH Cep	17.5 ± 2.5	6.9 ± 0.5	B0.5V:nn	114045	BD+48 3933	$2.0\pm~0.0$	$11.0\pm~0.9$	A0
112599	BD+65 1808	2.8 ± 0.2	10.0 ± 6.8	B8	114060	HD 218323	$17.6\pm~2.6$	5.6 ± 1.1	B0111
112641	HR 8682	$5.0\pm~0.0$	53.2 ± 4.0	B5Vn	114070	HD 218342	19.4 ± 1.1	$5.5\pm~1.1$	B0IV
112689	HD 216046			K2 -	114082	HD 218363	$2.0\pm~0.0$	$20.1\pm~9.3$	A0
112698	V* V422 Lac	9.1 ± 0.1	0.3 ± 0.1	B1V	114093	HD 218301	60 01	04 02	A7II DOV
112754	HD 216140	1.9 ± 0.1	12.0 ± 1.5	Am	114097	HD 218344	6.8 ± 0.1 145 ± 0.4	0.4 ± 0.3 8.0 + 1.8	B2V B0.5IV
112701	V* V360 Lac	79 ± 02	332 ± 40	B3IV var	114154	HD 218393	14.5 ± 0.4 89 ± 0.2	243 ± 35	Bne
112790	HD 216135	1.0 1 0.2	5512 ± 110	B5V	114155	* 56 Peg	5.4 ± 3.6	0.1 ± 0.1	K0IIp
112809	HD 216218			G911	114163	HR 8803	$9.1\pm~0.2$	$15.1\pm~2.1$	B2.5IV
112821	HD 216219			GOllp	114174	HR 8800	$8.6\pm~0.3$	12.8 ± 3.1	B2V
112854	HD 216277	$2.0\pm~0.0$	$11.0\pm~0.9$	A0	114201	HD 218428			A2 -
112894	HD 216331		100 0 0 5	G5	114212	HR 8808	7.5 ± 0.2	32.2 ± 5.0	B3V
112900	BD+38 4883 HD 216428	3.0 ± 0.2 63 ± 10	12.9 ± 9.5 63.1 \pm 28.0	B8	114213	HD 218454			K411 B5
112951	BD+62 2125	8.5 ± 0.6	1.9 ± 1.8	B1.5V	114329	HD 218725	7.0 ± 0.1	38.5 ± 3.4	B3IV SB:
112987	HD 216512	6.9 ± 1.2	46.0 ± 5.8	M0	114343	HD 218713			А
112998	HR 8707	8.0 ± 0.5	38.5 ± 5.0	K2V:	114351	HD 218661	1.7 ± 0.0	14.0 ± 3.7	A3
113009	V* V377 Lac			B7111-1V	114379	V* KZ And	$1.0\pm~0.0$	25.0 ± 10.0	K0Ve
113051	BD+62 2127	7.8 ± 0.2	11.3 ± 2.6	B2IV-V	114385	HD 218739	$1.0\pm~0.0$	34.6 ± 9.1	G 5
113064	HD 216565	6.3 ± 1.0	63.1 ± 26.8	K5 S5 1	114389	* 58 Peg	24 - 00	F4 2 ± 27 0	B0
113131	HR 8718			55,1 F511	114390	V* I S Agr	2.4 1 0.0	54.2 <u>⊥</u> 21.0	G6/G8lb
113192	HD 216725	$6.2\pm~0.9$	63.6 ± 25.8	K5	114465	HD 218892			A
113218	HD 216898	$17.8\pm~2.8$	$0.4\pm~0.3$	08.5V	114481	BD+48 3956	$3.0\pm~0.1$	20.0 ± 16.0	B8
113222	HR 8723			B7	114482	HD 218915	14.8 ± 1.5	4.0 ± 2.4	O9.5Iab
113226	HD 216851	6.0 ± 0.3	8.4 ± 1.5	B3V∶n	114507	V* SS And			M6IIvar
113233	HD 240121	$3.0\pm~0.0$	45.0 ± 24.7	B8	114540	HD 219063		20.1 0.2	B5
113230		12 - 01	117 - 22	Balli:	114593	BD+47 4075	2.0 ± 0.0	20.1 ± 9.3	
113209	V DI Cep	1.5 ± 0.1	11.7 ± 2.5	G3Ve- K3Ve(T)	114556	HD 219135	2.8 ± 0.2	10.0 ± 6.8	B8V
113281	V* EN Lac	$9.0\pm~0.0$	19.8 ± 1.9	B2IV	114685	HD 219286	22.4 ± 3.5	0.8 ± 0.8	07p
113288	V* V424 Lac	$6.9\pm~0.9$	44.5 ± 8.0	K5 bvar	114692	HD 219123			G8/K1 +
113301	HD 217061	12.2 ± 0.8	$8.5\pm~2.4$	B1V					G
113306	HD 217086	22.3 ± 3.4	1.6 ± 1.6	O7n	114693	HD 219026			K1 /
113327	HR 8731	7.0 ± 0.2	39.8 ± 8.9	B4IIIpe B2IV V	114816	HD 219523	254 - 20	184 01	B5 B0Vn
113301	HD 217052	19 ± 01	19.0 ± 2.4 31.6 ± 19.2	A2	114904	8D+63 1962	25.4 ± 5.0 114 + 18	4.0 ± 0.4 121 ± 1.3	B1111
113432	HD 216838	1.0 1 0.1	01:0 ± 15:2	K1 /	114998	HD 219639	5.3 ± 0.4	63.1 ± 13.4	B5 /
113443	HD 217297	14.7 ± 1.0	11.0 ± 0.6	B1.5V	115033	* 93 Aqr			B5Vn
113469	HD 217227	$8.7\pm~0.2$	10.7 ± 3.0	B2:V	115089	BD+44 4374	$3.0\pm~0.1$	25.1 ± 20.8	B8
113478	V* AZ Psc	$3.5\pm~0.5$	$0.3\pm~0.2$	K0	115141	V* V809 Cas	$8.3\pm~0.9$	33.4 ± 5.0	K5 bvar
113498	HR 8745		01 000	B9111	115144	HR 8869	7.3 ± 0.8	41.2 ± 11.0	K2/K3
113550	V™ DI Psc V* V500 Cor	5.0±0.0 12.0±0.5	0.1 ± 0.0 161 ± 0.0	KU GOla	115147	V™ V 308 Сер НВ 8873	1.0 ± 0.0	30.3 ± 12.1	G9V B8III
113562	HR 8743	12.0 E 0.5	10.1 _ 0.9	K0 CN	115155	HD 219951	2.9 ± 0.2	10.0 ± 6.8	A
113569	HIP 113569	15.0 ± 1.1	$0.2\pm~0.1$	WN.	115186	HD 220016	7.5 ± 0.7	28.2 ± 3.8	B3V
113577	HD 240153		-	B5	115195	GJ 894.3	20.0 ± 0.0	$0.1\pm~0.0$	DA:
113579	HD 217343	1.0 ± 0.0	31.6 ± 5.0	G3V	115198	HD 220057	$8.6\pm\ 0.3$	19.8 ± 2.7	B2IV
113639	BD+62 2155	$6.7\pm~0.3$	$1.4\pm~0.5$	B2IV	115224	HD 220058	11.9 ± 0.6	$9.5\pm~1.9$	B 1 n p e
113640	HR 8758	$6.4\pm~0.1$	$20.5\pm~4.1$	B3Vp	115244	HD 220116	11.9 ± 0.4	8.9 ± 2.6	B0.5Vpe
113684	HR 8761			K2	115245	HR 8886	$7.9\pm~0.6$	37.4 ± 7.4	K2
					110200	110 220010			ASI

Table C.1: - Continued. -

			140	ne C.I.	- Continu	eu. –			
HIP	other D	mass [M _☉]	age [Myr]	Ѕр⊤	HIP	other ID	mass [M⊙]	age [Myr]	Sp⊤
115352	BD+42 4649	$2.8\pm~0.2$	$10.0\pm~6.8$	B8	117700	BD+66 1651	$6.3\pm~0.2$	$15.1\pm~3.2$	В5
115355	* 64 Peg			B6111	117742	HD 223804	$2.0\pm~0.0$	20.1 ± 9.3	A0
115394	HD 220316	$1.8\pm~0.1$	12.7 ± 2.5	А	117810	HD 223924	$8.6\pm~0.4$	$1.0\pm\ 0.8$	B1.5V
115395	HR 8894	$7.9\pm~0.3$	$37.9\pm~7.1$	K3	117842	HD 223969	$9.4\pm~1.1$	25.8 ± 5.5	K2
115406	HD 220269	$1.4\pm~0.0$	35.8 ± 5.6	A9V	117887	V* XZ Psc			M5IIb
115423	BD+68 1373			B5	117956	HR 9053			G8lb
115516	HD 220574	5.0 ± 0.0	39.5 ± 1.2	A	118008	HD 224228	0.8 ± 0.0	40.9 ± 1.8	K3V
115527	V* NX Aqr	1.0 ± 0.0	35.4 ± 8.2	G5	118077	V* V1022 Cas			G8lb
115529	HD 220562	8.6± 0.2	10.7 ± 2.9	B2V	118084	BD+08 1411	5.0 ± 0.0	1.0 ± 0.6	B3
115500	BD+00 2533			D 9111	118110	HR 9003	224 01	5.4 ± 0.5	A 11/
115570	HD 220508	70 ± 00	06+ 03	B 21/	118176		2.2 ± 0.1 62 ± 0.1	5.4 ± 0.5 63 7 ± 13 0	K3
115501	* 67 Peg	1.0 1 0.0	0.0 1 0.5	BAIII	118102	BD+65 1973	0.2 1 0.4	03.1 ± 13.5	B2
115729	HD 220787	50 ± 00	10.0 + 8.4	B3III	118194	BD+68 1413	39 ± 01	14 ± 04	B5
115755	V* V388 And	0.0 1 0.0	10:0 1 0:1	B9	118214	V* LQ And	6.7 ± 0.3	50.1 ± 3.0	B4Vne
115760	HD 220780			M011/111					
115809	HD 220831			κ ο Π	a In the s	spectra of HIP 66020	and HIP 63970	Lithium was c	letected,
115904	HD 221104	$1.9\pm~0.1$	12.0 ± 1.9	A2	to obtain	masses and ages fr	om theoretical n	nodels since b	oth stars
115906	HR 8921	$6.3\pm~0.5$	63.7 ± 14.5	K0	lie below	the ZAMS in the H	IR diagram Not	e also that bo	th are in
115912	HD 240308			B6	binary sy	stems.			
115950	HD 240312	$7.8\pm~0.3$	$2.9\pm~2.5$	B2V					
115990	V* AR Cas			B3IV					
116060	HR 8928	$6.3\pm~0.5$	63.7 ± 14.6	K0					
116163	HD 221427	$6.2\pm~0.4$	63.1 ± 17.0	K5/M0					
116212	HD 240326			K0					
116249	BD+69 1336			B5					
116279	HD 221671			A011					
116292	HR 8941			G811					
116324	HD 221711	7.9 ± 0.1	3.5 ± 0.8	B2V					
116328	HD 240333	4.8 ± 0.2	39.5 ± 3.5	B5					
116380	HR 8952	9.1 ± 0.7	27.3 ± 5.2	K0lb					
116483	HD 240338	2.9 ± 0.1	15.8 ± 12.2	B8V					
116484	HD 221896	07100	100 0 00	KUII/III					
116538	HD 240339	2.7 ± 0.2	10.0 ± 0.8	B8					
116556		0.5 ± 1.0	57.0 ± 12.7	FOL					
116652									
116683	HD 222263	45 + 05	305 + 82	R6H7H					
116687	HD 222275	4.5 ± 0.5	50.5 <u>1</u> 0.2	A 311					
116700	BD+67 1550	8.1 ± 0.6	9.3 ± 3.0	B2					
116748	V* DS Tuc	1.1 ± 0.0	20.0 ± 5.0	G5/8 V					
				(+F)					
116797	HD 222418	$2.6\pm~0.1$	$7.0\pm~2.9$	B8					
116799	HD 222410	$6.3\pm~0.4$	63.1 ± 14.7	K5					
116856	HD 222568	$9.9\pm~0.1$	$9.5\pm~2.7$	B1IV					
116901	* 104 Aqr			G2 b/					
116902	BD+68 1387	5.0 ± 0.0	54.8 ± 7.7	B5					
116987	HD 222729	$6.9\pm~0.3$	43.3 ± 1.3	A 3					
116993	HD 222762	$7.6\pm~0.7$	37.3 ± 6.6	B8					
117004	HD 240371	$8.0\pm~0.4$	$8.2\pm~3.0$	B2					
117032	BD+53 3222	$3.2\pm~0.1$	22.5 ± 18.4	B8					
117061	HD 222802	$1.9\pm~0.1$	11.4 ± 1.3	A 1V					
117088	HR 8996	10 0 0 -	F0.1 / 05.5	K3					
11/1/3	HD 222962	1.9± 0.0	50.1 ± 36.3	A 3 CEU					
117221	° psi And V≉ S⊻ DL	10 00	20.0 0 06.0	4 3 V.					
117265	V SA Pre	1.0 ± 0.0	39.0 ± 20.8 10.0 ± 1.0	A∠vvar B2N/					
117200	HD 222152	9.0 ± 0.4	19.9 1.2	B5					
117200	HR 9010	66+ 05	501 ± 10	K311					
117309	HD 223174	2.0 ± 0.0	20.1 ± 93	A0					
117310	HD 223200	15.0 ± 1.0	1.6 ± 0.3	A					
117315	* sig Phe	6.4 ± 0.1	20.5 ± 4.1	B3V					
117340	HR 9011	6.3 ± 0.1	33.0 ± 3.4	B3IV					
117408	HD 240407	3.0 ± 0.2	15.8 ± 12.2	B8					
117419	HD 223329	5.5 ± 0.2		B5					
117423	HD 223332			K5					
117514	HD 223501	$8.8\pm~0.2$	$12.5\pm~2.6$	B2Vn(e)					
117651	HD 223684	$3.1\pm~0.1$	63.1 ± 27.3	В8)					
117683	* 22 Psc			K411					

C.2 Young Runaway Stars

spac	ce velocitie	es v _{pec} an	d peculiar	tangenti	al velociti	es v _{t,pec} a	re given i	n the last	two Colu	mns.
HIP	$P_{v_{pec}}$	P_U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	Vpec	V _{t,pec}
							4		[km/s]	[km/s]
145	0.29	0.00	0.00	0.97	0.44	0.00	0.00	0.00	22^{+6}_{-4}	2^{+2}_{-2}
174	1.00	0.44	1.00	0.00	1.00	0.06	0.05	0.00	59^{+4}_{-6}	7^{+2}_{-2}
274	0.58	0.13	0.03	0.00	0.41	0.01	0.02	0.01	26^{+4}_{-6}	12^{+2}_{-2}
278	0.61	0.08	0.32	0.05	0.59	0.03	0.02	0.03	28^{+6}_{-10}	10_{-4}^{+4}
347	0.38	0.37	0.03	0.35	0.09	0.51	0.45	0.30	20^{+10}_{-14}	18^{+14}_{-14}
355	1.00	1.00	0.75	1.00	1.00	1.00	1.00	0.18	61_{-4}^{+4}	31^{+4}_{-6}
365	1.00	0.97	0.02	0.31	0.00	1.00	1.00	0.29	34_{-4}^{+6}	33_{-4}^{+4}
398	0.96	0.91	0.06	0.56	0.88	0.88	0.84	0.46	46^{+26}_{-10}	35_{-16}^{+28}
410	1.00	1.00	0.01	0.97	0.07	1.00	1.00	0.14	55_{-4}^{+6}	54_{-6}^{+4}
439	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	111^{+2}_{-2}	109_{-2}^{+2}
505	1.00	1.00	0.77	0.03	0.90	0.92	0.89	0.04	52^{+6}_{-6}	24^{+4}_{-2}
695	0.94	0.26	0.25	0.00	0.00	1.00	1.00	0.00	28^{+2}_{-4}	27_{-2}^{+4}
744	_	_	_	_	_	0.83	0.83	0.00	_	25_{-12}^{+2}
779	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	67^{+2}_{-2}	13^{+2}_{-2}
805	_	_	_	_	_	1.00	0.28	1.00	_	42^{+4}_{-8}
905	0.74	0.00	0.91	0.00	0.38	0.00	0.00	0.00	27^{+2}_{-4}	17^{+2}_{-2}
926	1.00	1.00	0.04	0.21	0.61	1.00	1.00	0.26	39^{+4}_{-4}	27^{+8}_{-4}
951	1.00	0.98	0.64	0.06	0.80	0.54	0.48	0.03	40^{+6}_{-8}	18^{+2}_{-2}
1008	_	_	_	_	_	1.00	1.00	0.40		43^{+20}_{-6}
1115	0.91	0.24	0.00	1.00	0.52	0.88	0.86	0.01	30^{+4}_{-6}	25^{+10}_{-4}
1118	0.10	0.01	0.00	0.71	0.00	0.20	0.02	0.63	16^{+6}_{-6}	13^{+4}_{-4}
1209	0.58	0.60	0.04	0.18	0.03	0.78	0.76	0.19	27^{+16}_{-10}	25^{+16}_{-10}
1319	1.00	0.96	0.02	0.01	0.00	1.00	1.00	0.00	31^{+2}_{-2}	30^{+2}_{-2}
1331	0.38	0.00	0.00	0.24	0.04	1.00	0.00	1.00	24^{+4}_{-2}	21^{+2}_{-2}
1367	1.00	1.00	0.76	0.80	0.04	1.00	1.00	0.83	82^{+26}_{-26}	80 ⁺⁴⁰
1415	0.41	0.25	0.02	0.03	0.08	0.68	0.47	0.01	24 ⁺⁴	19^{+2}_{2}
1421	1.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00	40^{+2}_{-4}	40^{+2}_{-4}
1429	0.90	0.62	0.31	1.00	0.05	0.94	0.88	0.86	41^{+26}_{-10}	38^{+20}_{-18}
1439	0.01	0.00	0.00	0.03	0.00	0.99	0.99	0.00	21^{+2}_{-2}	19^{+2}_{-2}
1479	_	_	_	_	_	1.00	1.00	0.12		108_{-28}^{-2}
1486	0.25	0.00	0.00	0.75	0.00	0.70	0.00	0.77	23^{+2}_{-2}	19^{+4}_{-2}
1505	_	_	_	_	_	1.00	1.00	0.07	_	24^{+2}_{-2}
1602	_	_	_	_	_	1.00	0.25	1.00	_	63_{-16}^{+26}
1621	0.99	0.76	0.99	0.59	0.99	0.02	0.01	0.01	45^{+4}_{-8}	10^{+4}_{-2}
1728	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	71_{-14}^{+8}	69_{-10}^{+10}
1733	_	_	_	_	_	1.00	0.87	0.00	_	20^{+2}_{-2}
1762	1.00	1.00	0.00	0.15	0.94	1.00	1.00	0.42	44^{+6}_{-2}	$37_{-4}^{+\overline{4}}$
1769	0.24	0.07	0.00	0.51	0.31	0.10	0.08	0.04	$22_{-2}^{+\bar{4}}$	6^{+6}_{-2}
1803	1.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00	27^{+2}_{-2}	27^{+2}_{-2}
1805	1.00	0.99	0.85	0.01	0.98	0.21	0.15	0.00	43_{-6}^{+4}	17^{+2}_{-2}
2036	0.45	0.01	0.34	0.93	0.35	0.19	0.01	0.68	23^{+8}_{-6}	15_{-2}^{+2}
2071	_	_	_	_	_	1.00	0.86	1.00	_	34_{-6}^{+8}
2227	1.00	1.00	0.00	0.31	0.00	1.00	0.00	1.00	45^{+4}_{-2}	43_{-2}^{+4}
2347	0.74	0.52	0.11	0.03	0.57	0.12	0.09	0.02	29_{-6}^{+6}	15^{+2}_{-2}
2537	1.00	0.99	0.29	0.17	0.12	1.00	1.00	0.13	37_{-10}^{+8}	35_{-6}^{+12}
2580	_	_	_	_	_	0.62	0.00	0.16	_	18_{-2}^{+2}
2583	0.00	0.00	0.00	1.00	0.00	1.00	0.00	1.00	23^{+2}_{-2}	21^{+2}_{-2}
2599	0.98	0.96	0.00	0.30	0.96	0.86	0.83	0.29	40_{-6}^{+14}	26_{-8}^{+12}
2644	0.96	0.89	0.46	0.08	0.87	0.37	0.26	0.07	38_{-8}^{+4}	17^{+2}_{-2}
2710	_	_	_	_	_	1.00	1.00	0.00	_	30^{+2}_{-2}

Table C.2: Runaway probabilities for 1998 runaway star candidates as found in sections 2.3.2.1 and 2.3.2.2. Columns 2 to 9 list the individual probabilities P for each velocity component. Stars with $P \ge 0.50$ in at least one velocity are considered runaway star candidates. The peculiar space velocities v_{nec} and peculiar tangential velocities $v_{t nec}$ are given in the last two Columns.

						tinaca.				
HIP	$P_{v_{pec}}$	P_U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	<i>v_{pec}</i> [km/s]	v _{t,pec} [km/s]
2838	_	_	_	_	_	1.00	1.00	1.00	_	130^{+60}
2937	1.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00	35 ⁺²	32^{+2}
3013	1 00	0.18	0.56	1 00	1 00	0.28	0.30	0.05	84 ⁺⁸	9 ⁺⁸
3083	0.34	0.33	0.00	0.00	0.00	0.60	0.60	0.00	20^{+12}	20^{+10}
3190	_	_	_	_	_	0.00	0.00	0.00		45 ⁺³⁶
2224	0.00	0.07	0.11	0.10	0.00	1.00	1.00	0.07	20+8	-16 27+10
2260	1.00	1.00	0.11	0.10	0.00	1.00	1.00	1.00	30_{-6}	$\frac{57}{-6}$
2201	1.00	1.00	0.00	0.05	1.00	1.00	1.00	1.00	37_{-2}	51_{-4}
2470	1.00	0.99	0.01	1.00	1.00	0.99	0.99	0.07	90_{-12}	75_{-30}
5478	1.00	1.00	0.38	1.00	1.00	1.00	1.00	1.00	79_{-2}^{+}	51_{-2}
3517	_	_	_	-	_	1.00	0.02	1.00		71_{-14}
3550	0.00	0.00	0.00	0.55	0.01	0.00	0.00	0.18	14^{+}_{-4}	10^{+2}_{-2}
3585	0.04	0.04	0.02	0.80	0.04	0.05	0.04	0.11	19_{-4}^{++}	11_{-4}
3649	0.97	0.60	0.59	0.02	0.15	1.00	1.00	0.01	34_{-4}^{+12}	34^{+0}_{-6}
3693	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	51^{+2}_{-2}	45^{+2}_{-2}
3779	1.00	1.00	0.33	0.40	0.16	1.00	1.00	0.52	51^{+24}_{-10}	50^{+24}_{-8}
3881	0.27	0.00	0.52	0.00	0.23	0.00	0.00	0.00	22^{+4}_{-6}	11^{+2}_{-2}
3886	0.92	0.72	0.36	0.22	0.85	0.14	0.06	0.13	35^{+4}_{-10}	15^{+2}_{-2}
3887	0.84	0.67	0.51	0.08	0.77	0.12	0.10	0.08	35^{+4}_{-10}	$13\substack{+4\\-2}$
4106	-	_	_	-	_	1.00	1.00	1.00	-	226^{+174}_{-77}
4214	-	_	_	-	_	0.65	0.35	1.00	-	22^{+16}_{-2}
4279	0.95	0.90	0.57	0.06	0.88	0.16	0.16	0.06	39^{+8}_{-6}	15^{+2}_{-2}
4281	_	_	_	_	_	0.96	0.95	0.00	_	21^{+2}_{-2}
1347	1.00	1.00	0.68	0.02	0.00	1.00	1.00	0.37	75^{+52}_{-14}	87^{+54}_{-24}
4477	0.70	0.71	0.07	0.12	0.14	0.66	0.62	0.09	27^{+4}_{-2}	19^{+2}_{-2}
4532	0.94	0.77	0.86	0.11	0.91	0.07	0.02	0.10	43^{+6}_{-12}	11_{-4}^{+4}
4541	1.00	1.00	1.00	0.94	1.00	1.00	0.02	1.00	68^{+10}_{-8}	32^{+14}_{-8}
1548	_	_	_	_	_	1.00	0.94	0.99	_	25^{+4}_{-2}
4609	_	_	_	_	_	0.86	0.80	0.67	_	32_{-14}^{+20}
4624	1.00	1.00	1.00	0.75	1.00	1.00	1.00	1.00	254^{+100}_{-42}	243^{+113}_{-58}
4769	1.00	0.59	0.05	1.00	1.00	1.00	1.00	0.17	51^{+6}_{6}	29^{+12}
4778	1.00	1.00	0.00	0.43	0.00	1.00	1.00	1.00	55^{+14}	51^{+10}
4869	1.00	0.02	1.00	1.00	1.00	1.00	1.00	1.00	124^{+20}	107^{+24}
1902	0.74	0.63	0.57	0.40	0.10	0.89	0.86	0.37	38^{+34}	37^{+36}
1961	1 00	0.86	1 00	0.10	0.00	1.00	1 00	0.01	50-8 50 ⁺²⁴	58 ⁺²²
1983	1.00	1.00	0.69	0.54	1 00	0.00	0.97	0.00	50 ⁺⁴	20^{+2}
5013	0.06	0.85	0.04	0.00	0.00	1 00	1 00	0.00	30_4 34 ⁺¹⁰	20-2 34 ⁺¹⁰
2023	0.50	0.00	0.10	0.50	0.00	0.07	1.00 0.02	0.71	-4 15 ⁺⁸	12^{-4}
5025	0.20	0.01	0.12	0.04	0.00	1.00	0.00	1 00	13-4 41 ⁺¹⁸	12-2 30 ⁺¹⁸
5062	0.99	0.92	0.01	0.94	0.05	1.00	0.99	1.00	⁺ -6 20 ⁺⁸	10 ⁺⁸
1002 1001	0.29	0.22	0.01	0.02	0.00	1.00	0.04	1.00	20^{-6}_{-6}	10^{-6}_{-6}
1001	0.90	0.00	0.51	0.90	0.00	1.00	1.00	1.00	25-2	23_{-2}
171	_	_	_	_	_	1.00	1.00	0.09	_	29_{-4}^{+42}
101	-	-	-	-	_	1.00	1.00	0.97	- 10 ⁺²	10^{+2}
21AT	0.00	0.00	0.02	0.09	0.00	0.40	0.00	1.00	10^{+20}_{-2}	10^{-2}_{-2}
0251	0.89	0.91	0.07	0.01	0.12	0.94	0.93	0.01	38-20 1 +2	33_{-12}^{+10}
5363	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.62	14^{+2}_{-2}	13^{+2}_{-2}
5372	0.31	0.19	0.00	0.00	0.00	0.99	0.99	0.00	25^{+2}_{-2}	19^{+2}_{-2}
5388	0.98	0.93	0.00	0.92	0.67	0.84	0.45	0.00	31^{+0}_{-2}	19^{+2}_{-2}
5391	1.00	1.00	0.99	0.11	0.99	0.17	0.09	0.14	92^{+10}_{-4}	15^{+2}_{-2}
5477	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	108^{+4}_{-2}	73^{+4}_{-4}
5482	0.81	0.19	0.56	0.97	0.05	0.83	0.45	0.97	34^{+18}_{-10}	30^{+20}_{-12}
5533	1.00	1.00	0.34	0.57	0.06	1.00	1.00	0.25	38^{+12}_{-4}	38^{+10}_{-6}
550	1.00	0.05	0.23	0.00	0.00	1.00	1.00	0.00	30^{+2}_{-2}	29^{+2}_{-2}
569	1.00	1.00	0.94	0.62	0.99	0.38	0.20	0.04	55^{+4}_{-6}	17^{+2}_{-2}
609	0.41	0.15	0.18	0.22	0.06	0.99	0.88	0.23	24^{+6}_{-4}	23^{+4}_{-2}
										10

Table C.2: – Continued

Table C.2: - Continued											
HIP	$P_{v_{pec}}$	P _U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	<i>v_{pec}</i> [km/s]	<i>v_{t,pec}</i> [km/s]	
5657	_	_	_	_	_	0.71	0.65	0.07	_	20^{+2}_{-2}	
5680	_	_	_	_	_	1.00	1.00	0.00	_	22^{+2}_{-2}	
5778	1.00	1.00	0.00	0.02	0.12	1.00	1.00	0.97	39^{+2}_{-4}	35^{+2}_{-2}	
5884	0.98	0.75	0.07	0.39	0.86	0.78	0.58	0.96	36^{+16}_{-4}	28^{+22}_{-8}	
5912	_	_	_	_	_	0.75	0.74	0.27	_	31_{-16}^{+32}	
6027	0.09	0.07	0.01	0.46	0.06	0.11	0.07	0.55	13^{+4}_{-2}	12^{+2}_{-2}	
6073	_	_	_	_	_	0.86	0.73	0.88	_	33^{+30}_{-18}	
6137	_	_	_	_	_	1.00	0.74	0.99	_	26^{+6}_{-4}	
6162	1.00	0.10	1.00	1.00	0.71	1.00	0.09	1.00	41^{+10}_{-10}	32^{+10}_{-4}	
6485	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.95	13^{+2}_{-2}	12^{+2}_{-2}	
6492	0.12	0.16	0.00	0.00	0.00	1.00	1.00	0.00	$24^{+\bar{2}}_{-2}$	21^{+2}_{-2}	
6500	_	_	_	_	_	0.61	0.59	0.11	_	19^{+2}_{-2}	
6552	_	_	_	_	_	1.00	1.00	0.31	_	29^{+2}_{-2}	
6571	_	_	_	_	_	0.74	0.67	0.10	_	19^{+2}_{-2}	
6595	1.00	1.00	0.00	1.00	0.06	1.00	1.00	0.62	42^{+6}_{2}	42^{+4}_{-6}	
6617	0.94	0.91	0.12	0.12	0.16	0.99	0.98	0.10	31^{+6}_{-2}	24^{+4}_{-2}	
6676	_	_	_	_	_	1.00	1.00	0.04		66^{+32}_{-16}	
6773	1.00	1.00	0.42	0.88	0.00	1.00	0.00	1.00	42^{+16}	39^{+20}	
6775	0.62	0.46	0.03	0.11	0.48	0.11	0.02	0.11	27^{+4}	13^{+2}	
6811	0.82	0.30	0.46	0.08	0.12	1.00	1.00	0.09	30^{+12}	31^{+8}	
6867	1 00	1 00	1 00	0.03	0.10	1 00	1 00	1 00	76^{+2}	74^{+2}	
7147	0.05	0.00	0.00	0.00	0.00	1.00	1.00	0.00	23^{+2}	23^{+2}	
7194	0.00	0.00	0.00	0.00	0.00	0.97	0.69	0.00	20 ₋₂ 30 ⁺²²	25 ₂ 35 ⁺¹⁸	
7234	0.50	0.45	0.79	0.00	0.00	0.97	0.09	0.99	20^{+14}	13^{+8}	
7253	0.04	0.02	0.71	0.02	0.55	0.24	0.24	0.00	29^{-8}	19_{-4} 18 ⁺²	
7255	1.00	1 00	0.01	0.01	0.01	1.00	1.00	1.00	24-2 40 ⁺⁸	10 ₋₂ 47 ⁺⁶	
7255	1.00	1.00	0.00	0.02	0.02	1.00	1.00	1.00	49 ₋₆	$\frac{47}{32+2}$	
7205	_	_	_	_	_	0.46	0.10	1.00	_	32 ₋₄ 16 ⁺¹⁰	
7310	_ 1.00	1.00		-	- 0.16	1.00	1.00	0.09	- 42 ⁺⁴	27 ⁺⁴	
7514	1.00	1.00	0.00	0.05	0.10	1.00	1.00	0.90	42_{-4}	37_{-4}	
7512	0.92	0.91	0.31	0.04	0.20	0.97	0.98	0.04	40_{-20}^{+2}	44_{-20}	
7050	0.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	20^{+}_{-2}	20^{+}_{-2}	
7003	1.00	1.00	0.03	0.00	0.13	1.00	1.00	0.00	38_{-2}^{+4}	34_{-2}^{+4}	
7008	0.82	0.08	0.27	0.06	0.01	1.00	1.00	0.07	27_{-4}	27_{-2}	
7818	0.00	0.00	0.00	0.02	0.00	0.03	0.00	0.98	19^{+-}_{-2}	15^{+-}_{-2}	
7873	0.01	0.30	0.00	0.08	0.00	0.03	0.15	0.97	20_{-4}^{+4}	20^{+10}_{-4}	
7908	1.00	1.00	0.05	1.00	0.90	1.00	1.00	0.97	52_{-12}^{++}	39^{+10}_{-12}	
7955	1.00	1.00	0.00	0.21	0.00	1.00	1.00	1.00	40^{+2}_{-2}	40^{+2}_{-2}	
7958	-	_	_	-	_	0.62	0.12	0.42	-	19^{+2}_{-2}	
7963	0.82	0.78	0.22	0.33	0.08	0.93	0.93	0.31	37^{+22}_{-8}	34^{+22}_{-10}	
7999	1.00	1.00	1.00	0.35	1.00	1.00	0.00	1.00	73^{+4}_{-4}	60^{+4}_{-4}	
8006	-	_	_	-	-	0.68	0.09	0.93	_	22^{+10}_{-2}	
8020	0.07	0.00	0.00	0.54	0.01	0.13	0.00	0.54	15^{+0}_{-4}	12^{+4}_{-2}	
8046	0.86	0.00	0.94	0.52	0.37	0.47	0.13	0.64	29^{+4}_{-2}	18^{+6}_{-4}	
8244	1.00	0.80	1.00	0.91	0.01	1.00	1.00	1.00	56^{+30}_{-8}	54^{+24}_{-14}	
8321	0.99	0.79	0.97	0.00	1.00	0.00	0.00	0.00	41^{+4}_{-6}	3^{+2}_{-2}	
8693	0.99	0.97	0.29	0.04	0.94	0.27	0.22	0.05	41^{+4}_{-6}	17^{+2}_{-2}	
8725	0.97	0.79	0.04	0.84	0.71	0.70	0.17	0.62	34^{+4}_{-8}	19^{+2}_{-2}	
8767	-	_	_	_	_	1.00	1.00	1.00	_	152^{+68}_{-44}	
8855	_	_	_	_	_	1.00	1.00	0.22	_	25^{+2}_{-4}	
8926	1.00	0.98	1.00	0.00	0.00	1.00	1.00	0.00	53^{+6}_{-12}	52^{+14}_{-6}	
8979	1.00	1.00	0.88	0.00	0.02	1.00	1.00	0.00	79^{+24}_{-10}	75^{+22}_{-12}	
9008	_	_	_	_	_	0.48	0.25	0.76	_	17^{+16}_{-2}	
9026	_	_	_	_	_	1.00	1.00	0.04	_	$27_{-4}^{+\overline{4}}$	
9077	0.34	0.20	0.03	0.64	0.22	0.37	0.16	0.57	$18\substack{+18\\-4}$	13^{+14}_{-2}	
9140	_	_	_	_	_	1.00	1.00	0.00	_	29^{+4}_{-4}	

Table C.2: - Continued. -

Table C.2: - Continued. -

HIP	$P_{v_{pec}}$	P _U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	<i>v_{pec}</i> [km/s]	<i>v_{t,pec}</i> [km/s]
9149	1.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00	36^{+2}_{-2}	38^{+2}_{-2}
9192	0.23	0.01	0.31	0.03	0.03	0.90	0.88	0.03	22^{+6}_{-2}	20^{+2}_{-2}
9221	_	_	_	_	_	1.00	1.00	0.15	_	24^{+2}_{-2}
9355	_	_	_	_	_	1.00	0.20	1.00	_	43_{-12}^{+30}
9362	_	_	_	_	_	1.00	1.00	1.00	_	29^{+2}_{-2}
9456	_	_	_	_	_	1.00	1.00	0.30	_	25^{+2}_{-4}
9470	_	_	_	_	_	0.99	0.02	1.00	_	27^{+6}_{-4}
9505	0.69	0.03	0.00	1.00	0.00	1.00	0.98	1.00	26^{+2}_{-4}	26^{+2}_{-4}
9534	0.04	0.00	0.00	0.03	0.00	0.98	0.00	1.00	20^{+2}_{-2}	19^{+2}_{-2}
9538	0.61	0.03	0.81	0.05	0.41	0.36	0.29	0.05	27^{+8}_{-6}	17^{+2}_{-2}
9549	1.00	1.00	1.00	0.38	0.92	1.00	1.00	1.00	131^{+58}_{-28}	124^{+62}_{-30}
9622	1.00	0.03	0.97	1.00	0.09	1.00	0.31	1.00	45^{+2}_{-4}	42^{+2}_{-4}
9640	0.35	0.00	0.60	0.20	0.00	0.74	0.32	0.83	24^{+4}_{-4}	21^{+6}_{-2}
9886	0.80	0.73	0.07	0.11	0.55	0.32	0.25	0.13	29^{+4}_{-4}	16^{+2}_{-2}
9892	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.65	11^{+2}_{-2}	11^{+2}_{-2}
9987	_	_	_	_	-	1.00	1.00	0.12	_	49^{+30}_{-10}
10137	-	_	-	-	-	1.00	1.00	1.00	-	34^{+2}_{-2}
10141	0.02	0.00	0.00	1.00	0.00	0.92	0.02	1.00	21^{+2}_{-2}	21^{+4}_{-2}
10324	1.00	0.77	0.00	0.01	0.01	1.00	1.00	1.00	30^{+2}_{-2}	28^{+2}_{-2}
10354	0.72	0.71	0.20	0.28	0.10	0.85	0.82	0.28	35^{+20}_{-10}	29^{+14}_{-16}
10396	_	_	_	_	_	1.00	1.00	1.00	_	40^{+0}_{-4}
10463	0.99	0.84	0.76	0.05	0.95	0.04	0.01	0.08	40 ⁺⁶	8^{+4}_{-2}
10527	0.99	0.92	0.83	0.05	0.96	0.04	0.02	0.04	45^{+0}_{-4}	11^{+4}_{-4}
10549	_	_	_	-	_	1.00	0.93	0.94	_	24^{+2}_{-2}
10614	_	_	-	-	-	0.78	0.30	0.23		19^{+2}_{-2}
10641	0.97	0.94	0.11	0.02	0.94	0.02	0.00	0.02	37_{-4}^{+0}	13^{+2}_{-2}
10653	1.00	0.96	1.00	0.01	1.00	0.16	0.12	0.00	61^{+2}_{-2}	12^{+0}_{-2}
10806	_	_	_	-	-	0.98	0.00	1.00	-	22^{+2}_{-4}
10829	0.90	0.82	0.03	0.07	0.87	0.07	0.04	0.07	34_{-6}	12^{+-}_{-6}
10849	1.00	0.85	0.91	1.00	1.00	0.43	0.00	1.00	42^{+-}_{-2}	18^{+-}_{-2}
10855	0.84	0.00	0.80	0.25	0.17	1.00	1.00	0.21	29_{-4}^{+4}	24^{+-}_{-2}
10075	0.03	0.50	0.01	0.52	0.50	0.55	0.05	0.50	20_{-4}^{-4}	10_{-2}
10904	0.62	0.40	0.01	0.52	0.54	0.20	0.04	0.44	20_{-6}^{+12}	15_{-2} 17^{+10}
10909	0.50	0.54	0.04	0.10	0.08	0.50	0.51	0.14	25-4	$\frac{17}{28+30}$
11002						0.72	0.71	0.35		20 - 14 27^{+12}
11037	0.51	0.02	0.20	0.00	0.61	0.03	0.05	0.00	25+6	6^{+2}
11097	1.00	0.02	0.29	0.00	0.01	0.01	0.00	0.00	20 ₋₄ 40 ⁺⁸	0_{-4} 19 ⁺¹⁴
11115	0.91	0.86	0.03	0.06	0.86	0.30	0.08	0.03	35^{+6}	13_{-2} 14^{+2}
11126	1 00	0.00	0.00	0.33	0.00	1 00	1 00	1 00	32^{+4}	28^{+2}
11279	0.64	0.56	0.03	0.05	0.61	0.03	0.02	0.06	29^{+8}	11^{+4}
11339	_	_	_	_	_	1.00	0.00	1.00		36^{+4}
11347	0.61	0.59	0.32	0.03	0.62	0.01	0.00	0.01	31^{+28}	11^{+2}
11394	0.99	0.99	0.89	0.01	0.99	0.00	0.01	0.00	49^{+4}	12^{+4}
11396	1.00	0.81	1.00	1.00	1.00	1.00	1.00	1.00	182^{+16}_{-10}	106^{+20}_{-2}
11407	0.07	0.00	0.00	0.60	0.11	0.00	0.00	0.00	18+4	10^{+2}
11413	_	_	_	_	_	1.00	1.00	1.00	_4	49^{+6}_{-6}
11420	0.95	0.92	0.20	0.09	0.92	0.23	0.15	0.08	41^{+6}_{-8}	15^{+2}_{-4}
11429	1.00	0.03	1.00	0.18	0.05	1.00	1.00	0.33	44^{+4}_{-4}	41^{+4}_{-4}
11460	0.98	0.80	0.70	0.33	0.00	1.00	1.00	0.38	40^{+12}_{-10}	39^{+14}_{-8}
11473	0.79	0.50	0.38	0.26	0.66	0.20	0.07	0.32	34^{+12}_{-10}	10^{+6}_{-2}
11487	0.83	0.81	0.01	0.00	0.18	1.00	1.00	0.00	29^{+6}_{-2}	22^{+2}_{-2}
11595	1.00	0.93	1.00	0.93	1.00	1.00	1.00	1.00	$105_{-18}^{+\bar{3}4}$	95_{-20}^{+50}
11607	0.52	0.00	0.73	0.00	0.26	0.82	0.62	0.00	25^{+8}_{-4}	19^{+2}_{-2}
11625	0.99	0.99	0.41	0.01	0.99	0.00	0.00	0.00	$45\substack{+6\\-4}$	15^{+2}_{-2}

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							ninueu.				
	HIP	$P_{v_{pec}}$	P _U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	<i>v_{pec}</i> [km/s]	<i>v_{t,pec}</i> [km/s]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11663	_	_	_	_	_	1 00	1 00	0.00	_	27^{+2}
	11792	1.00	0.98	0.99	0.12	0.99	0.15	0.06	0.15	93^{+6}_{10}	14^{+2}
11814 0.98 0.95 0.64 0.02 0.97 0.02 0.01 0.01 4714 1222 11844 0.99 0.07 0.07 0.24 0.96 0.13 0.04 0.04 382-4 1242 11901 1.00 0.00 0.00 1.00 0.00	11799	_	_	_	_	_	0.62	0.41	0.35	-10	20^{+6}_{-6}
11844 0.99 0.97 0.07 0.24 0.96 0.13 0.04 0.04 38 ⁺⁺ / ₁ 16 ⁺⁻ / ₁ 11890 - - - - 100 100 0.03 - 24 ⁺⁺ / ₁ 11933 0.99 0.10 0.18 0.00 1.00 1.00 0.02 22 ⁺ / ₁ 12011 - - - - 0.64 0.04 0.18 - 19 ⁺ / ₁ 12039 1.00 0.99 0.27 0.03 1.00 0.01 0.00 22 ⁺⁺ / ₁ 19 ⁺ / ₁ 12233 - - - - 1.00 1.00 0.00 - 23 ⁺⁺⁻ / ₁ 12240 - - - - 0.09 0.93 0.06 25 ⁺⁺ / ₁ 23 ⁺⁺ / ₁ 12555 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 23 ⁺⁺	11891	0.98	0.95	0.64	0.02	0.97	0.02	0.01	0.01	47 ⁺⁸	12^{+2}
	11894	0.99	0.97	0.07	0.24	0.96	0.13	0.04	0.04	38^{+6}_{-4}	16^{+2}_{-2}
	11896	_	_	_	_	_	1.00	1.00	0.03	_	24^{+6}_{-2}
	11901	1.00	1.00	0.01	1.00	0.00	1.00	0.98	1.00	66^{+20}_{-8}	63^{+18}_{-12}
	11933	0.99	0.10	0.18	0.00	0.00	1.00	1.00	0.00	29^{+2}_{-2}	27^{+4}_{-2}
	12001	_	_	_	_	_	0.64	0.40	0.18	_	19^{+2}_{-2}
	12009	1.00	0.99	0.27	0.03	1.00	0.01	0.00	0.06	42^{+6}_{-6}	15^{+2}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12083	0.54	0.19	0.00	0.00	0.00	0.99	0.98	0.00	25^{+2}_{-4}	24^{+4}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12293	_	_	_	_	-	0.98	0.95	0.08	_	25^{+4}_{-2}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12297	_	_	_	_	_	1.00	1.00	0.01	_	31^{+4}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12404	_	_	_	_	_	1.00	1.00	0.00	_	23^{+2}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12513	0.48	0.03	0.52	0.07	0.13	0.95	0.93	0.06	25^{+8}_{-4}	23^{+2}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12557	0.01	0.00	0.00	0.49	0.00	0.08	0.00	0.99	17^{+4}_{-2}	15^{+2}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12585	-	_	-	_	-	0.99	0.99	0.00	-	20^{+2}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12636	-	_	-	_	-	0.75	0.69	0.08	-	20^{+2}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12637	-	_	_	_	_	0.57	0.42	0.00	-	18^{+2}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12653	0.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	$21\substack{+2\\-2}$	20^{+2}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12675	_	_	_	_	_	1.00	0.00	1.00	-	25^{+4}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12686	1.00	0.00	1.00	0.00	0.00	1.00	1.00	0.00	31^{+2}_{-2}	29^{+4}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12724	1.00	1.00	0.90	0.35	0.97	0.85	0.85	0.21	83^{+4}_{-8}	21^{+2}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12750	0.67	0.63	0.04	0.08	0.55	0.18	0.08	0.10	29^{+4}_{-8}	16^{+4}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12793	0.99	0.00	0.65	1.00	0.10	1.00	0.85	1.00	31^{+4}_{-2}	28^{+2}_{-2}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12911	0.40	0.25	0.00	0.65	0.36	0.02	0.01	0.04	23^{+14}_{-4}	11^{+4}_{-4}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13098	0.81	0.82	0.03	0.29	0.10	0.71	0.66	0.24	31^{+10}_{-6}	23^{+10}_{-10}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13127	_	_	_	_	_	0.68	0.12	0.94	_	21^{+8}_{-6}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13160	0.92	0.83	0.79	0.73	0.22	0.97	0.96	0.73	60^{+62}_{-12}	56^{+34}_{-44}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13187	0.96	0.93	0.06	0.12	0.82	0.47	0.41	0.12	38^{+8}_{-4}	18^{+2}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13276	1.00	1.00	0.99	0.13	1.00	0.17	0.10	0.20	66^{+10}_{-8}	7^{+0}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13284	-	_	-	_	_	0.99	0.96	0.72	-	53^{+34}_{-28}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13322	-	_	_	_	_	1.00	1.00	0.04	_	27^{+4}_{-4}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13335	_	_	_	_	_	0.62	0.00	0.80	-	18^{+2}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13446	0.74	0.04	0.73	0.08	0.35	1.00	0.99	0.06	29^{+0}_{-8}	23^{+2}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13462	0.27	0.03	0.02	0.83	0.01	0.45	0.09	0.80	18^{+10}_{-4}	16^{+10}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13567	1.00	0.00	1.00	0.97	0.00	1.00	1.00	1.00	35_{-4}	30^{+2}_{-4}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13598	1.00	1.00	0.05	0.93	1.00	1.00	0.01	1.00	50_{-4}	31_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13045	0.99	0.90	0.00	0.00	0.88	0.01	0.00	0.07	20^{+}_{-2}	11^{-2}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12700	0.22	0.00	0.42	0.08	0.00	0.04	0.45	0.00	22_{-4}^{-4}	19^{+}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12726	1.00	1.00	0.10	0.00	0.01	1.00	0.26	0.00	20-4 56+6	25_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12746	1.00	1.00	0.05	0.01	0.99	0.45	1.00	0.02	50_6	10^{-2}_{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12765	-			0.74	-	1.00	1.00	0.01		29 ₋₄ 7 ⁺²
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12024	0.01	0.00	0.00	0.74	0.02	0.00	0.00	0.00	25 ⁺⁶	$^{\prime}-2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12062	0.91	0.90	0.03	0.02	0.03	0.12	0.00	0.02	33_{-8}	13_{-2} 12^{+2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14060	0.92 1 00	0.03	1 00	0.11	0.03	1 00	1 00	0.14	Δ5 ⁺²	45 ⁺²
14225 1.00 0.88 0.68 0.26 0.93 0.26 0.13 0.41 47^{+4}_{-2} 11^{+6}_{-2} 14350 - - - - 0.35 0.00 0.93 0.41 47^{+4}_{-2} 11^{+6}_{-2} 14350 - - - - 0.35 0.08 0.56 - 13^{+6}_{-2} 14382 1.00 1.00 0.00 1.00 1.00 1.00 59^{+2}_{-2} 38^{+2}_{-2} 14417 1.00 0.02 0.98 0.91 1.00 1.00 59^{+2}_{-2} 38^{+2}_{-2} 14482 1.00 1.00 0.00 1.00 0.01 0.00 37^{+2}_{-2} 15^{+2}_{-2} 14514 1.00 0.00 1.00 0.00 1.00 0.01 0.00 28^{+2} 27^{+4}	14202				_		1.00 0.85	1.00 0.68	0.97	-4	3-4 35 ⁺⁴²
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14205	1 00	0 88	0.68	0.26	0 03	0.05	0.00	0.95		11^{+6}
113321.001.000.001.001.001.001.001.00 1.00 143821.001.000.001.001.001.001.00 59^{+2}_{-2} 38^{+2}_{-2} 144171.001.000.020.980.911.001.000.00 58^{+4}_{-4} 50^{+2}_{-4} 144821.001.000.000.001.000.010.00 37^{+2}_{-2} 15^{+2}_{-2} 145141.000.001.000.980.001.001.000.11 48^{+6}_{-8} 47^{+8}_{-4} 145210.900.460.030.000.001.001.000.00 28^{+2} 27^{+4}	14350						0.20	0.13	0.41	-2	13 ⁺⁶
14417 1.00 1.00 0.02 0.98 0.91 1.00 1.00 35_{-2} 38_{-2} 14417 1.00 1.00 0.02 0.98 0.91 1.00 1.00 55_{-4} 50_{-4}^{+2} 14482 1.00 1.00 0.00 0.00 1.00 0.00 37_{-2}^{+2} 15_{-2}^{+2} 14514 1.00 0.00 1.00 0.00 1.00 0.11 48_{-8}^{+6} 47_{-8}^{+4} 14521 0.90 0.46 0.03 0.00 0.00 1.00 0.00 28^{+2} 27^{+4}	14320	1 00	1 00	0.00	1 00	1 00	1 00	1 00	1 00	50 ⁺²	13-2 38 ⁺²
14482 1.00 1.00 0.00 0.00 1.00 0.00 35_{-4} 36_{-4} 14482 1.00 1.00 0.00 0.00 1.00 0.01 0.00 37_{-2}^{+2} 15_{-2}^{+2} 14514 1.00 0.00 1.00 0.01 1.00 0.11 48_{-8}^{+6} 47_{-4}^{+8} 14521 0.90 0.46 0.03 0.00 0.00 1.00 1.00 0.00 28^{+2} 27^{+4}	14417	1 00	1 00	0.02	0.08	0 01	1 00	1 00	0.00	59_{-2} 58 ⁺⁴	50_{-2}
14514 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.11 48^{+6}_{-8} 47^{+8}_{-4} 14521 0.90 0.46 0.03 0.00 1.00 1.00 0.00 28^{+2} 27^{+4}	14482	1.00	1.00	0.00	0.00	1 00	0.01	0.00	0.00	37^{+2}	15^{+2}
14521 0.90 0.46 0.03 0.00 0.00 1.00 1.00 0.00 28^{+2} 27^{+4}	14514	1.00	0.00	1.00	0.98	0.00	1.00	1.00	0.11	48^{+6}	47 ⁺⁸
	14521	0.90	0.46	0.03	0.00	0.00	1 00	1 00	0.00	28^{+2}	27^{+4}

Table C.2: - Continued. -

Table C.2: - Continued -

HIP	$P_{v_{pec}}$	P _U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	<i>v_{pec}</i> [km/s]	<i>v_{t,pec}</i> [km/s]
14558	0.99	0.97	0.14	0.01	0.90	1.00	1.00	0.08	46^{+14}_{-10}	23^{+2}_{-2}
14626	0.78	0.45	0.24	0.12	0.10	0.99	1.00	0.10	28^{+6}_{-4}	25^{+2}_{-2}
14658	0.96	0.08	0.83	0.05	0.03	1.00	1.00	0.05	32^{+6}_{-6}	31_{-4}^{+4}
14677	0.52	0.01	0.50	0.41	0.00	0.90	0.80	0.04	25^{+6}_{-6}	24^{+8}_{-6}
14700	_	_	_	_	_	0.92	0.00	1.00	_	21^{+4}_{-2}
14777	_	_	_	_	_	1.00	0.00	1.00	_	28^{+2}_{-4}
14898	_	_	_	_	_	0.60	0.30	0.67	_	23^{+14}_{-2}
14925	_	-	-	-	-	1.00	1.00	1.00	-	457^{+300}_{-116}
14969	_	_	_	-	-	1.00	0.92	1.00	-	35^{+14}_{-10}
15039	_	-	-	_	_	1.00	1.00	1.00	_	32^{+2}_{-2}
15105	0.67	0.04	0.06	0.93	0.28	0.73	0.02	0.86	29^{+12}_{-8}	22^{+10}_{-2}
15114	0.64	0.39	0.18	0.11	0.18	0.74	0.72	0.07	27^{+8}_{-2}	21^{+4}_{-2}
15180	0.62	0.66	0.00	0.00	0.30	0.40	0.24	0.00	26^{+4}_{-6}	18^{+2}_{-2}
15188	1.00	1.00	0.54	1.00	1.00	0.92	0.91	0.08	55^{+16}_{-14}	36^{+28}_{-14}
15219	0.00	0.00	0.00	0.95	0.00	0.00	0.00	0.93	15^{+2}_{-2}	14^{+2}_{-2}
15230	_	_	_	_	_	1.00	1.00	0.28	_	48^{+20}_{-14}
15270	0.10	0.02	0.06	0.01	0.00	0.91	0.89	0.01	21^{+4}_{-2}	20^{+2}_{-2}
15285	1.00	0.81	0.93	0.12	1.00	0.83	0.77	0.63	43^{+10}_{-4}	29^{+18}_{-10}
15373	_	_	_	_	_	0.00	0.00	0.73	_	14^{+2}_{-2}
15424	0.77	0.56	0.16	0.17	0.14	0.98	0.98	0.15	29^{+0}_{-4}	23^{+2}_{-2}
15535	_	_	_	_	_	0.97	0.95	0.06	_	26^{+6}_{-6}
15702	-	_	_	_	_	1.00	0.95	1.00	_ a=+6	50^{+0}_{-10}
15795	0.43	0.03	0.00	0.99	0.00	0.65	0.02	0.99	25^{+0}_{-6}	20^{+4}_{-8}
15836	_	_	_	-	_	1.00	1.00	1.00	-	51_{-4}^{+0}
15890	0.02	0.00	0.00	0.01	0.00	0.95	0.95	0.01	22^{+2}_{-2}	20^{+2}_{-2}
15981	0.25	0.12	0.10	0.00	0.02	0.97	0.90	0.01	23^{+}_{-2}	21^{-2}_{-2}
15992	_	_	_	_	_	1.00	0.20	1.00	_	39_{-12}^{+22}
16165	1.00	1.00	0.07	0.97	-	1.00	1.00	1.00		20^{+6}
16100	1.00	1.00	0.07	0.07	0.90	0.64	0.65	0.01	40 ₋₄	39_{-4}
16203	0.30	0.01	0.05	0.68	0.00	0.04	0.03	0.01		$^{23}-12$ 18 ⁺⁶
16203	0.50	0.01	0.05	0.00	0.00	0.30	0.05	0.90	21-6 20^{+2}	10_{-4} 10^{+2}
16281	0.00	0.00	0.24	0.02	0.02	0.70	0.70	0.02	20_{-4} 20^{+6}	19_{-2} 19^{+2}
16283	_	_	_	_	_	0.66	0.00	0.25		$19^{-2}_{-2}_{-2}_{-2}_{-2}_{-2}_{-2}_{-2}_$
16306	_	_	_	_	_	1.00	1.00	0.00	_	36^{+8}
16333	_	_	_	_	_	1.00	0.00	1.00	_	24 ⁺²
16466	0.10	0.01	0.05	0.83	0.02	0.20	0.06	0.46	18^{+4}_{6}	13^{+2}
16489	1.00	1.00	0.00	0.21	1.00	1.00	1.00	1.00	73^{+6}_{-4}	58^{+6}_{-4}
16518	1.00	0.00	1.00	0.14	0.96	1.00	1.00	0.00	55^{+8}_{-6}	48^{+6}_{-6}
16553	_	_	_	_	_	1.00	1.00	0.84	_	63^{+18}_{-14}
16563	0.00	0.00	0.00	0.04	0.00	0.01	0.00	0.60	17^{+2}_{-2}	15^{+2}_{-2}
16566	1.00	1.00	0.16	0.99	1.00	0.94	0.89	0.10	99_{-6}^{+10}	31_{-10}^{+16}
16608	_	_	_	_	_	0.69	0.21	0.99	-	21^{+6}_{-4}
16615	_	_	_	_	_	0.84	0.79	0.60	_	38^{+34}_{-20}
16735	_	_	_	_	_	0.55	0.42	0.01	_	18^{+2}_{-2}
16771	0.83	0.68	0.00	0.00	0.85	0.09	0.08	0.00	29^{+6}_{-4}	9^{+6}_{-2}
16842	0.49	0.21	0.10	0.62	0.36	0.32	0.28	0.09	25^{+14}_{-6}	15^{+2}_{-2}
16934	_	_	_	_	_	1.00	1.00	0.10	_	75^{+66}_{-28}
16976	_	_	_	_	_	0.98	0.97	0.05	_	22^{+2}_{-2}
17064	_	_	_	-	_	1.00	1.00	0.51	—	60^{+22}_{-16}
17280	_	_	_	-	_	0.75	0.00	0.99	—	21^{+8}_{-4}
17287	_	_	_	_	_	0.94	0.00	1.00	-	20^{+2}_{-2}
17342	0.80	0.00	0.16	0.91	0.00	1.00	1.00	0.94	27^{+2}_{-2}	27^{+2}_{-2}
17358	0.13	0.00	0.05	0.01	0.00	0.82	0.62	0.01	21^{+4}_{-2}	20^{+2}_{-2}
17387	1.00	0.62	0.01	0.01	0.99	0.04	0.03	0.03	29^{+4}_{-2}	8^{+4}_{-2}

HIP	$P_{v_{pec}}$	P_U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	<i>v_{pec}</i> [km/s]	<i>v_{t,pec}</i> [km/s]
17394	_	_	_	_	_	1.00	1.00	1.00	_	49^{+4}_{-2}
17447	—	_	—	_	—	1.00	1.00	1.00	—	79^{+50}_{-28}
17529	1.00	0.60	0.05	0.00	0.06	1.00	1.00	0.00	31^{+4}_{-2}	27^{+2}_{-2}
17624	_	-	_	-	-	0.57	0.38	0.68	-	20^{+12}_{-6}
17635	_	_	_	_	_	0.53	0.01	0.67	_	18^{+2}_{-2}
17661	0.30	0.18	0.09	0.57	0.09	0.40	0.22	0.54	13^{+14}_{-6}	12^{+12}_{-2}
17686	0.31	0.05	0.16	0.00	0.01	1.00	1.00	0.01	24^{+4}_{-2}	22^{+2}_{-2}
17775	_	—	_	_	-	0.76	0.68	0.00	-	19^{+2}_{-2}
17878	_	—	_	_	-	1.00	1.00	0.17	-	52^{+28}_{-10}
17952	0.83	0.00	0.26	0.99	0.57	0.24	0.21	0.00	29^{+6}_{-4}	15^{+4}_{-4}
18151	—	_	—	_	—	0.84	0.75	0.07	—	21^{+2}_{-2}
18166	0.92	0.85	0.09	0.06	0.28	0.96	0.95	0.07	31^{+6}_{-4}	22^{+2}_{-4}
18183	1.00	1.00	0.00	0.01	0.00	1.00	1.00	0.00	33^{+4}_{-4}	36^{+6}_{-4}
18230	0.32	0.02	0.10	0.65	0.03	0.45	0.09	0.72	18^{+12}_{-6}	17^{+10}_{-2}
18263	0.65	0.02	0.66	0.62	0.01	0.79	0.70	0.65	30^{+26}_{-10}	30^{+30}_{-10}
18270	0.58	0.09	0.76	0.03	0.00	0.75	0.75	0.03	28^{+16}_{-6}	26^{+22}_{-6}
18339	1.00	0.00	0.00	1.00	0.00	1.00	0.00	1.00	28^{+2}_{-2}	26^{+2}_{-2}
18350	1.00	1.00	0.00	0.41	1.00	0.22	0.03	0.13	57^{+6}_{-4}	16^{+2}_{-2}
18488	0.30	0.01	0.00	0.99	0.00	0.71	0.00	0.99	21^{+8}_{-4}	21^{+8}_{-4}
18508	0.77	0.42	0.00	0.04	0.00	0.30	0.07	0.19	26^{+2}_{-2}	16^{+2}_{-2}
18614	1.00	1.00	1.00	0.00	1.00	0.92	0.01	0.83	60^{+2}_{-6}	20^{+2}_{-2}
18727	_	_	_	-	_	0.56	0.44	0.13	_	18^{+4}_{-2}
18796	_	—	_	_	-	1.00	1.00	1.00	-	47^{+10}_{-10}
18871	0.09	0.05	0.04	0.01	0.00	0.90	0.88	0.01	21^{+4}_{-2}	20^{+2}_{-2}
18972	0.81	0.86	0.00	0.01	0.82	0.02	0.00	0.17	29^{+6}_{-4}	8^{+2}_{-2}
19018	0.68	0.33	0.02	0.00	0.01	1.00	1.00	0.00	26^{+2}_{-4}	23^{+2}_{-2}
19020	-	_	-	_	_	0.59	0.52	0.18	-	19^{+6}_{-2}
19037	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	22^{+2}_{-2}	7^{+2}_{-2}
19057	1.00	0.98	0.17	0.22	0.67	0.99	0.99	0.23	39^{+4}_{-8}	26^{+4}_{-2}
19085	1.00	1.00	0.09	0.86	1.00	0.31	0.11	0.37	55^{+4}_{-6}	16^{+6}_{-4}
19218	-	-	-	-	-	1.00	0.02	1.00	-	87^{+20}_{-22}
19341	0.75	0.33	0.06	0.01	0.17	0.86	0.84	0.02	28^{+2}_{-4}	20^{+2}_{-2}
19404	0.62	0.47	0.05	0.39	0.21	0.61	0.17	0.45	27^{+2}_{-6}	19^{+2}_{-2}
19412	0.20	0.07	0.02	0.05	0.00	1.00	1.00	0.04	23^{+4}_{-2}	21^{+2}_{-2}
19587	0.02	0.00	0.03	0.06	0.00	1.00	1.00	0.00	21^{+2}_{-2}	20^{+2}_{-2}
19679	1.00	1.00	0.25	0.96	1.00	1.00	0.04	1.00	62^{+8}_{-4}	38^{+18}_{-8}
19855	1.00	0.96	0.00	0.00	0.00	0.01	0.00	1.00	27^{+2}_{-2}	18^{+2}_{-2}
19856	_	—	_	_	_	0.36	0.00	1.00	_	18^{+2}_{-2}
19972	_	—	_	_	_	0.86	0.02	0.95	_	20^{+2}_{-2}
20017	_	—	_	_	_	1.00	0.98	1.00	_	40^{+20}_{-6}
20214	_	—	_	_	_	1.00	0.00	1.00	-	122^{+50}_{-18}
20381	0.11	0.04	0.01	0.28	0.01	0.58	0.07	0.35	21^{+4}_{-2}	18^{+2}_{-2}
20417	0.97	0.01	0.62	0.04	0.00	1.00	0.98	0.06	29^{+2}_{-4}	24^{+2}_{-2}
20426	_	—	_	_	_	0.43	0.13	0.66	_	$16^{+\circ}_{-2}$
20513	_	—	_	_	-	0.87	0.67	0.96	—	37^{+44}_{-4}
20675	_	_	_	_	_	0.36	0.17	0.51	- 20	12^{+10}_{-2}
20725	1.00	1.00	0.11	1.00	0.66	1.00	0.67	1.00	80^{+30}_{-18}	76^{+30}_{-12}
20776	0.07	0.02	0.01	0.00	0.00	0.83	0.81	0.00	21^{+4}_{-2}	20^{+2}_{-4}
20860	0.99	0.17	0.08	0.04	0.00	1.00	1.00	0.00	27^{+2}_{-2}	27^{+2}_{-2}
20958	0.95	0.00	0.21	1.00	0.02	0.65	0.62	0.01	30^{+4}_{-4}	20^{+8}_{-4}
20974	1.00	1.00	0.00	0.00	1.00	0.99	0.96	0.40	50^{+4}_{-4}	28^{+8}_{-2}
21013	0.68	0.11	0.00	0.99	0.00	0.94	0.00	1.00	26^{+2}_{-4}	21^{+4}_{-2}
21042	1.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	29^{+2}_{-2}	14^{+2}_{-2}
21063	_	_	_	_	_	1.00	1.00	0.01		26^{+2}_{-2}
21179	0.89	0.75	0.04	0.66	0.74	0.90	0.03	1.00	52^{+48}_{-6}	22^{+0}_{-2}

Table C.2: - Continued -

HIP $P_{v_{pec}}$ P_V $P_{v_{r,pec}}$ $P_{v_{t,pec}}$ $P_{v_{l,pec}}$ P_U P_W $P_{v_{b,pec}}$ Vpec V_{t,pec} [km/s] [km/s] 14^{+2}_{-2} 26^{+8}_{-10} 21291 0.55 0.51 0.00 0.00 0.00 0.00 0.00 0.46 19,+2 21385 0.15 0.53 0.46 _ _ _ _ _ 26+10 25^{+8}_{-6} 21404 0.51 0.34 0.04 0.60 0.02 0.96 0.56 1.00 23^{+4}_{-2} 14^{+2}_{-2} 21^{+2}_{-2} 21408 0.24 0.02 0.00 0.59 0.00 0.99 0.00 1.00 0.00 0.72 0.00 0.69 13^{+2}_{-2} 21476 0.00 0.00 0.00 0.00 26^{+8}_{-6} 0.02 0.17 0.96 0.17 26^{+2}_{-2} 21520 0.57 0.50 0.05 0.92 35^{+6}_{-6} 21560 1.00 0.08 1.00 _ 41^{+16}_{-10} 0.97 0.99 0.70 0.94 34^{+20}_{-8} 21601 0.19 0.36 0.87 0.91 33^{+8}_{-4} 12^{+4}_{-2} 0.05 21626 0.93 0.93 0.02 0.88 0.18 0.03 0.64 22^{+10}_{-6} 12^{+2}_{-2} 0.75 0.75 0.00 21697 28^{+2}_{-2} 22000 1.00 0.98 0.00 0.18 0.99 0.02 0.00 0.02 87_{-12}^{+22} 87^{+22}_{-14} 22061 1.00 1.00 0.37 1.00 0.00 1.00 0.00 1.00 31^{+4}_{-6} 22065 0.95 0.00 0.98 0.06 0.25 0.89 0.07 1.00 23^{+6}_{-4} 22^{+2}_{-2} 21^{+2}_{-2} 22075 0.08 0.01 0.02 0.00 0.00 1.00 0.00 1.00 19^{+2}_{-2} 0.00 22104 0.84 0.74 27^{+2}_{-6} 17^{+2}_{-2} 0.69 0.12 0.01 0.52 0.32 0.25 0.01 22112 0.10 47^{+14}_{-8} 63^{+4}_{-2} 46⁺¹⁴_-° 22261 1.00 0.12 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 55^{+4}_{-2} 22453 31^{+16}_{-6} 40^{+2}_{-4} 30⁺¹⁴/_{-*} 0.99 0.98 22461 0.70 0.12 0.10 0.01 0.94 0.12 16^{+2}_{-2} 22524 1.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 22570 0.80 0.03 1.00 20^{+4}_{-4} 0.04 0.99 0.00 33^{+14}_{-6} 32^{+10}_{-4} 22745 0.77 0.51 1.00 0.80 1.00 41^{+20}_{-6} 33^{+26}_{-6} 0.98 0.20 22761 0.98 0.06 0.75 0.93 0.77 0.99 9^{+2}_{-2} 22767 1.00 0.99 0.00 0.24 1.00 0.02 0.01 0.04 38^{+4}_{-8} 22917 0.05 0.00 0.01 0.89 0.01 21^{+4}_{-2} 20^{+2} 0.10 0.00 0.87 32^{+12}_{-12} 32^{+18} 22928 0.71 0.01 0.11 1.00 0.00 0.94 0.18 1.00 24^{+6}_{-4} 21^{+4}_{-4} 0.43 0.39 0.00 0.12 0.01 0.84 1.00 23060 0.21 31^{+8}_{-2} 32^{+6}_{-4} 11^{+2}_{-2} 23151 0.89 0.82 0.00 0.00 0.87 0.00 0.00 0.00 23268 0.95 0.89 0.00 0.00 0.88 0.01 0.00 0.00 16^{-1} 23359 0.99 0.95 0.01 0.09 0.96 0.02 0.01 0.08 33^{+2}_{-2} 12^{+2}_{-2} 30^{+4}_{-6} 16^{+4}_{-4} 0.81 0.71 0.03 0.08 0.14 0.10 0.09 23360 0.64 20^{+6}_{-6} 19^{+2}_{-2} 23375 0.28 0.03 0.13 0.39 0.04 0.54 0.28 0.39 13^{+2}_{-2} 23522 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.66 13^{+2}_{-2} 49^{+16}_{-4} 37^{+10}_{-10} 23582 1.00 1.00 0.09 1.00 0.97 1.00 1.00 0.00 58_{-4}^{+8} 42^{+6}_{-6} 23766 1.00 0.01 1.00 0.12 1.00 1.00 1.00 0.00 19^{+2}_{-2} 26^{+4}_{-4} 23799 0.66 0.38 0.00 0.00 0.16 0.74 0.71 0.00 18^{+2}_{-2} 23933 0.52 0.37 0.17 _ _ _ _ 24060 _ _ _ 0.35 0.04 0.60 16^{+}_{-} _ _ _ 20^{+4}_{-4} 19^{+2}_{-2} 24072 0.17 0.02 0.07 0.51 0.02 0.57 0.11 0.50 15^{+6}_{-6} 13^{+4}_{-4} 0.00 0.08 0.56 0.29 0.69 24229 0.17 0.01 0.07 24^{+10}_{-4} 13^{+12}_{-2} 24238 0.49 0.14 0.18 0.56 0.15 0.39 0.17 0.57 24478 0.00 0.00 1.00 15^{+2}_{-2} 42^{+12}_{-8} 17^{+12}_{4} 24549 1.00 0.98 0.17 0.99 1.00 0.48 0.36 0.75 149^{+58}_{-26} 140^{+56}_{-32} 1.00 24575 1.00 0.90 1.00 1.00 1.00 1.00 1.00 45^{+4}_{-2} 9^{+2}_{-4} 1.00 1.00 1.00 0.03 0.00 0.22 24649 0.73 1.00 29^{+4}_{-6} 13^{+2}_{-2} 24667 0.83 0.70 0.00 0.17 0.71 0.01 0.00 0.08 24674 0.00 0.00 0.00 0.98 0.00 0.00 0.00 1.00 17^{+2}_{-2} 17^{+2}_{-2} 16^{+6}_{-2} 24716 0.04 0.00 0.00 0.65 0.00 0.28 0.00 0.81 16^{+4}_{-2} 0.01 51^{+20}_{-12} 24725 1.00 1.00 _ _ _ _ _ _ 19^{+4}_{-2} 24780 _ _ _ _ 0.56 0.44 0.00 _ _

 25^{+2}_{-4}

 14^{+2}_{-2}

 20^{+4}_{-2}

 22^{+4}_{-2}

 25^{+6}_{-4}

0.00

0.76

0.03

0.54

0.02

 13^{+2}_{-2}

 12^{+2}_{-2}

 20^{+2}_{-2}

 22^{+2}_{-2} 21^{+2}_{-2}

Table C.2: - Continued. -

24795

24817

24898

24914

25066

0.55

0.00

0.13

0.22

0.54

0.40

0.00

0.00

0.00

0.21

0.00

0.00

0.26

0.14

0.15

0.00

0.00

0.03

0.51

0.01

0.34

0.00

0.01

0.00

0.03

0.00

0.00

0.77

0.99

0.77

0.00

0.00

0.60

0.75

0.77

HIP $P_{v_{r,pec}}$ $P_{v_{t,pec}}$ $P_{v_{l,pec}}$ $P_{v_{b,pec}}$ $P_{v_{pec}}$ P_U P_V P_W Vpec V_{t,pec} [km/s] [km/s] $\begin{array}{r} 34^{+18}_{-8} \\ 49^{+2}_{-2} \\ 33^{+8}_{-6} \end{array}$ $\begin{array}{r} 34^{+18}_{-12} \\ 25^{+2}_{-2} \end{array}$ 25184 0.81 0.04 0.74 1.00 0.00 0.97 0.76 1.00 1.00 25226 1.00 1.00 0.00 0.62 1.00 1.00 0.00 7^{+2}_{-2} 25241 0.84 0.88 0.00 0.09 0.83 0.00 0.00 0.03 29^{+4}_{-4} 25284 0.87 0.03 0.35 0.81 0.01 1.00 0.94 0.89 27^{+2} 27^{+2}_{-2} 10^{+2}_{-2} 30^{+8}_{-4} 25288 0.87 0.39 0.20 0.04 0.87 0.02 0.01 0.02 20^{+6}_{-2} 0.01 20^{+2}_{-4} 25363 0.20 0.32 0.15 0.01 0.63 0.61 0.14 50^{+22}_{-6} 25386 1.00 1.00 0.43 21^{+2}_{-2} 20^{+2}_{-2} 25428 0.01 0.00 0.00 0.00 0.00 1.00 0.33 0.00 20^{+2}_{-2} 25508 0.69 0.58 0.06 37^{+6}_{-4} 20^{+2}_{-2} 1.00 1.00 0.00 0.00 0.95 0.00 25606 1.000.00 16^{+4}_{-2} 16^{+4}_{-4} 25777 0.07 0.00 0.00 0.92 0.00 0.24 0.00 0.89 19⁺¹⁰ 25793 0.54 0.51 0.20 25859 0.93 0.75 0.00 0.94 0.47 1.00 1.00 0.00 30^{+6}_{-2} 20^{+2}_{-2} $148_{-6}^{+\overline{16}}$ 68^{+24}_{-20} 1.00 0.78 1.00 1.00 1.00 1.00 25877 1.00 1.00 20^{+4}_{-2} 21^{+2}_{-2} 25906 0.24 0.01 0.39 0.18 0.00 0.76 0.69 0.16 17+6 21^{+8}_{-4} 0.24 0.22 0.25 0.03 0.38 0.85 25923 0.00 0.06 19^{+2} 25943 0.57 0.57 0.11 _ _ _ 23^{+8}_{-6} 20^{+8}_{-8} 0.41 0.00 0.16 0.86 0.00 0.63 0.28 0.82 25969 16^{+2}_{-2} 31^{+2}_{-6} 16^{+2}_{-2} 0.93 0.97 26057 0.01 0.00 0.00 0.00 0.09 0.00 16^{+2}_{-2} 26064 0.96 0.86 0.00 0.00 0.79 0.02 0.00 0.11 33^{+18}_{-6} 26070 0.99 0.00 1.00 0.98 0.00 0.92 36^{+4}_{-4} 9^{+2}_{-2} 0.99 0.99 0.00 0.00 0.00 26116 16^{+2}_{-4} 0.00 0.03 14^{+2}_{-2} 26264 0.01 0.17 0.00 0.04 0.00 0.96 107^{+72}_{-24} 26364 1.00 0.03 1.00 _ _ _ 58^{+16}_{-10} 12^{+2}_{-4} 144^{+8}_{-4} 1.00 26386 1.00 1.00 0.12 1.00 1.00 1.00 1.00 26^{+6}_{-4} 26397 0.52 0.45 0.01 0.02 0.47 0.02 0.01 0.01 20^{+6}_{-6} 18^{+6}_{-4} 0.25 0.00 0.74 0.52 26602 0.15 0.02 0.06 0.91 40^{+30}_{-6} 26743 1.00 0.05 1.00 27^{+6}_{-6} 26803 0.66 0.41 0.01 0.19 0.38 0.20 0.04 0.15 15^{+}_{-} 26821 0.40 0.00 0.63 0.01 0.01 0.77 0.53 0.22 24^{+4}_{-6} 20^{+2}_{-4} 19^{+4}_{-4} 18^{+2}_{-2} 0.15 0.00 0.05 0.32 0.00 0.51 0.19 0.28 26872 34^{+4}_{-6} 14^{+2}_{-2} 26889 0.97 0.94 0.00 0.00 0.92 0.01 0.00 0.01 29^{+6}_{-6} 15^{+4}_{-2} 27172 0.78 0.53 0.07 0.24 0.60 0.25 0.12 0.24 101^{+4}_{-2} 52^{+4}_{-6} 27204 1.00 0.00 1.00 1.00 1.00 1.00 1.00 0.61 49^{+6}_{-4} 28^{+4}_{-2} 1.00 0.56 1.00 0.13 1.00 1.00 27227 1.00 0.77 19+2 27380 0.62 0.59 0.06 _ _ _ _ _ _ 22+4 20^{+2}_{-2} 27447 0.29 0.00 0.15 0.61 0.00 0.72 0.27 0.60 16^{+2}_{-2} 26^{+2}_{-4} 22^{+10}_{-2} 27478 0.62 0.01 0.13 0.05 0.08 0.23 0.22 0.06 27512 0.35 0.05 0.16 1.00 0.03 0.67 0.13 0.99 21^{+8}_{-4} 59^{+6}_{-6} 17^{+2}_{-2} 1.00 27548 1.00 0.17 0.17 1.000.41 0.33 0.16 24^{+8}_{-4} 27607 0.90 0.61 0.92 43^{+12}_{-8} _ _ 1.00 1.00 0.17 27634 _ _ 78^{+6}_{-6} 14^{+2}_{-2} 27683 1.00 1.00 0.66 0.33 1.00 0.17 0.13 0.14 19^{+4}_{-2} 17^{+4}_{-2} 27750 0.02 0.00 0.00 0.98 0.00 0.32 0.00 1.00 96^{+2}_{-4} 32^{+2}_{-4} 1.00 27778 1.00 1.00 0.00 1.001.000.00 1.00 9^{+2}_{-2} 31^{+2}_{-2} 27841 1.00 1.00 0.00 0.05 1.00 0.04 0.00 0.07 48_{-4}^{+8}

27850

27941

27989

28049

28244

28287

28370

28469

28539

1.00

0.90

0.71

0.63

0.13

0.99

1.00

_

1.00

0.82

0.00

0.30

0.00

0.40

1.00

_

0.06

0.03

0.00

0.20

0.09

0.00

0.00

_

0.03

0.11

1.00

0.25

0.95

0.00

0.06

_

1.00

0.78

0.00

0.39

0.00

1.00

1.00

_

0.09

0.10

1.00

0.60

0.48

0.92

0.00

0.00

0.86

0.08

0.06

0.00

0.44

0.36

0.00

0.00

0.00

0.59

0.02

0.10

1.00

0.37

0.28

1.00

0.00

0.00 0.29 32^{+6}_{-6}

 27^{+2}_{-2}

 28^{+10}_{-12}

 22^{+2}_{-2} 28^{+2}_{-2}

 44^{+2}_{-2}

Table C.2: - Continued. -

 14^{+2}_{-2}

 12^{+2}_{-6}

 26^{+2}_{-4}

 20^{+2}_{-2}

 18^{+2}_{-2}

 21^{+4}_{-2}

 3^{+2}_{-2}

 9^{+2}_{-2}

 21^{+4}_{-4}

HIP $P_{v_{t,pec}}$ $P_{v_{l,pec}}$ $P_{v_{b,pec}}$ $P_{v_{pec}}$ P_U P_V P_W $P_{v_{r,pec}}$ Vpec V_{t,pec} [km/s] [km/s] 13^{+2}_{-2} 10^{+2} 28562 0.00 0.00 0.00 0.61 0.00 0.00 0.00 0.02 56^{+18}_{-4} 175^{+2}_{-6} 23^{+28}_{-2} 62^{+2}_{-4} 0.25 0.69 28607 1.00 1.00 0.33 1.00 0.62 0.46 28675 1.00 1.00 1.00 0.35 1.00 1.00 1.00 1.00 187^{+12}_{-14} 28756 1.00 1.00 0.56 0.00 1.00 1.00 1.00 1.00 173^{+8}_{-2} 20 9^{+2}_{-2} 1.00 34^{+6}_{-2} 28769 0.97 0.00 0.80 0.97 0.00 0.00 0.00 46^{+8}_{-6} 1.00 0.01 0.01 0.00 14^{+2}_{-2} 28920 1.00 0.00 1.00 0.01 15^{+2}_{-2} 28930 1.00 1.00 0.00 0.59 1.00 0.00 0.00 1.00 49^{+2}_{-2} 26^{+8}_{-8} 11^{+2}_{-2} 28939 0.57 0.47 0.00 0.00 0.56 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 13^{+2}_{-2} 13^{+2}_{-2} 28949 0.68 0.00 0.80 26^{+6}_{-4} 25^{+4}_{-4} 0.59 0.00 0.33 0.00 0.99 0.44 28981 0.65 0.96 21^{+4}_{-2} 28984 0.11 0.00 0.00 0.09 0.00 0.12 0.00 0.94 15^{+} 24^{+8}_{-4} 22^{+6}_{-2} 29196 0.40 0.00 0.18 0.64 0.01 0.83 0.40 0.64 29201 0.93 0.54 0.78 0.09 0.05 1.00 1.00 0.05 41^{+24}_{-10} 41^{+20}_{-8} 50^{+12}_{-16} 29213 1.00 0.37 1.00 93^{+10}_{-4} 84^{+6}_{-8} 0.95 0.00 29263 1.00 1.00 1.00 1.00 1.00 1.00 17^{+6}_{-4} 10^{+2}_{-2} 29276 0.04 0.00 0.00 0.92 0.06 0.00 0.00 0.00 51^{+24}_{-6} 11^{+2}_{-2} 69^{+24}_{-10} 29317 1.00 0.07 1.00 1.00 1.00 1.00 1.00 1.00 47^{+10}_{-8} 28^{+2}_{-2} 1.00 1.00 0.80 0.19 1.00 0.19 0.04 0.25 29563 3^{+4}_{-2} 0.00 0.00 29581 1.00 1.00 0.00 1.00 0.01 0.00 105_{-30}^{+28} 29639 1.00 0.20 1.00 $55\substack{+4\\-10}$ 57^{+8}_{-6} 29678 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 20^{+2}_{-2} 0.00 0.42 0.04 0.01 0.90 0.04 21^{+2}_{-2} 29681 0.16 0.89 44_{-8}^{+8} 37_{-8}^{+10} 29694 1.00 1.00 0.54 1.00 0.65 1.00 0.96 1.00 14^{+2}_{-4} 29705 0.00 0.00 0.00 0.57 0.00 0.01 0.00 0.68 13^{+2}_{-2} 29731 0.99 0.97 68^{+42}_{-4} 61^{+30}_{-22} 1.00 1.00 1.00 1.00 0.78 1.00 2^{+2}_{-2} 28^{+2}_{-2} 29798 1.00 0.99 0.00 0.00 1.00 0.00 0.00 0.00 20^{+2}_{-2} 19^{+2}_{-2} 0.03 0.02 0.00 0.00 0.00 1.00 0.00 0.00 29807 26^{+2}_{-2} 14^{+4}_{-6} 6^{+2}_{-2} 0.00 29839 0.86 0.92 0.00 0.00 0.98 0.00 0.00 29849 0.07 0.00 0.00 0.54 0.00 0.17 0.00 0.53 12^{+4}_{-4} 29900 0.20 0.00 0.82 15^{+4}_{-4} 20^{+4}_{-4} 30015 0.01 0.22 0.11 0.00 0.50 0.50 0.11 18^{+2}_{-2} 0.17 53^{+8}_{-4} 44^{+4}_{-8} 30143 1.00 1.00 0.01 0.07 0.84 1.00 1.00 1.00 22^{+12}_{-8} 20+8 30169 0.38 0.05 0.03 0.81 0.06 0.59 0.02 0.82 31^{+4}_{-4} 23^{+2}_{-2} 30277 0.98 0.92 0.02 0.00 0.30 1.00 0.73 1.00 27^{+2}_{-2} 11^{+2}_{-4} 30331 1.00 0.53 0.01 0.03 1.00 0.02 0.01 0.03 31_4 30432 1.00 1.00 0.15 _ _ _ _ _ 23^{+10}_{-8} 41^{+2}_{-2} 22⁺⁸ 0.00 0.93 30433 0.38 0.01 0.01 0.68 0.01 0.89 30444 1.00 1.00 0.86 0.00 1.00 1.00 1.00 0.00 21^{+} 22^{+2}_{-4} 30484 0.21 0.01 0.26 0.12 0.00 0.68 0.60 0.11 20^{+4}_{-2} 20^{+4}_{-2} 19^{+2}_{-4} 0.02 0.23 0.04 0.02 0.59 0.08 30520 0.16 0.51 14^{+8}_{-4} 30715 0.34 0.06 0.57 _ _ _ _ _ 52^{+2}_{-4} 21^{+2}_{-2} 30738 1.00 1.00 0.82 0.31 1.00 0.83 0.77 0.11 26^{+4}_{-6} 12^{+2}_{-2} 30788 0.54 0.07 0.01 0.17 0.45 0.00 0.00 0.00 25^{+6}_{-4} 5^{+2}_{-2} 0.56 0.00 0.00 0.00 0.00 30883 0.46 0.57 0.00 7^{+6}_{-2} 30^{+4}_{-6} 0.88 0.80 0.01 0.11 0.03 0.04 30943 0.92 0.01 4^{+4}_{-2} 35^{+6}_{-4} 30955 0.98 0.91 0.05 0.17 1.00 0.01 0.01 0.00 28^{+4}_{-6} 7^{+2}_{-2} 30961 0.45 0.03 0.13 0.76 0.07 0.01 0.17 0.71 31024 0.52 0.01 0.50 0.01 0.59 0.03 0.00 0.13 26^{+6}_{-6} 9^{+2}_{-2} 0.92 24^{+4}_{-4} 13^{+2}_{-2} 31068 0.46 0.00 0.05 1.00 0.32 0.01 0.00 27^{+6}_{-6} 14^{+2}_{-2} 0.03 31236 0.66 0.13 0.28 0.04 0.49 0.13 0.11 14^{+2}_{-2} 11^{+2}_{-2} 0.00 0.00 0.00 0.69 0.00 0.00 0.17 31407 0.00 15^{+2}_{-2} 109^{+18}_{-12} 1.00 1.00 0.01 0.98 0.01 0.01 0.00 31485 1.00 20^{+2}_{-2} 31498 1.00 0.95 0.00 _ _ _ _ _ 13^{+4}_{-2} 21^{+2}_{-2} 26^{+16}_{-8} 31593 0.53 0.33 0.36 0.33 0.46 0.10 0.05 0.01 31613 0.93 0.36 0.66 _ _ _ _ _ _

Table C.2: - Continued. -

Table C.2: - Continued -

	Table C.2: - Continued											
HIP	$P_{v_{pec}}$	P _U	P_V	P_W	P _{v_{r,pec}}	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	<i>v_{pec}</i> [km/s]	v _{t,pec} [km/s]		
31642	0.01	0.00	0.00	0.76	0.01	0.00	0.00	0.11	16^{+6}_{-2}	11^{+2}_{-2}		
31658	0.51	0.10	0.14	0.24	0.39	0.13	0.06	0.28	25^{+8}_{-6}	12^{+2}_{-2}		
31678	_	_	_	_	_	0.98	0.93	0.97		33^{+12}_{-8}		
31766	0.95	0.93	0.00	0.01	0.94	0.01	0.01	0.01	35^{+4}_{-4}	7^{+2}_{-2}		
31787	0.39	0.02	0.28	0.37	0.04	0.66	0.61	0.35	23^{+8}_{-6}	21^{+6}_{-2}		
31789	0.10	0.00	0.00	0.91	0.00	0.44	0.00	0.96	18^{+6}_{-2}	17^{+4}_{-4}		
31807	_	_	_	_	_	0.87	0.84	0.76		37^{+44}_{-10}		
31853	0.56	0.33	0.00	0.00	0.42	0.00	0.00	0.00	26^{+6}_{-6}	14^{+2}_{-2}		
31875	_	_	_	_	_	0.66	0.05	0.99	_	20^{+6}_{-4}		
31884	_	_	_	_	_	0.19	0.02	0.64	_	13^{+6}_{-2}		
32054	_	_	_	_	_	0.72	0.37	0.66	_	20^{+6}_{-2}		
32067	0.39	0.00	0.24	0.94	0.02	0.96	0.56	0.93	24^{+6}_{-4}	24_{-2}^{+4}		
32094	1.00	1.00	0.10	0.21	1.00	0.47	0.39	0.26	39_{-4}^{+10}	18_{-4}^{+14}		
32220	0.81	0.26	0.49	0.25	0.78	0.26	0.17	0.19	30^{+8}_{-6}	12^{+2}_{-2}		
32269	_	_	_	_	_	0.03	0.00	1.00	_	16^{+2}_{-2}		
32300	0.87	0.45	0.49	0.06	0.88	0.06	0.05	0.05	32^{+6}_{-10}	8+2		
32375	0.07	0.01	0.00	0.01	0.00	0.82	0.63	0.03	22^{+2}_{-2}	20^{+2}_{-4}		
32494	1.00	1.00	0.57	1.00	0.33	1.00	1.00	1.00	127^{+18}_{-2}	125^{+14}_{12}		
32561	_	_	_	_	_	0.80	0.43	0.84		24^{+10}		
32586	0.52	0.21	0.12	0.03	0.59	0.03	0.01	0.02	26^{+6}	6 ⁺²		
32602	0.27	0.03	0.27	0.33	0.12	0.29	0.09	0.60	18^{+10}_{-8}	13^{+6}		
32631	0.99	0.01	0.77	0.80	0.96	0.62	0.12	0.75	33^{+10}_{2}	20^{+6}		
32637	_	_	_	_	_	0.17	0.00	0.65		13^{+4}_{4}		
32648	0.29	0.00	0.03	0.99	0.00	0.98	0.00	1.00	24^{+2}	21^{+2}_{-2}		
32669	_	_	_	_	_	0.61	0.09	0.92	_2	19^{+12}		
32740	1.00	0.00	0.00	1.00	1.00	1.00	0.00	1.00	35^{+2}_{2}	23^{+2}		
32743	1.00	0.30	1.00	1.00	1.00	1.00	1.00	1.00	125^{+56}_{-26}	119^{+64}_{-26}		
32753	0.00	0.00	0.00	0.94	0.00	0.19	0.00	0.92	16 ⁺²	16^{+2}		
32786	0.86	0.02	0.91	0.08	0.84	0.40	0.34	0.15	34^{+12}_{-10}	15^{+6}		
32821	_	_	_	_	_	1.00	1.00	0.10		34 ⁺⁶		
32864	0.41	0.00	0.64	0.00	0.00	1.00	1.00	0.00	25^{+2}	24^{+2}		
32877	_	_	_	_	_	0.62	0.46	0.05		19^{+4}		
32903	1.00	1.00	0.00	0.00	1.00	0.00	0.00	0.01	38^{+2}	12^{+2}		
32920	_	_	_	_	_	0.59	0.51	0.21		20^{+10}		
32947	0.55	0.29	0.25	0.21	0.63	0.14	0.04	0.18	27^{+12}	8 ⁺²		
32949	0.13	0.00	0.60	0.01	0.00	1 00	1 00	0.01	22^{+2}	22^{+2}		
33005	0.62	0.06	0.00	0.01	0.56	0.07	0.03	0.02	27^{+6}	$\frac{22}{11+2}$		
33006	0.02	0.00	0.40	1.00	0.50	0.00	0.00	0.02	26^{+4}	12^{+2}		
33013	0.45	0.02	0.54	0.40	0.00	0.50	0.00	0.50	20_{-2} 24^{+18}	10 ⁺⁸		
33036	0.45	0.02	0.34	0.40	0.20	0.52	0.37	0.30	$2^{-7}-6$ 22^{+10}	10^{-6}		
33104	1 00	0.00	0.40	0.24	0.05	1.00	1.00	0.22	$\frac{22-4}{32+2}$	28^{+2}		
33107	1.00	0.95	0.00	0.00	0.00	0.00	0.11	0.99	JZ_2	20_{-2}		
33117	1.00	1.00	0.00	0.11	1.00	0.99	0.11	0.99		$^{23}_{4^{+2}}$		
33263	1.00	1.00	0.00	0.11	1.00	1.00	0.00	1.00	40_2	$4^{-2}_{-2}_{-2}$		
22074	_	_	_	_	_	0.20	0.03	1.00	_	15^{+12}		
22200	-	_	-	0.15	1.00	0.39	0.12	0.00	- 67+18	15 ₋₄ 15 ⁺²		
22212	1.00	0.99	0.95	0.15	1.00	0.00	0.04	0.01	07-12	15_{-2} 17^{+16}		
22272	-	1.00	- 0.10	-	1.00	1.00	1.00	0.74	- -	17_{-2}		
33311	1.00	1.00	0.19	0.42	1.00	1.00	1.00	0.00	52_4	$27 + 10^{-2}$		
33398 33430	_	_	_	_	_	0.99	0.99	0.00	_	37 - 12		
33438 33400	-	-	-	-	-	0.97	0.07	0.95	- 40 ⁺¹⁰	25_{-2}^{+2}		
33490	1.00	0.99	0.99	0.09	1.00	0.11	0.10	0.10	49^{+10}_{-10}	9-4		
33509	0.96	0.55	0.71	0.00	0.95	0.01	0.01	0.03	34_{-4}^{+0}	11^{+2}_{-2}		
33511	1.00	0.98	0.14	0.00	0.00	1.00	1.00	1.00	32^{+2}_{-2}	27^{+2}_{-2}		
33639	_	-	-	_	-	1.00	1.00	0.97	- -	91_{-18}^{+34}		
33657	0.75	0.68	0.02	0.05	0.78	0.19	0.18	0.05	30-70	9 [⊤] °		

				Tuble e		tinuca.				
HIP	$P_{v_{pec}}$	P_U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	v _{pec} [km/s]	v _{t,pec} [km/s]
33700	_	_	_	_	_	0.66	0.42	0.81	_	23 ⁺¹⁶
33754	0.57	0.26	0.06	0.04	0.63	0.02	0.02	0.03	26^{+6}_{-6}	4^{+2}_{-2}
33774	1.00	0.94	0.14	1.00	0.23	1.00	1.00	1.00	44^{+2}_{6}	41^{+2}
33789	0.99	0.14	0.96	1.00	0.00	1.00	1.00	1.00	45^{+14}_{12}	44^{+18}_{-10}
33887	_	_	_	_	_	1.00	1.00	0.00	- 12	21^{+2}
33927	1.00	0.00	1.00	0.13	0.55	0.97	0.96	0.00	31^{+2}	20^{+2}
33937	1 00	0.04	0.00	1 00	0.00	1 00	0.00	1 00	45^{+16}	42^{+14}
33953	0.55	0.04	0.48	0.09	0.63	0.09	0.04	0.12	26^{+6}	5^{+2}
33987	0.16	0.05	0.02	0.62	0.01	0.44	0.19	0.60	18^{+4}	17 ⁺⁶
34026	0.10	0.00	0.06	0.02	0.01	0.00	0.13	0.00	28^{+8}	5 ⁺⁴
34055	1 00	1 00	0.00	0.99	1 00	0.05	0.00	0.10	41^{+4}	16^{+6}
34080		_	_	_		0.67	0.56	0.55	-4	24^{+14}
34088	0.11	0.00	0.27	0.03	0.00	0.67	0.50	0.00	21+4	$\frac{24-10}{10+2}$
34000	0.11	0.00	0.27	0.03	0.00	0.05	0.30	0.01	21 - 2 27 + 4	19_{-2} 10^{+2}
24047	0.00	0.44	0.00	0.00	0.25	0.05	0.33	0.00	$\frac{27}{-4}$	19_{-2} 10^{+2}
24241	0.12	0.00	0.10	0.19	0.00	1.00	0.40	1.00	20-2	19_{-2}
)4)42 21105	1.00	_	1.00	_ 0 77	1.00	1.00	0.00	1.00	- 57 ⁺⁸	20_{-4}
04400 04506	1.00	1.00	1.00	0.77	1.00	0.11	0.03	0.37	$\frac{57}{-8}$	10^{+2}_{-2}
34530	1.00	1.00	0.01	0.01	0.88	0.21	0.14	0.02	34_{-4}^{-1}	14^{+2}_{-2}
34555	-	_	_	_	-	1.00	0.00	1.00	-	22^{+2}_{-2}
34561	0.37	0.03	0.23	0.02	0.51	0.01	0.00	0.02	24_{-6}	2^{+2}_{-2}
34611	_	_	_	_	_	1.00	1.00	1.00	_	65_{-30}^{+22}
34729	_	_	_	_	_	0.46	0.06	0.72	_ 2	17^{+14}_{-6}
34735	1.00	1.00	0.00	0.00	1.00	0.02	0.00	0.33	32^{+2}_{-2}	10^{+2}_{-4}
34752	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	55^{+2}_{-2}	42^{+2}_{-2}
34924	0.35	0.22	0.27	0.04	0.12	0.57	0.54	0.06	20^{+12}_{-6}	19^{+12}_{-4}
34986	0.85	0.22	0.76	0.07	0.85	0.05	0.05	0.07	33^{+10}_{-6}	4^{+2}_{-2}
35011	0.23	0.00	0.00	0.98	0.00	0.63	0.00	0.98	20^{+8}_{-4}	20^{+4}_{-8}
35013	_	-	_	-	_	0.59	0.60	0.09	_	21^{+16}_{-8}
35051	0.55	0.05	0.60	0.44	0.47	0.41	0.20	0.59	27^{+14}_{-10}	15^{+10}_{-6}
35081	-	_	_	_	_	1.00	1.00	0.00	-	28^{+6}_{-4}
35121	0.46	0.05	0.32	0.53	0.16	0.52	0.06	0.82	24^{+12}_{-4}	18^{+8}_{-2}
35142	_	-	_	-	_	0.66	0.30	0.91	_	24^{+16}_{-10}
35149	0.96	0.76	0.83	0.14	0.10	1.00	1.00	0.16	47^{+30}_{-10}	46^{+24}_{-12}
35194	1.00	1.00	0.00	0.76	1.00	1.00	1.00	0.00	47^{+6}_{-6}	22^{+2}_{-2}
35217	_	_	_	_	_	0.59	0.08	0.84	—	21^{+18}_{-8}
35219	0.02	0.00	0.00	1.00	0.00	0.02	0.00	0.79	20^{+2}_{-2}	17^{+2}_{-2}
35241	1.00	1.00	0.00	0.00	0.49	1.00	1.00	0.00	32^{+2}_{-2}	22^{+2}_{-2}
35278	0.04	0.00	0.00	0.57	0.01	0.04	0.00	0.38	16^{+2}_{-8}	10^{+2}_{-4}
35497	0.78	0.00	0.92	0.06	0.89	0.00	0.00	0.00	28^{+2}_{-6}	2^{+2}_{-2}
35536	_	_	_	_	_	1.00	0.95	1.00		26^{+2}_{-2}
85551	0.72	0.21	0.00	0.88	0.76	0.04	0.00	0.27	28^{+4}_{-4}	9+4
35584	0.54	0.43	0.03	0.11	0.08	0.72	0.64	0.08	26^{+10}	21^{+8}_{-4}
35655	_	_	_	_	_	0.82	0.51	0.15		20^{+2}
35712	0.99	0.90	0.28	0.02	0.98	0.00	0.00	0.84	36 ⁺⁸	12^{+2}
35762	1.00	1.00	0.08	0.44	1.00	0.99	0.64	1.00	71^{+20}	45^{+30}
35767	_	_	_	_		0.29	0.10	0.56		12^{-14}
35796	0 78	0.00	0 97	0.01	0.00	1 00	1 00	0.00	28^{+4}	$\frac{1}{27^{+4}}$
35951	1 00	1 00	0.00	0.74	0.05	1 00	0 00	0.00	$\frac{20}{34^{+4}}$	$\frac{-1}{28+6}$
2507F	1.00	0.00	0.00	0.14	0.05	1.00 0.10	0.99	0.70	3 [−] −6 42 ⁺⁴	20 - 4 0 ⁺²
260212	1.00	0.99	0.77	0.01	0.90	0.12	0.10	0.02	4∠_8 1⊑+4	9-2 14+6
00024	0.03	0.00	0.00	0.04	0.00	0.19	0.00	0.82	10_{-4}	$^{14}_{-2}$
	0.09	0.14	0.44	0.17	U.//	0.11	0.03	0.17	20^{+0}_{-8}	3^{+-}_{-2}
36041	0.81	0.20	0.00	0.00	0.99	0.00	0.00	0.00	26_2	2^{+2}_{-2}
30089	_	_	_	_	_	0.67	0.59	0.08	_	20_{-4}^{+62}
36158	-	_	_	-	_	1.00	0.81	1.00	_	83_{-24}^{+02}
36195	—	-	_	-	_	0.39	0.09	0.56	—	14^{+10}_{-6}

Table C.2: - Continued

Table C.2: - Continued -

				Tuble e		emaca.				
HIP	$P_{v_{pec}}$	P _U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	<i>v_{pec}</i> [km/s]	<i>v_{t,pe}</i> [km/
36211	0.27	0.09	0.03	0.00	0.00	0.61	0.61	0.00	22^{+4}_{-6}	19_
36223	0.24	0.01	0.13	0.63	0.08	0.33	0.06	0.62	17^{+8}_{-8}	14^{+8}_{-1}
36235	0.80	0.31	0.52	0.04	0.86	0.02	0.02	0.02	30^{+6}_{-8}	6^{+2}_{-2}
36243	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	80^{+10}_{-6}	66^{+1}_{-8}
36246	0.75	0.00	0.20	0.97	0.51	0.20	0.00	0.82	28^{+4}_{-6}	14^{+4}_{-1}
36323	_	_	_	_	_	0.41	0.23	0.55	_	14^{+1}_{-4}
36341	1.00	0.00	1.00	1.00	1.00	0.54	0.00	0.86	46^{+4}_{-6}	18^{+2}_{-}
36369	1.00	1.00	0.03	0.98	1.00	0.22	0.15	0.15	73^{+4}_{-6}	15^{+1}_{-}
36437	0.46	0.01	0.49	0.14	0.52	0.10	0.09	0.12	24^{+10}_{-8}	6^{+4}_{-2}
36514	0.16	0.00	0.04	1.00	0.04	0.44	0.00	1.00	20^{+4}_{-2}	17^{+}_{-}
36629	0.74	0.03	0.15	0.99	0.22	0.88	0.09	0.99	36^{+22}_{-20}	36+3
36682	_	_	_	_	_	0.68	0.41	0.82	_	22^{+}_{-}
36693	0.48	0.06	0.00	0.00	0.52	0.00	0.00	0.03	25^{+4}_{-2}	9^{+2}_{-2}
36778	0.85	0.00	0.91	0.00	0.88	0.00	0.00	0.00	$30_{-6}^{+\overline{4}}$	6^{+2}_{-2}
36798	_	_	_	_	_	0.40	0.00	1.00	_	17^{+}_{-}
36799	_	_	_	_	_	0.97	0.80	0.98	_	30_
36836	0.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	23^{+2}_{-2}	23_
36885	_	_	_	_	_	0.85	0.52	0.69		23+
36986	0.00	0.00	0.00	0.53	0.00	0.01	0.00	0.48	17^{+2}_{2}	13^{+}
37017	_	_	_	_	_	0.85	0.81	0.00		22+
37070	_	_	_	_	_	0.73	0.70	0.31	_	27^{+2}
37104	_	_	_	_	_	0.95	0.61	1.00	_	30 ⁺
37169	0.22	0.02	0.06	0.97	0.08	0.31	0.09	0.90	21+6	15^{+}
37245	0.46	0.32	0.11	0.85	0.07	0.58	0.45	0.73	25^{+18}_{-4}	23^{+2}
37315	_	_	_	_	_	1.00	0.94	1.00	-0	56^{+2}
37345	0.72	0.79	0.00	0.00	0.02	1.00	1.00	0.00	27+4	23+
37357	_	_	_	_	_	0.55	0.49	0.54	4	22+2
37378	_	_	_	_	_	1 00	1 00	0.00	_	26 ⁺
37385	0 45	0.00	0.65	0.00	0.13	0.42	0.37	0.00	25^{+4}	17+
37428	1 00	0.82	0.09	0.10	0.96	0.26	0.02	0.57	29^{+2}	13+
37420	0.53	0.02	0.62	0.10	0.50	0.20	0.02	0.07	25^{-2}	2+2 2+2
37524	1 00	0.05	0.02	0.05	0.50	0.10	0.00	0.04	20-10 44 ⁺⁶	16 ⁺
37623	0.26	0.00	0.50	0.47	0.07	0.40	0.01	0.00	$^{-7}-8$ 22^{+6}	12+
37650	0.20	0.00	0.50	0.00	0.17	0.00	0.00	0.00	22_{-2}	12_ 12 ⁺
37656	0.50	0.07	0.05	0.17	0.49	0.05	0.02	1.00	20_4	12_ 1/+
27677	0.67	0.05	0.61	0.70	0.20	0.00	0.00	1.00	- 21+20	14_ 24+
27006	1.00	1.00	0.01	0.19	1.00	0.01	0.55	0.05	47 ⁺⁶	24_ 10 ⁺
27025	0.42	0.01	0.00	0.15	0.52	0.00	0.00	0.14	$\frac{47}{24+8}$	10_ 7 ⁺⁴
27054	0.45	0.01	0.02	0.15	0.52	0.11	0.04	0.20	24-6	17±
37954	-	_		_	-	0.40	0.21	0.00		20+
37995	0.04	0.00	0.78	0.00	0.10	0.00	0.08	0.00	27_{-6}^{+4}	20_
38031	0.44	0.00	0.02	0.89	0.40	0.02	0.01	0.29	25 ₋₂	11 <u>-</u> 22+
38002	-	_	_	_	_	0.94	0.92	0.02	_	23_
380/1	_	_	_	_	_	1.00	0.94	1.00	_	31_
38081	-	-	-	-	-	1.00	1.00	0.10	-	29 <u>+</u>
38184	0.98	0.98	0.01	0.07	0.86	0.52	0.42	0.00	34_{-2}^{+6}	18_
38240	0.83	0.47	0.09	0.00	0.14	0.83	0.83	0.00	29_{-4}^{+0}	22
38257	1.00	0.99	0.78	1.00	0.01	1.00	0.83	1.00	(8^{+30}_{-30})	75
38518	0.43	0.00	0.65	0.00	0.54	0.00	0.00	0.00	24^{+0}_{-6}	3_2
38608	_	_	_	_	_	0.99	0.31	1.00	- 	26_
38732	0.52	0.03	0.11	0.98	0.04	0.78	0.06	0.99	25^{+12}_{-8}	24_
38746	_	_	_	_	_	0.56	0.52	0.49	_	21^{+1}_{-1}
38770	-	—	_	-	—	0.00	0.00	0.92	-	14^+_{-}
38855	0.90	0.52	0.50	0.02	0.91	0.01	0.00	0.19	32^{+8}_{-6}	10^{+}_{-}
38923	-	_	_	_	_	0.35	0.03	0.86	—	15^{+}_{-}

				Table C	.z. – Cu	itillueu. –				
HIP	$P_{v_{pec}}$	P _U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	<i>v_{pec}</i> [km/s]	v _{t,pec} [km/s]
39121	_	_	_	_	_	1 00	1 00	0.14	_	28+6
39184	0.23	0.00	0 19	0.92	0.02	0.39	0.00	1 00	23^{+4}	18^{+2}
39270	_	_	_	_	_	1.00	1.00	0.01		34^{+12}
39279	1.00	0.00	0.00	1.00	0.00	0.97	0.00	1.00	32^{+4}	23^{+4}
39376	_	_	_	_	_	0.88	0.27	1.00	2	28^{+16}_{-2}
39386	0.41	0.00	0.43	0.68	0.47	0.00	0.00	0.00	24^{+6}_{-4}	6^{+2}_{-2}
39420	0.00	0.00	0.00	1.00	0.00	0.46	0.00	1.00	18^{+2}_{-2}	18^{+2}_{-2}
39429	1.00	0.01	1.00	1.00	1.00	1.00	1.00	1.00	57^{+4}_{-2}	38^{+2}_{-2}
39438	0.46	0.00	0.41	0.90	0.52	0.00	0.00	0.01	25_{-4}^{+6}	7^{+2}_{-2}
39734	0.04	0.00	0.02	0.54	0.01	0.05	0.00	0.42	16^{+4}_{-6}	11^{+4}_{-2}
39776	_	_	_	_	_	0.71	0.56	0.71	_	26^{+24}_{-6}
39831	_	_	_	_	_	0.54	0.53	0.14	_	19^{+14}_{-8}
39863	0.04	0.00	0.00	0.85	0.00	0.54	0.00	1.00	21^{+2}_{-2}	18^{+2}_{-2}
39866	0.27	0.29	0.03	0.03	0.02	0.58	0.59	0.04	20^{+6}_{-6}	19^{+6}_{-8}
39943	0.04	0.00	0.00	0.54	0.00	0.26	0.00	0.63	16^{+4}_{-4}	15^{+4}_{-4}
39958	0.07	0.01	0.00	0.28	0.00	0.22	0.00	0.61	15^{+4}_{-4}	13^{+4}_{-4}
40003	-	_	-	-	_	1.00	1.00	0.00	-	31^{+6}_{-6}
40056	0.33	0.02	0.07	0.79	0.08	0.63	0.02	0.77	21^{+12}_{-4}	21^{+10}_{-6}
40096	0.13	0.00	0.06	0.70	0.03	0.34	0.03	0.78	18^{+8}_{-4}	16^{+6}_{-4}
40215	0.48	0.00	0.00	0.00	0.00	1.00	1.00	0.00	25^{+2}_{-2}	24^{+2}_{-2}
40264	_	_	_	_	_	0.66	0.46	0.65	-	21^{+12}_{-4}
40326	1.00	1.00	0.01	0.00	0.00	1.00	1.00	0.00	45^{+2}_{-2}	45^{+2}_{-2}
40341	1.00	0.01	1.00	0.03	1.00	0.12	0.12	0.02	74^{+0}_{-6}	9_{-4}^{+4}
40430	1.00	1.00	0.41	1.00	0.25	1.00	1.00	1.00	55^{+0}_{-4}	52_{-6}^{+4}
40480	0.42	0.52	0.00	0.00	0.00	0.92	0.91	0.00	25_{-2}	21^{+1}_{-2}
40542	_	_	_	_	—	1.00	1.00	0.70	_	24 - 12 51+14
40572	1.00	0.05	_ 1.00	- 0.14	-	1.00	1.00	0.42	- 73 ⁺²⁸	$\frac{51}{72+42}$
40028	1.00	0.95	1.00	0.14	0.02	0.00	0.80	0.12	/ 3 ₋₂₆	73_{-14} 21^{+2}
40743	0.10	0.01	0.06	1 00	0.02	0.55	0.00	0.05	16 ⁺⁴	$13^{21}-2$
40817	0.10	0.01	0.00	0.00	0.02	0.15	0.00	0.00	29^{+6}	10^{-2} 10^{+2}
40851	_	_	_	_	_	0.59	0.50	0.33		20^{+16}
40929	_	_	_	_	_	1.00	0.00	1.00	_	23^{+2}
41103	_	_	_	_	_	0.84	0.84	0.40	_	36^{+34}_{-10}
41145	_	_	_	_	_	0.54	0.55	0.00	_	19^{+6}
41168	0.65	0.05	0.65	0.04	0.60	0.08	0.08	0.03	27 ⁺⁶	4^{+2}
41221	_	_	_	_	_	1.00	0.98	1.00	-0	38^{+16}_{-6}
41363	1.00	1.00	0.17	1.00	0.01	1.00	1.00	1.00	63^{+26}_{-14}	61^{+26}_{-14}
41463	0.16	0.00	0.00	0.82	0.00	0.40	0.02	0.76	19_{-4}^{+6}	17^{+8}_{-4}
41599	0.88	0.69	0.67	0.03	0.42	0.95	0.93	0.04	39^{+16}_{-14}	34^{+16}_{-14}
41603	1.00	1.00	0.02	0.52	0.05	1.00	1.00	0.30	43_{-4}^{+12}	40^{+10}_{-8}
41634	_	-	-	_	_	0.97	0.87	0.85	-	30^{+14}_{-6}
41656	_	_	_	_	_	0.62	0.62	0.23	_	22^{+12}_{-10}
41704	1.00	1.00	0.00	0.00	0.00	1.00	0.00	1.00	35^{+2}_{-2}	29^{+2}_{-2}
41737	0.08	0.01	0.00	0.51	0.00	0.18	0.03	0.49	15^{+4}_{-6}	$11\substack{+6\\-4}$
41823	_	-	-	-	_	0.03	0.00	0.66	-	12^{+2}_{-4}
41878	1.00	0.06	0.97	0.37	0.97	0.14	0.10	0.30	51^{+6}_{-6}	7^{+6}_{-2}
42008	0.67	0.00	0.00	1.00	0.23	0.60	0.00	0.97	28^{+8}_{-6}	20^{+4}_{-8}
42041	_	_	_	_	_	0.46	0.30	0.50	_	17^{+8}_{-10}
42129	0.02	0.00	0.01	0.74	0.01	0.07	0.00	0.29	18^{+6}_{-2}	14^{+4}_{-2}
42211	0.13	0.09	0.00	0.00	0.01	0.01	0.00	1.00	22^{+2}_{-2}	16^{+2}_{-2}
42239	0.90	0.20	0.12	0.99	0.00	1.00	0.85	1.00	32^{+14}_{-4}	$33^{+\circ}_{-4}$
42251	0.94	0.00	0.96	0.66	0.94	0.00	0.00	0.00	49_{-14}^{+20}	8^{+2}_{-2}
42270	-	-	-	-	-	0.97	0.07	1.00		30^{+10}_{-10}
42316	0.88	0.21	0.73	0.18	0.62	0.26	0.25	0.17	32_{-10}^{++}	8-12

Table C.2: - Continued

				Tuble C		rtmucu.				
HIP	$P_{v_{pec}}$	P _U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	<i>v_{pec}</i> [km/s]	<i>v_{t,pec}</i> [km/s]
42331	_	_	_	_	_	1.00	1.00	1.00	_	103^{+70}_{-24}
42354	_	_	_	_	_	0.69	0.14	0.67	_	21_{-4}^{+10}
42390	_	_	_	_	_	0.74	0.74	0.14	_	29^{+26}_{-12}
42489	1.00	1.00	0.16	0.00	1.00	1.00	1.00	0.94	57^{+4}_{-4}	35^{+6}_{-6}
42515	1.00	1.00	0.55	0.00	0.85	1.00	1.00	0.00	37^{+4}_{-2}	24^{+2}_{-2}
42530	_	_	_	_	_	1.00	1.00	1.00	_	63^{+30}_{-8}
42605	1.00	0.41	1.00	0.18	1.00	0.65	0.65	0.24	48^{+14}_{-10}	25^{+22}_{-12}
42712	0.46	0.05	0.57	0.22	0.32	0.10	0.08	0.18	25^{+4}_{-8}	9^{+2}_{-2}
43030	_	_	_	_	_	1.00	1.00	1.00	_	79^{+17}_{-31}
43023	0.02	0.00	0.00	0.99	0.00	0.13	0.00	0.99	18^{+2}_{-2}	16^{+2}_{-2}
43057	0.46	0.37	0.20	0.31	0.20	0.56	0.54	0.31	22^{+18}_{-12}	20^{+22}_{-4}
43114	0.78	0.00	0.86	0.13	0.83	0.03	0.01	0.04	33^{+12}_{-12}	7^{+4}_{-4}
43158	1.00	0.47	0.92	1.00	0.96	0.84	0.36	1.00	52^{+8}_{-8}	25^{+10}_{-6}
43177	1.00	1.00	0.00	1.00	0.00	1.00	1.00	1.00	36^{+2}_{-2}	36^{+2}_{-2}
43434	_	_	-	_	_	0.43	0.11	0.61	_	15^{+16}_{-8}
43459	_	_	-	_	_	0.64	0.29	0.35	_	19^{+4}_{-4}
43494	—	_	-	_	—	0.76	0.38	0.67	_	22^{+8}_{-4}
43513	_	_	_	_	_	0.24	0.00	0.85	_	15^{+4}_{-4}
43589	0.04	0.00	0.02	0.55	0.00	0.10	0.00	0.62	18^{+0}_{-2}	14^{+2}_{-4}
43782	_	_	_	_	_	0.62	0.59	0.42		22^{+10}_{-10}
43866	1.00	0.76	1.00	0.72	0.93	0.96	0.13	1.00	53^{+22}_{-8}	41^{+20}_{-18}
43868	0.96	0.73	0.66	0.99	0.08	1.00	0.98	1.00	42^{+24}_{-10}	44^{+22}_{-14}
43902	0.98	0.87	0.43	0.00	0.89	0.61	0.00	1.00	35_{-4}^{+0}	18^{+2}_{-2}
43927	-	-	-	-	-	0.96	0.91	0.14	- co+30	28_{-8}^{+28}
43928	1.00	1.00	0.04	0.93	0.49	1.00	1.00	1.00	08_{-10}^{+4}	03_{-14}^{+2}
43955	0.97	0.00	0.90	0.01	0.97	0.00	0.00	0.05	34_{-6}	10_{-2} 10+10
44105	0.55	0.51	0.05	0.15	0.22	0.50	0.59	0.30	25_{-8}	10_{-2} 21^{+14}
44101	1.00	0.37	0.02	1.00	0.02	0.04	0.55	0.37	23_{-8} 32^{+4}	21 - 6 23+2
44251	0.50	0.00	0.55	0.50	0.25	0.97	0.95	0.55	26^{+10}	23_{-2} 20^{+16}
44368	0.50	0.30	0.11	0.50	0.00	0.57	0.44	0.31	20_{-14} 31^{+12}	20_{-6} 23 ⁺¹⁴
44580		_	_	_		1 00	1 00	0.37	51 ₋₁₀	55^{+36}
44659	0.00	0.00	0.00	0.03	0.00	0.05	0.00	0.85	17^{+2}	13^{+4}
44669	_	_	_	_	_	0.04	0.00	0.96		13^{+2}
44676	_	_	_	_	_	1.00	1.00	0.97	_	30^{+2}_{-2}
44685	0.67	0.36	0.04	0.08	0.03	1.00	0.71	0.92	27+4	24^{+2}
44700	0.14	0.03	0.00	0.02	0.00	0.86	0.00	1.00	23^{+2}	20^{+2}
44784	1.00	1.00	0.03	0.72	1.00	0.77	0.00	0.96	55^{+4}_{4}	24^{+8}_{10}
44832	_	_	_	_	_	0.89	0.89	0.26	-4	31^{+16}_{-12}
44879	_	_	_	_	_	0.92	0.92	0.39	_	38^{+26}_{18}
45104	1.00	0.08	0.93	0.98	1.00	1.00	1.00	0.02	39^{+3}_{-5}	29^{+3}_{-7}
45105	0.59	0.23	0.39	0.50	0.13	0.58	0.59	0.22	28_{-4}^{+18}	21^{+26}_{-2}
45119	_	_	_	_	_	0.78	0.56	0.87	_	27_{-10}^{+18}
45145	_	_	_	_	_	0.37	0.02	0.69	_	15_{-4}^{+8}
45219	0.01	0.00	0.00	1.00	0.00	0.81	0.00	1.00	19^{+2}_{-2}	18^{+2}_{-2}
45290	0.91	0.07	0.00	0.00	0.01	0.83	0.15	0.60	28^{+2}_{-2}	20^{+2}_{-4}
45299	1.00	0.41	0.98	1.00	0.07	1.00	0.28	1.00	88^{+54}_{-28}	88^{+68}_{-18}
45328	0.71	0.79	0.00	0.00	0.00	1.00	1.00	0.00	26^{+2}_{-2}	25^{+2}_{-2}
45343	1.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	32^{+2}_{-2}	31^{+2}_{-2}
45372	_	_	_	_	_	0.98	0.96	0.45	_	39^{+20}_{-10}
45486	_	_	-	_	—	0.74	0.71	0.13	_	26^{+26}_{-8}
45505	0.71	0.00	0.61	0.92	0.57	0.24	0.00	0.99	28^{+6}_{-6}	16^{+2}_{-2}
45563	1.00	1.00	0.96	0.96	1.00	1.00	1.00	1.00	126^{+6}_{-4}	57^{+20}_{-6}
45631	1.00	0.00	1.00	0.00	1.00	0.00	0.00	0.00	46^{+6}_{-6}	3^{+2}_{-2}
45659	_	_	_	-	-	0.93	0.94	0.02	-	28^{+10}_{-8}

Table C.2: - Continued. -

					.2 Cu	itiliueu. –				
HIP	$P_{v_{pec}}$	P_U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	<i>v_{pec}</i> [km/s]	v _{t,pec} [km/s]
45681	_	_	_	_	_	0.40	0.00	0.61	_	17+4
45690	_	_	_	_	_	0.99	1.00	0.00	_	22^{+2}_{-2}
45731	1.00	1.00	0.97	1.00	1.00	1.00	1.00	1.00	84+8	62^{+6}_{-6}
45734	0.02	0.03	0.00	0.00	0.00	0.84	0.67	0.00	20^{+4}_{-2}	20^{+2}
45742	0.96	0.95	0.02	0.72	0.05	0.99	0.99	0.71	49^{+28}	48^{+24}_{-10}
45776	_	_	_	_	_	0.64	0.63	0.00	-14	20^{+6}
45799	_	_	_	_	_	0.01	0.00	0.98	_	13^{+2}
45817	0.50	0.26	0.09	0 40	0.01	0.64	0.54	0.29	24+8	21^{+10}
45880	_	_	_	_	_	0.99	0.95	1 00		52^{+40}
45924	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	89+4	80 ⁺⁴
45934	_	_	_	_	_	0.53	0.49	0.09	_4	18^{+4}
45963	1 00	0.00	1 00	1 00	0.00	1 00	1 00	1 00	43^{+2}	42^{+2}
45969		_		_	_	0.78	0.67	0.69		28^{+20}
46130	_	_	_	_	_	0.70	0.07	0.05	_	20_8 10 ⁺⁴
46224	_	_	_	_	_	0.55	0.66	0.23	_	23^{+20}
46284	_	_	_	_	_	1.00	1.00	0.55	_	23_{-6} 37^{+16}
46204	0.84	0 70	0.05	0.86	0.12	0.03	0.02	0.10	42+32	42^{+34}
40290	0.04	0.79	0.05	0.00	0.12	1.00	0.92	1 00	42-16	$^{+2}-14$ 252 $^{+157}$
40305	-	- 0.07	0.12	_ 1.00	- 0.25	0.06	0.27	1.00		252-64 27+24
40329	0.92	0.07	0.15	1.00	0.55	1.00	1.00	0.16	44 -18	$\frac{37}{20+12}$
40340	_	_	_	_	_	1.00	1.00	0.10	_	30_{-12}^{+6}
40505	_	_	_	_	_	1.00	1.00	0.03	_	27_{-4}
40014	_	_	_	_	_	0.60	0.57	0.08	_	20^{+34}_{-8}
40059	_	_	_	_	_	1.00	0.99	1.00	_	91_{-14}^{+2}
46661	_	—	_	_	_	0.66	0.27	0.09	_	19^{+2}_{-2}
46691	_	_	_	-	_	0.30	0.06	0.54	- a c+12	11^{+10}_{-4}
46760	0.99	0.97	0.02	0.91	0.03	1.00	1.00	0.74	36_{-6}^{+12}	34_{-4}^{+10}
46905	_	_	_	-	-	0.60	0.47	0.59	_	22^{+22}_{-10}
46912	—	—	—	_	_	0.98	0.96	0.00	_	25^{+4}_{-4}
46928	1.00	1.00	1.00	0.19	1.00	0.00	0.00	0.00	50^{+4}_{-6}	13^{+2}_{-2}
46977	1.00	0.00	0.00	1.00	1.00	1.00	1.00	0.00	33^{+2}_{-2}	23^{+2}_{-2}
47005	0.82	0.11	0.82	0.03	0.79	0.13	0.11	0.02	64^{+80}_{-10}	7^{+6}_{-4}
47018	0.99	0.11	0.87	0.99	0.98	0.17	0.11	0.00	36^{+4}_{-4}	13^{+4}_{-4}
47131	-	_	_	-	_	1.00	1.00	0.37	-	42^{+10}_{-4}
47155	_	_	—	-	-	1.00	1.00	0.00	-	31^{+6}_{-2}
47192	_	_	—	-	-	0.77	0.68	0.05	-	23^{+12}_{-8}
47193	0.00	0.00	0.00	0.00	0.00	0.95	0.95	0.00	21^{+2}_{-2}	21^{+2}_{-2}
47267	1.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00	42^{+2}_{-2}	41^{+2}_{-2}
47296	-	_	_	-	_	0.97	0.48	1.00	-	28^{+12}_{-4}
47301	0.36	0.00	0.00	1.00	0.00	0.97	0.00	1.00	24^{+2}_{-4}	22^{+4}_{-2}
47370	_	—	_	_	_	0.72	0.71	0.05	_	23^{+10}_{-10}
47451	_	—	_	_	_	0.72	0.43	0.80	_	25^{+16}_{-10}
47701	0.06	0.00	0.00	0.73	0.01	0.00	0.00	0.00	20^{+2}_{-4}	16^{+2}_{-2}
47809	_	_	_	_	_	0.75	0.00	1.00	_	20^{+2}_{-4}
47868	0.83	0.74	0.04	0.15	0.04	0.82	0.84	0.19	33^{+14}_{-8}	28^{+16}_{-10}
47880	1.00	1.00	0.00	1.00	0.00	1.00	1.00	1.00	55_{-10}^{+12}	55_{-8}^{+12}
47881	1.00	1.00	0.23	0.90	0.12	1.00	1.00	0.99	85^{+30}_{-18}	84^{+36}_{-16}
47904	0.91	0.02	0.98	0.01	0.78	0.21	0.05	1.00	31^{+6}_{-4}	15^{+2}_{-2}
47950	_	_	_	_	_	0.96	0.14	1.00		42 ⁺³⁸
48129	0.39	0.00	0.00	0.92	0.29	0.03	0.01	0.00	23+6	11^{+4}_{-3}
48228	_	_	_	_	_	0.55	0.52	0.04	-4	18+2
48256	1.00	0.00	1.00	1,00	0.00	1.00	1.00	1.00	33+4	35^{+4}
48374	0.01	0.01	0.00	0.00	0.00	0.55	0.43	0.00	10^{-4}	18^{+4}
48436	1 00	1 00	0.01	0.00	1 00	0.66	0.62	0.00	46^{+2}	10^{-2}
48440	_	_	_	_		0.80	0.52	0.10 0 Q5	-2	29 ⁻² 29 ⁺²²
48469	0.83	0 11	0 56	0 37	0 70	0.34	0.17	0.33	30+6	$\frac{-9}{-14}$
-0-03	0.05	0.11	0.00	0.57	0.10	0.34	0.11	0.42	50-6	-0-8

Table C.2: - Continued
HIP $P_{v_{r,pec}}$ $P_{v_{t,pec}}$ $P_{v_{l,pec}}$ $P_{v_{b,pec}}$ $P_{v_{pec}}$ P_U P_V P_W Vpec V_{t,pec} [km/s] [km/s] 21^{+4}_{-4} 22^{+4}_{-6} 48527 0.28 0.00 0.00 1.00 0.78 0.01 1.00 0.00 15^{+6}_{-8} 21^{+2}_{-2} 0.75 48547 0.35 0.01 _ _ _ _ _ _ 23^{+4}_{-2} 48589 0.27 0.17 0.00 0.00 0.00 0.99 0.98 0.00 $37^{+\bar{4}}_{-6}$ 29^{+14}_{-4} 48715 1.00 0.40 0.94 0.07 0.97 0.49 0.05 0.87 18^{+4}_{-4} 28^{+12}_{-6} 0.98 48730 0.67 0.01 0.01 0.98 0.04 0.94 0.03 64^{+2}_{-4} 0.98 17^{+4}_{-2} 48745 1.00 0.11 0.99 1.00 0.99 0.43 0.11 18^{+4}_{-2} 17^{+4}_{-2} 48835 0.02 0.00 0.00 0.69 0.00 0.32 0.00 0.74 47^{+28}_{-6} 45_{-10}^{+22} 48851 1.00 0.93 0.55 0.36 0.00 1.00 1.00 0.91 22^{+14}_{-8} 48868 0.61 0.57 0.01 28^{+2}_{-2} 28^{+2}_{-4} 0.94 0.00 0.00 0.00 49160 0.89 0.00 1.00 1.00 19^{+4}_{-2} 49184 _ 0.57 0.22 0.38 18^{+18}_{-6} 49231 0.52 0.04 0.74 20^{+4}_{-8} 49281 0.21 0.08 0.00 0.51 0.00 0.54 0.28 0.53 18^{+8}_{-4} 44^{+16}_{-12} 49384 1.00 0.25 1.00 _ _ _ _ _ _ 40^{+34}_{-12} 49513 _ _ _ _ 0.94 0.93 0.14 _ _ 14^{+2}_{-2} 49583 0.00 0.00 0.00 0.00 0.00 0.00 1.00 14^{+2}_{-2} 0.00 11^{+2}_{-2} 25_{-4}^{+6} 49608 0.43 0.03 0.41 0.75 0.44 0.11 0.03 0.44 22^{+2}_{-2} 21^{+2}_{-2} 0.08 0.00 0.07 0.24 0.00 1.00 0.63 0.31 49688 77^{+8}_{-8} 101^{+22}_{-40} 81^{+8}_{-10} 49729 1.00 1.000.71 0.01 1.00 1.00 1.001.00 49855 1.00 1.000.29 101^{+}_{-} 26^{+2}_{-4} $\mathbf{5}_{-2}^{+2}$ 49934 0.56 0.00 0.89 0.00 0.71 0.00 0.00 0.00 0.94 46^{+10}_{-10} 19^{+2}_{-2} 49947 0.98 0.88 0.55 0.94 0.90 0.00 1.00 36^{+4}_{-4} 49957 1.00 1.00 0.00 _ _ _ _ _ $25\substack{+10\\-4}$ 24^{+8}_{-6} 50044 0.48 0.23 0.00 0.87 0.00 0.76 0.44 0.89 41^{+34}_{-8} 50171 0.96 0.62 1.00 _ _ _ _ _ 44^{+2}_{-4} 50417 _ _ _ 1.00 1.00 0.00 _ 65^{+16}_{-6} 45^{+16}_{-12} 0.96 0.21 0.20 50456 1.00 1.00 1.00 1.001.00 27^{+20}_{-8} 14^{+6}_{-4} 26^{+16}_{-10} 50519 0.53 0.54 0.01 0.02 0.05 0.74 0.73 0.02 50719 0.23 0.00 0.74 50764 0.35 0.00 0.31 0.45 0.00 0.60 0.00 0.83 22^{+8}_{-4} 19^{+6}_{-8} 30^{+22}_{-12} 0.82 0.22 50899 0.74 _ _ _ _ _ _ 28^{+2}_{-4} 50901 _ _ _ 1.000.99 0.93 _ 29^{+2}_{-6} 21^{+4}_{-2} 50916 0.85 0.00 0.38 1.00 0.21 0.94 0.00 1.00 25^{+12}_{-8} 43^{+10}_{-8} 50938 1.00 0.36 0.95 1.00 0.97 0.73 0.75 0.21 70^{+56}_{-26} 1.00 0.98 1.00 50999 _ _ _ _ _ _ _ 139_{-35}^{+80} _ _ _ _ 1.00 1.00 0.50 _ 51146 $25^{+4}_{-6}\\35^{+4}_{-12}$ 8^{+6}_{-2} 34^{+12}_{-4} 51265 0.53 0.00 0.53 0.01 0.57 0.02 0.00 0.03 0.91 0.70 0.00 1.00 0.00 1.00 0.94 1.00 51313 14^{+2}_{-2} 51386 0.03 0.00 0.12 0.01 0.01 0.00 0.00 1.00 18^{+4}_{-2} 20^{+6}_{-2} 51544 0.70 0.67 0.14 _ _ 37^{+6}_{-4} 27^{+22}_{-6} 51624 1.00 0.05 1.00 0.46 0.75 0.88 0.27 0.91 37^{+2}_{-2} 51775 1.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 37^{+2}_{-2} 72^{+20}_{-6} 73^{+14}_{-10} 1.00 1.00 0.00 0.92 0.00 1.00 1.00 0.95 51816 72^{+20}_{-6} 41^{+32}_{-14} 51940 0.96 0.85 0.97 61^{+10}_{-4} 68^{+6}_{-8} 1.00 51973 1.000.33 0.10 1.001.000.00 1.00 20^{+18}_{-12} 52093 0.56 0.53 0.14 24^{+2}_{-2} 0.00 0.00 0.02 0.00 0.00 1.00 23^{+2}_{-2} 52098 1.00 0.01 23^{+16}_{-6} 21^{+12}_{-12} 52102 0.46 0.25 0.25 0.62 0.02 0.63 0.47 0.63 19^{+4}_{-4} 18^{+4}_{-4} 52150 0.07 0.01 0.00 0.73 0.00 0.48 0.02 0.97 32^{+2}_{-8} 14^{+4}_{-4} 52161 0.90 0.00 0.92 0.64 0.81 0.19 0.00 0.77 44^{+20}_{-14} 20^{+2}_{-2} 0.01 0.77 0.99 52172 0.89 0.77 0.97 0.00 1.00 45^{+18}_{-16} 45^{+26} 0.98 0.87 0.42 0.98 0.00 1.00 0.33 52181 1.00 44^{+10}_{-2} 52204 1.00 1.00 1.00 _ _ _ _ _ 80^{+40}_{-16} 80^{+38}_{-12} 0.98 1.00 52373 1.00 0.98 0.00 1.00 0.13 1.00 52526 0.00 0.00 39^{+6}_{-6} 9^{+2}_{-2} 0.99 1.00 1.00 0.00 0.00 0.00

Table C.2: – Continued. –

				Table C	.2. 00	tinueu.				
HIP	$P_{v_{pec}}$	P_U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	v _{pec} [km/s]	v _{t,pec} [km/s]
52536	_	_	_	_	_	1 00	1 00	0.00	_	63^{+24}
52556	0 99	0.81	0.05	1 00	0.00	1.00	0.04	1.00	55+38	57^{+42}
52562	0.33	0.02	0.51	0.04	0.00	0.03	0.04	0.04	22^{+4}	8 ⁺²
52502	0.23	0.02	0.01	0.04	0.29	0.05	0.04	0.04	22 - 4 20+14	0_{-2}
52070	0.54	0.25	0.00	0.45	0.00	0.57	0.40	0.45	20_{-8}	$\frac{20}{10}$
52730	0.07	0.04	0.00	0.90	0.01	0.00	0.00	0.24	31_{-16}	$\frac{12}{2^{+2}}$
52742	0.49	0.00	0.05	0.00	0.05	0.00	0.00	0.00	23_{-4}	3_{-2}
52792	1.00	0.05	1.00	0.09	0.49	1.00	0.19	1.00	39_{-2}^{+}	32_{-4}^{+16}
52818	-	_	_	-	_	0.80	0.87	0.00	-	27_{-4}
52831	0.16	0.00	0.00	1.00	0.00	0.03	0.01	0.08	23^{+-}_{-2}	0_{-2}^{+24}
52834	_	_	_	-	_	0.70	0.73	0.19	- a c+10	27^{+24}_{-12}
52849	1.00	0.02	0.99	0.13	0.00	1.00	1.00	0.75	36-8	42^{+10}_{-4}
52872	_	_	_	_	_	1.00	1.00	0.07	_	26_{-4}^{+0}
52898	0.10	0.06	0.04	0.38	0.08	0.17	0.10	0.55	14^{+4}_{-4}	12^{+2}_{-2}
53004	_	_	_	-	_	0.63	0.59	0.03	- 12	19^{+2}_{-2}
53007	0.42	0.31	0.04	0.06	0.11	0.58	0.51	0.06	24^{+12}_{-4}	19^{+0}_{-6}
50310	0.41	0.13	0.45	0.33	0.00	0.78	0.82	0.46	22^{+0}_{-8}	25^{+7}_{-9}
53211	_	_	_	-	_	0.35	0.10	0.62	_	13^{+12}_{-6}
53260	_	_	_	-	_	1.00	1.00	0.32	-	65^{+52}_{-12}
53294	—	_	—	—	_	0.65	0.60	0.00	—	20^{+6}_{-6}
53557	—	_	—	—	_	0.99	0.27	0.70	—	21^{+2}_{-2}
53759	_	_	_	_	_	0.70	0.67	0.01	_	20^{+6}_{-4}
53831	1.00	1.00	0.10	0.70	1.00	1.00	0.04	1.00	61^{+34}_{-8}	50^{+42}_{-6}
53880	1.00	0.33	0.99	0.39	1.00	0.16	0.09	0.28	74^{+6}_{-6}	11^{+2}_{-2}
54024	0.00	0.00	0.00	0.00	0.00	0.95	0.00	1.00	23^{+2}_{-2}	19^{+2}_{-2}
54082	0.96	0.47	0.68	1.00	0.02	0.99	0.96	1.00	41^{+16}_{-8}	37^{+16}_{-8}
54115	_	_	_	_	_	1.00	1.00	0.00	_	30^{+2}_{-4}
54179	0.82	0.02	0.93	0.06	0.98	0.10	0.08	0.05	29^{+4}_{-6}	13^{+2}_{-2}
54226	1.00	1.00	0.99	0.39	1.00	0.16	0.14	0.16	86^{+6}_{-6}	5^{+6}_{-2}
54282	_	_	_	_	_	0.52	0.49	0.07	_	$19_{-6}^{+\bar{1}4}$
54413	0.84	0.00	0.66	0.00	0.89	0.00	0.00	0.00	30^{+6}_{-6}	4^{+2}_{-2}
54475	0.53	0.03	0.05	1.00	0.07	0.88	0.04	1.00	26^{+10}_{-6}	23 ⁺⁸
54524	0.98	0.02	1.00	0.00	0.99	0.10	0.08	0.01	36^{+6}_{-6}	6^{+2}_{-2}
54572	0.90	0.63	0.52	0.08	0.73	0.39	0.37	0.07	35+14	17^{+2}_{-2}
54723	0.99	0.96	0.04	0.71	0.00	1.00	0.61	1.00	37^{+12}_{6}	38^{+14}_{-2}
54733	_	_	_	_	_	0.59	0.50	0.39	_0	20^{+22}_{-10}
55140	1.00	1.00	0.04	0.00	1.00	1.00	1.00	0.00	89^{+16}_{-14}	85^{+18}_{14}
55193	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	16^{+2}	4^{+2}
55283	_	_	_	_	_	1.00	0.93	0.27		25 ⁺⁶
55420	0.60	0.20	0.27	0.09	0.37	0.12	0.09	0.09	26^{+6}	13^{+2}
55483	0.88	0.73	0.00	0.26	0.04	1 00	1 00	0.00	28^{+4}	24^{+2}
55682	1 00	1.00	0.06	0.08	0.00	1.00	0.00	1.00	32^{+6}	$\frac{2}{31+6}$
55710			_	_	_	0.23	0.00	0.56		13 ⁺⁶
550/5	1 00	1.00	0.02	0.01	0.01	1.00	1.00	1.00	31+2	13_4 33 ⁺²
56130	0.87	0.75	0.02	0.01	0.01	0.00	0.08	0.12	37-2 31 ⁺⁶	30 ⁺⁸
56210	0.07	0.75	0.00	0.04	0.00	1.00	1.00	0.12	$\frac{51}{-6}$	30_{-6}
50219	0.00	0.01	0.00	0.02	0.00	1.00	1.00	0.00	27 - 2 27 + 4	20_{-4}
50244	1.00	1.00	0.27	0.20	0.00	1.00	1.00	0.00	$\frac{27}{-2}$	23 ₂
50504	1.00	1.00	0.00	0.29	0.00	1.00	1.00	0.01	39 ₄	20-4 27 ⁺⁸
50305	-	-	-	-	-	1.00	0.90	0.48	- 60 ⁺¹⁰	$\frac{27}{-4}$
50388	1.00	1.00	0.00	0.10	0.00	1.00	1.00	0.99	08-10	10^{+10}_{-10}
50703	_	-	_	-	_	0.64	0.64	0.35	_ 0.1 ^{_2} ?	24_{-10}^{+2}
56709	0.28	0.00	0.00	1.00	0.00	0.98	0.05	1.00	24^{+2}_{-4}	22^{+2}_{-4}
56770	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.61	18^{+2}_{-2}	17^{+2}_{-2}
56777	_	_	_	—	_	1.00	1.00	0.51	_	24^{+2}_{-2}
56899	0.42	0.00	0.30	0.77	0.52	0.00	0.00	0.00	24^{+4}_{-4}	4^{+2}_{-2}
56992	0.97	0.03	0.92	0.11	0.96	0.09	0.03	0.17	36 ⁺⁶ -8	8^{+2}_{-2}

Table C.2: - Continued

						ninueu.				
HIP	$P_{v_{pec}}$	P _U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	<i>v_{pec}</i> [km/s]	<i>v_{t,pec}</i> [km/s]
57076	_	_	_	_	_	0.85	0.83	0.13	_	38^{+28}_{-22}
57142	_	_	_	_	_	0.67	0.00	0.93	_	21_{-2}^{+8}
57160	1.00	0.00	1.00	0.02	0.00	1.00	1.00	1.00	35^{+4}_{-2}	34^{+2}_{-2}
57240	0.98	0.94	0.25	0.12	0.00	1.00	1.00	0.89	44_{-10}^{+18}	44^{+8}_{-16}
57241	_	_	_	_	_	1.00	0.51	0.95		27^{+6}_{-6}
57244	1.00	0.03	1.00	0.87	0.34	1.00	1.00	1.00	249^{+104}_{-134}	261^{+176}_{-84}
57261	0.41	0.16	0.00	0.00	0.00	1.00	1.00	0.00	25^{+2}_{2}	23^{+2}
57371	0.74	0.83	0.00	0.00	0.02	1.00	1.00	0.00	27^{+4}_{4}	23^{+4}_{-2}
57529	0.96	0.00	1.00	0.00	0.00	1.00	0.00	1.00	26^{+2}	25^{+2}
57565	1.00	1.00	0.00	0.00	0.00	1.00	1.00	1.00	34^{+2}	33^{+2}
57669	0.61	0.00	0.71	0.00	0.72	0.00	0.00	0.00	26^{+6}	6^{+2}
57721	0.52	0.01	0.00	0.05	0.00	1.00	0.46	1.00	25^{+2}	26^{+2}
57732	0.67	0.00	0.68	1 00	0.00	1 00	0.00	1 00	25^{+2}	25^{+2}
57787	1 00	0.80	1 00	1 00	1 00	1 00	1 00	0.99	413^{+148}	304^{+180}
57870	1 00	0.98	1 00	1.00	0.00	1 00	1 00	0.75	45^{+2}	40^{+2}
58028	1.00	0.50	1.00	1.00	0.00	1.00	1.00	1.00	-13-2	64^{+20}
58179						1.00	0.01	1.00		27 ⁺⁴
50179						1.00	0.01	1.00		$\frac{27}{22^{+2}}$
50102	_	_	_	_	_	1.00	0.00	1.00	_	²² -4 42 ⁺⁶
50217		-		_ 1.00		1.00	1.00	1.00	- 20+4	43_{-8}
50515	0.99	0.05	0.00	1.00	0.00	1.00	0.76	0.00	20-2	20_{-2}
50350	_	_	_	_	_	0.65	0.70	0.50	_	29_{-8}^{+12}
58307	_	-	_	_	_	0.50	0.50	0.00	-	19_{-6}^{+36}
58587	0.96	0.91	0.20	0.89	0.02	0.99	0.93	1.00	49^{+0-}_{-16}	45_{-10}^{+10}
58648	1.00	1.00	0.05	0.01	0.00	1.00	1.00	1.00	63_{-8}^{+6}	62^{+10}_{-6}
58661	0.07	0.00	0.00	0.47	0.03	0.02	0.00	0.62	19_{-4}^{+4}	12^{+2}_{-4}
58668	_	_	_	_	_	1.00	1.00	0.57	— • • + 8	95_{-24}^{+00}
58748	0.98	0.18	0.95	0.05	0.97	0.04	0.02	0.06	39^{+6}_{-8}	5^{+4}_{-2}
58861	—	_	_	_	—	0.24	0.00	0.50	_	16^{+2}_{-2}
58922	—	_	_	_	—	0.71	0.70	0.00	—	23^{+10}_{-8}
59002	0.68	0.00	0.00	0.90	0.00	1.00	1.00	0.00	26^{+2}_{-2}	24^{+2}_{-2}
59151	1.00	1.00	0.36	1.00	1.00	1.00	1.00	0.00	65^{+4}_{-2}	42^{+2}_{-2}
59231	0.65	0.58	0.07	0.48	0.00	0.81	0.66	0.78	28^{+10}_{-6}	27^{+14}_{-8}
59232	0.03	0.00	0.00	0.92	0.00	0.33	0.00	0.99	18^{+6}_{-2}	17^{+4}_{-2}
59280	0.00	0.00	0.00	0.00	0.00	1.00	0.15	0.90	21^{+2}_{-2}	21^{+2}_{-2}
59501	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	24^{+2}_{-2}	11^{+2}_{-2}
59588	1.00	0.99	0.27	0.00	0.00	1.00	1.00	0.00	42^{+10}_{-8}	41^{+8}_{-10}
59607	1.00	1.00	0.05	1.00	1.00	1.00	1.00	1.00	59^{+4}_{-10}	40^{+10}_{-2}
59719	-	_	_	-	-	0.55	0.50	0.00	-	19^{+8}_{-6}
59760	1.00	1.00	0.18	0.19	0.00	1.00	0.79	1.00	46^{+16}_{-6}	44^{+12}_{-12}
59803	0.09	0.14	0.00	0.01	0.00	1.00	1.00	0.00	23^{+2}_{-2}	22^{+2}_{-2}
60082	_	_	_	_	_	0.99	0.92	0.17	_	26^{+4}_{-4}
60134	_	_	_	_	_	1.00	1.00	0.00	_	39^{+2}_{-2}
60376	_	_	_	_	_	1.00	1.00	0.07	_	25^{+4}_{-2}
60553	1.00	0.89	1.00	0.08	0.66	1.00	1.00	1.00	62^{+6}_{-10}	56_{-6}^{+12}
60720	0.29	0.05	0.08	0.93	0.20	0.10	0.02	0.14	21^{+6}_{-6}	6^{+2}_{-2}
60730	_	_	_	_	_	1.00	1.00	0.67	_	47_{-6}^{+10}
60831	0.12	0.07	0.00	0.00	0.00	0.97	0.85	0.01	22^{+2}_{-2}	22^{+2}_{-4}
60971	0.98	0.01	0.98	0.01	0.98	0.10	0.06	0.01	43^{+6}_{-6}	15^{+2}_{-2}
60979	1.00	1.00	0.00	0.04	0.00	1.00	1.00	0.48	29 ⁺²	29^{+2}
61018	_	_	_	_	_	1.00	1.00	0.87		40 ⁺⁸
61175	1.00	0.00	0.99	0.73	0.90	0.92	0.03	1.00	40 ⁺⁶	27^{+10}
61281	0.99	0.73	0.00	0 44	0.00	1 00	1 00	0.85	30^{+2}	4 -30^{+2}
61286	0.99	0.56	0.00	1 00	0.00	1 00	0.06	1 00	37^{+12}	34^{+14}
61200	0.99	0.00	0.05	0.31	0.10	0.00	0.90	1.00	56 ⁺³⁰	52 ⁺³⁰
61/21	1 00	0.94	1 00	0.51	0.00	0.99	0.50	1.00	40 ⁺⁶	19 ² -26
01431	1.00	0.08	1.00	0.14	0.99	0.54	0.40	0.23	42-6	10_4

Table C.2: - Continued. -

HIP P_V $P_{v_{r,pec}}$ $P_{v_{t,pec}}$ $P_{v_{l,pec}}$ $P_{v_{pec}}$ P_U P_W $P_{v_{b,pec}}$ Vpec V_{t,pec} [km/s] [km/s] ${ 51^{+18}_{-10} \atop 25^{+6}_{-4} }$ ${}^{48^{+18}_{-18}}_{26^{+6}_{-4}}$ 61520 1.00 0.01 1.00 0.08 0.14 1.00 0.91 1.00 0.41 0.02 0.20 0.01 61602 0.51 0.00 1.00 0.98 53^{+28}_{-10} 61766 1.00 1.00 1.00 _ _ _ _ $\begin{array}{r} 40^{+44}_{-16} \\ 112^{+12}_{-10} \end{array}$ 38^{+44}_{-16} 61809 0.71 0.52 0.65 0.14 0.00 0.78 0.37 0.91 111^{+12}_{-8} 1.00 0.93 0.00 1.00 61916 1.00 1.00 1.00 1.00 45^{+26}_{-16} 1.00 0.99 61958 _ 0.87 _ _ _ _ 24^{+6}_{-10} 55^{+12}_{-8} 2^{+2}_{-2} 62027 0.47 0.00 0.52 0.00 0.58 0.00 0.00 0.00 43^{+10}_{-10} 62083 1.00 1.00 0.00 0.44 0.99 1.00 1.00 0.60 0.10 58^{+8}_{-6} 0.99 0.09 0.05 13^{+2}_{-2} 62115 1.00 1.00 1.00 0.03 39^{+6}_{-4} 4^{+2}_{-2} 0.01 0.00 0.00 0.00 0.00 62322 1.00 1.00 1.00 23^{+6}_{-6} 62361 0.85 0.79 0.03 55^{+4}_{-4} 61^{+4}_{-2} 62455 1.00 1.00 0.17 0.16 1.00 1.00 1.00 1.00 62566 1.00 1.00 0.00 25^{+2}_{-2} 0.09 35^{+8}_{-4} 32^{+8}_{-6} 62595 1.00 0.20 1.00 0.00 0.04 1.00 1.00 26^{+2}_{-2} 24^{+2}_{-2} 0.00 0.00 0.00 62608 0.88 0.51 0.00 1.00 1.00 23^{+2}_{-2} 62692 0.00 _ _ _ 1.00 1.00 16^{+2} 62810 _ _ _ _ _ 0.02 0.00 0.81 $22^{+14}_{-6} \\ 17^{+2}_{-2} \\ 18^{+2}_{-2}$ 28^{+8}_{-4} 0.68 0.70 0.06 0.06 0.00 0.67 0.68 0.03 62821 18^{+2}_{-4} 0.07 0.62 62829 0.16 0.03 0.56 0.03 0.43 0.07 26^{+6}_{-2} 62913 0.58 0.01 0.71 0.15 0.16 0.57 0.22 0.17 62981 1.00 1.00 0.25 32^{+6}_{-2} 0.07 0.09 0.11 0.10 26^{+6}_{-8} 15^{+2}_{-2} 63049 0.59 0.67 0.44 0.19 40^{+6}_{-10} 0.01 0.01 8^{+2}_{-2} 63117 1.00 0.84 0.90 0.99 0.03 0.03 21^{+14}_{-6} 63170 1.00 0.22 0.56 0.90 0.77 0.62 0.09 0.91 38^{+6}_{-6} 63253 0.00 0.00 0.00 0.00 1.00 16^{+2}_{-2} 16^{+2} 0.01 0.13 0.00 12^{+2} 53^{+6}_{-10} 63256 0.98 0.18 0.97 0.09 1.00 0.09 0.08 0.09 38⁺¹⁰_-* 1.00 0.01 63266 1.00 31^{+2}_{-2} 24^{+4}_{-4} 12^{+2}_{-2} 0.00 0.00 63322 1.00 1.00 1.00 0.00 0.00 0.00 63334 0.40 0.00 0.02 0.90 0.14 0.10 0.02 0.82 16^{-1} 30^{+8}_{-6} 63356 0.75 0.78 0.00 0.00 0.00 1.00 0.99 0.14 33^{+12}_{-4} 75^{+8}_{-6} 39^{+8}_{-8} 1.00 1.00 0.00 1.00 1.00 1.00 1.00 0.00 63368 23^{+8}_{-8} 11^{+2}_{-2} 63449 0.37 0.03 0.58 0.03 0.36 0.05 0.02 0.02 16^{+2}_{-2} 63742 0.00 0.00 0.00 0.07 0.00 0.00 0.00 1.00 17^{+2}_{-2} 32^{+2}_{-6} 20^{+4}_{-4} 63958 1.00 0.69 0.16 0.51 0.74 0.78 0.00 0.96 31^{+4}_{-2} 63970 1.00 1.00 0.02 _ _ _ _ _ $39^{+2}_{-2} \\ 24^{+2}_{-2} \\ 131^{+70}_{-49} \\ + 8$ 39^{+2} 63972 1.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 -2 64086 0.27 0.00 0.00 0.00 0.00 1.00 1.00 0.00 25 142^{+104}_{-29} 64149 1.00 1.00 0.49 0.23 1.00 1.00 1.00 1.00 17^{+8}_{-2} 64217 0.10 0.09 0.00 0.00 0.00 0.84 0.69 0.05 23+4 -6 15^{+2}_{-2} 15^{+2}_{-2} 0.00 0.00 64237 0.00 0.00 0.00 0.00 0.00 1.00 29^{+8}_{-6} 14^{+2}_{-2} 64272 0.74 0.03 0.83 0.03 0.63 0.06 0.06 0.03 64312 1.00 1.00 0.01 0.05 0.00 1.00 0.00 1.00 47+4 46^{+4}_{-4} 50^{+18}_{-10} 45^{+16} 64523 1.00 1.00 0.06 0.26 0.01 1.00 1.00 1.00 19^{+4}_{-4} 14^{+2}_{-4} 0.03 0.00 0.00 0.00 0.05 64543 0.55 0.00 0.89 62^{+4}_{-4} 70^{+4}_{-4} 64557 0.99 1.00 0.95 1.00 1.00 1.00 1.00 1.00 26⁺¹⁰ 64622 0.98 0.11 1.00 33⁺²⁶ 36^{+24}_{-8} 64778 0.82 0.83 0.33 0.13 0.01 0.89 0.84 0.18 21^{+12}_{-6} 65020 0.64 0.37 0.98 106^{+84}_{-29} 112^{+} 65192 1.00 0.54 1.00 0.82 0.07 1.00 0.97 1.00 38_{-8}^{+8} 14^{+14}_{-4} 65388 0.99 0.14 0.15 1.00 0.98 0.35 0.33 0.02 22^{+2}_{-2} 21^{+2}_{-2} 0.04 0.00 0.02 0.53 0.00 0.84 65522 1.00 0.57 19^{+2}_{-2} 12^{+2}_{-2} 65593 0.01 0.01 0.00 0.03 0.00 0.05 0.01 0.57 17^{+4}_{-6} 9^{+2}_{-2} 65896 0.05 0.00 0.00 0.57 0.06 0.00 0.00 0.00 32_{-6}^{+6} 34^{+6}_{-6} 0.03 65915 0.98 0.96 0.38 0.04 1.00 0.93 1.00 26^{+24}_{-6} 66013 0.69 0.71 0.10 _ _ _ _ _

Table C.2: - Continued. -

 $P_{v_{r,pec}}$ HIP P_U P_V $P_{v_{t,pec}}$ $P_{v_{l,pec}}$ $P_{v_{b,pec}}$ $P_{v_{pec}}$ P_W Vpec V_{t,pec} [km/s] [km/s] 32^{+6}_{-8} 66020 1.00 1.00 0.61 _ _ _ _ _ _ 19^{+4}_{-2} 0.00 66045 _ _ _ _ _ 0.59 0.33 _ 19^{+2}_{-2} 66057 1.00 0.59 0.00 _ _ 24^{+6}_{-4} 66210 0.99 0.98 0.11 _ 23^{+10}_{-4} 0.00 23^{+8}_{-4} 66236 0 43 0.17 0.11 0.00 0.00 0.84 0.81 22^{+2}_{-4} 13^{+2}_{-2} 66252 0.07 0.00 0.00 0.79 0.02 0.00 0.00 0.00 18_4 66278 0.54 0.37 0.78 159^{+2}_{-6} 10^{+2}_{-2} 66291 1.00 1.00 0.17 1.00 1.00 0.15 0.09 0.29 34^{+18}_{-8} 30^{+18}_{-10} 66339 0.83 0.21 0.32 1.00 0.06 0.89 0.14 1.00 22^{+6}_{-4} 0.83 66341 0.10 1.00 25^{+4}_{-2} 20^{+2}_{-2} 66467 0.41 0.52 0.00 0.00 0.00 0.99 0.18 0.78 43_{-4}^{+10} 25_{-4}^{+16} 66475 1.00 0.19 0.08 1.00 1.00 0.80 0.73 0.01 35^{+14}_{-6} 113^{+34}_{-14} 66515 1.00 1.00 0.04 1.00 1.00 113^{+32}_{-14} 1.00 0.00 0.00 1.00 0.00 66524 1.00 36^{+34}_{-16} 33^{+30}_{-8} 66575 0.66 0.20 0.63 0.59 0.18 0.78 0.73 0.60 0.00 0.05 0.27 0.00 27^{+2}_{-2} 17^{+4}_{-2} 66586 0.98 0.00 1.00 0.09 88^{+6}_{-8} 89^{+8}_{-6} 66690 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 57^{+12}_{-6} 35^{+12}_{-8} 1.00 1.00 0.17 0.99 1.00 1.00 1.00 0.06 66732 57^{+12}_{-6} 24^{+12}_{-4} 22^{+6}_{-6} 66917 0.47 0.00 0.33 0.88 0.00 0.71 0.11 0.98 17^{+2}_{-2} 62^{+24}_{-12} 67042 1.00 0.99 0.89 0.49 0.98 0.32 0.30 0.01 67385 1.00 1.00 1.00 36^{+8}_{-6} 0.00 0.00 0.00 17^{+2}_{-2} 13^{+2}_{-2} 0.00 0.00 0.00 0.00 1.00 67422 38^{+8}_{-12} 36^{+12}_{-6} 0.05 67663 0.95 0.84 1.00 0.00 1.00 0.98 1.00 $29\substack{+4\\-6}$ 5^{+2}_{-4} 67748 0.82 0.35 0.32 0.00 0.84 0.03 0.04 0.00 $38^{+8}_{-10}\\25^{+10}_{-8}$ 17^{+26}_{-2} 67981 0.99 0.88 0.40 0.35 0.76 0.51 0.46 0.28 6^{+2}_{-2} 67983 0.52 0.15 0.30 0.14 0.52 0.12 0.03 0.17 25^{+2}_{-2} 23^{+2}_{-2} 0.00 0.00 0.00 68002 0.43 0.62 0.00 1.00 1.00 21^{+18}_{-8} 16^{+8}_{-2} 68163 0.59 0.56 0.03 68247 0.38 0.17 0.86 $17\substack{+2\\-2}$ 68258 0.28 0.03 0.00 1.00 0.00 0.42 0.03 0.33 23^{+4}_{-2} 49^{+14}_{-12} 1.00 1.00 0.23 68435 38^{+14}_{-8} 38^{+18}_{-8} 68523 0.98 0.50 0.02 0.99 0.03 1.00 1.001.00 19_{-4}^{+8} 18^{+8}_{-4} 68557 0.21 0.00 0.01 0.84 0.00 0.52 0.02 0.89 7^{+2}_{-4} 28^{+6}_{-6} 68564 0.66 0.02 0.63 0.01 0.68 0.05 0.03 0.02 12^{+6}_{-2} 0.19 0.01 0.55 68582 _ _ _ _ _ _ 22-4 _ _ _ _ _ 0.92 0.88 0.36 _ 68733 $37^{+8}_{-8} \\ 42^{+10}_{-6}$ 12+2 68817 0.86 0.05 0.87 0.07 0.85 0.03 0.03 0.07 -2 39⁺¹² 1.00 0.00 0.12 0.04 1.00 0.03 1.00 68868 1.00 38^{+8}_{-6} 23^{+14}_{-6} 68877 0.99 0.96 0.17 0.24 0.72 0.64 0.51 0.53 56^{+36}_{-20} 57^{+42}_{-16} 0.82 68879 0.94 0.94 0.50 0.01 1.00 0.79 1.00 67^{+6}_{-4} 68904 1.00 1.00 1.00 0.00 0.00 1.00 1.001.00 66^{+4}_{-4} 57^{+12}_{-10} 41^{+18}_{-8} 69034 1.00 1.00 0.25 0.32 1.00 1.00 0.25 1.00 20^{+10}_{2} 19^{+6} 69122 0.24 0.00 0.04 0.96 0.00 0.58 0.06 0.96 27^{+6}_{-6} 21^{+8}_{-2} 69247 0.69 0.56 0.02 0.09 0.14 0.77 0.63 0.31 21^{+2}_{-4} 23^{+2}_{-6} 0.04 0.85 0.05 69320 0.34 0.10 0.37 0.04 0.81 29____ 27^{+10}_{-4} 69462 0.69 0.02 0.76 0.28 0.02 0.89 0.85 0.45 29^{+}_{-8} 20^{+10}_{-8} 18^{+10}_{-8} 0.73 69591 0.34 0.06 0.14 0.71 0.02 0.50 0.25 69619 1.00 0.98 0.91 0.10 0.96 0.15 0.08 0.30 58^{+4}_{-6} 11^{+2}_{-2} 33^{+24}_{-12} 69625 0.82 0.36 0.76 110^{+60}_{-2} 114^{+62}_{-28} 69834 1.00 0.98 1.00 1.00 0.69 1.00 1.00 1.00 38+6 69848 1.00 1.00 1.00 23^{+6}_{-6} 20+8 0.37 0.35 0.03 0.00 0.00 0.64 0.63 0.00 69868 $\begin{array}{c} 75^{+6}_{-10} \\ 92^{+12}_{-4} \\ 22^{+2}_{-4} \end{array}$ 27^{+14}_{-6} 69892 1.00 0.99 0.93 0.66 0.98 0.96 0.12 1.00 4^{+4}_{-2} 69906 1.00 1.00 1.00 0.64 1.00 0.09 0.09 0.05 $21\substack{+4\\-2}$ 69929 0.00 0.00 0.91 0.00 0.14 0.09 0.00 0.91

Table C.2: - Continued. -

HIP $P_{v_{r,pec}}$ $P_{v_{t,pec}}$ $P_{v_{l,pec}}$ $P_{v_{b,pec}}$ $P_{v_{pec}}$ P_U P_V P_W Vpec V_{t,pec} [km/s] [km/s] 34^{+2}_{-8} 27^{+8}_{-2} 17^{+2}_{-2} 8^{+6}_{-4} 11^{+2}_{-2} 15^{+2}_{-2} 69978 0.97 0.83 0.32 0.13 0.94 0.12 0.07 0.05 0.00 0.65 0.00 0.00 69996 0.68 0.44 0.66 0.00 70042 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.81 27^{+2}_{-2} 70057 0.90 0.10 0.00 0.94 0.00 1.00 1.00 0.00 22^{+2} 0.00 1.00 37^{+4}_{-2} 16^{+2}_{-2} 70108 1.00 0.02 1.00 0.05 0.00 1.00 30^{+4}_{-2} 16^{+10}_{-4} 0.38 0.00 0.96 0.35 70145 1.00 0.99 0.02 0.44 70290 0.62 0.05 0.64 19^{+6}_{-2} _ _ _ $25\substack{+14\\-10}$ 0.22 0.30 12^{+10}_{-4} 70337 0.48 0.12 0.65 0.32 0.05 0.53 79^{+36}_{-18} 70^{+30}_{-16} 70349 1.00 1.00 0.63 1.00 0.00 1.00 1.00 1.00 27^{+12}_{-8} 20^{+4}_{-4} 15^{+20}_{-6} 15^{+2}_{-2} 0.46 0.25 0.35 0.48 0.30 70530 0.62 0.27 0.45 70574 0.09 0.01 0.00 0.87 0.02 0.06 0.00 0.13 48^{+32}_{-22} 70586 0.96 0.94 0.05 _ _ _ _ _ 44^{+14}_{-14} 70866 1.00 0.92 1.00 _ _ _ _ _ _ 38^{+14}_{-10} 70875 1.00 0.07 1.00 _ _ _ _ 127^{+6}_{-8} 6^{+4}_{-2} 70877 1.00 1.00 0.99 0.96 1.00 0.11 0.13 0.03 34+8 1.00 71071 1.00 1.00 23+8 0.00 0.15 0.03 18^{+6}_{-8} 71096 0.40 0.49 0.53 0.49 0.00 25^{+2}_{-2} 0.00 0.00 0.00 1.00 0.59 1.00 22^{+2}_{-2} 71237 0.40 0.12 29^{+8}_{-8} 16^{+2}_{-4} 15^{+2}_{-2} 0.08 0.28 0.20 71264 0.70 0.67 0.49 0.27 0.12 13^{+2}_{-2} 71381 0.00 0.00 0.00 0.86 0.00 0.01 0.00 0.01 43^{+24}_{-12} 71436 0.94 0.83 0.02 0.98 0.01 0.99 0.99 0.03 50^{+30}_{-18} 0.29 27^{+20}_{-6} 71441 0.77 0.75 _ _ _ _ _ _ 47^{+38}_{-16} 71447 _ _ _ _ _ 0.96 0.94 0.31 _ 106^{+82}_{-19} 71712 _ _ _ _ _ 1.00 0.29 1.00 _ 71945 0.00 0.01 0.00 0.00 0.07 1.00 18^{+2}_{2} 16^{+2} 0.00 0.00 25_{-4}^{+10} 27^{+8}_{-6} 72257 0.60 0.39 0.10 0.16 0.08 0.99 0.99 0.29 23^{+4}_{-2} 1.00 72276 0.99 0.11 17^{+2}_{-2} 17^{+4}_{-2} 0.00 72316 0.02 0.02 0.16 0.00 0.29 0.00 0.86 42^{+18}_{-14} 72385 1.00 1.00 0.91 7^{+2}_{-2} 72438 0.68 0.01 0.44 0.20 0.71 0.01 0.00 0.03 27^{+6}_{-4} 28^{+24}_{-6} 0.75 0.75 0.25 72482 _ _ _ 69^{+8}_{-6} 67^{+6}_{-6} 72499 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.03 39⁺⁸_4 72503 1.00 1.00 0.00 _ _ _ _ 7^{+2}_{-4} 67^{+6}_{-8} 1.00 0.93 0.03 0.99 72510 1.00 0.09 0.09 0.03 27^{+18}_{-12} 5^{+8}_{-2} 0.61 0.16 0.51 0.20 0.62 0.23 0.15 0.17 72556 65_{-12}^{+14} 67^{+20}_{-14} 72578 1.00 0.97 1.00 0.28 0.00 1.00 1.00 1.00 17 72583 0.55 0.25 0.31 _ _ _ _ _ -2 28⁺²⁴ 72710 _ _ _ _ _ 0.70 0.73 0.08 _ 162^{+54}_{-28} 158^{+56}_{-22} 72862 1.00 1.00 0.11 1.00 0.00 1.00 1.00 1.00 13^{+8}_{-8} 0.30 0.50 73020 _ _ _ _ _ 0.18 _ 26^{+4}_{-6} 73216 _ _ _ _ _ 0.99 0.98 0.00 45^{+6}_{-6} 3^{+4}_{-2} 73315 1.00 0.90 0.05 1.00 1.00 0.09 0.10 0.01 19+4 73580 0.68 0.32 0.34 _ _ _ _ _ _ 1.00 0.00 20^{+2}_{-2} 73685 _ _ _ _ 1.00_ 45^{+10}_{-8} _ _ _ 1.00 0.42 73697 _ 1.00 _ $\begin{array}{r} 36^{+6}_{-6} \\ 24^{+2}_{-2} \end{array}$ 32^{+6}_{-6} 73771 0.99 0.97 0.00 0.89 0.11 1.00 0.82 1.00 0.06 0.21 0.00 0.00 0.00 1.00 1.00 0.00 23^{+2}_{-2} 73869 17^{+4}_{-6} 73966 0.12 0.00 0.02 0.83 0.00 0.32 0.01 0.88 15^{+8}_{-2} 21^{+12}_{-4} 73969 0.61 0.25 0.99 _ 17^{+4}_{-2} 15^{+2}_{-2} 0.01 0.00 0.00 0.03 0.00 74070 0.06 0.00 1.00 27^{+6}_{-6} 20^{+6}_{-6} 0.00 0.72 0.19 0.64 74117 0.66 0.15 0.64 0.31 20^{+6}_{-4} 0.65 0.34 0.65 74187 _ _ _ _ _ 32^{+2}_{-2} 31^{+2}_{-2} 0.00 0.00 74333 1.00 0.52 0.84 1.00 0.00 1.00 57^{+26}_{-20} 32^{+18}_{-8} 78^{+18}_{-16} 74368 1.00 0.91 1.00 0.92 1.00 1.00 1.00 0.97 74425 0.97 0.23 1.00 _ _ _ _ _ _

Table C.2: - Continued. -

HIP $P_{v_{r,pec}}$ $P_{v_{t,pec}}$ $P_{v_{l,pec}}$ $P_{v_{b,pec}}$ $P_{v_{pec}}$ P_U P_V P_W Vpec V_{t,pec} [km/s] [km/s] $22^{+12}_{-2} \\ 24^{+8}_{-10} \\ 20^{+2}_{-6} \\ + 4$ $20^{+14}_{-8} \\ 17^{+8}_{-12} \\ 14^{+2}_{-4}$ 74470 0.39 0.02 0.31 0.26 0.08 0.53 0.52 0.24 0.01 0.25 74565 0.46 0.51 0.08 0.48 0.34 0.46 74600 0.12 0.00 0.00 0.67 0.06 0.09 0.05 0.00 20^{+4}_{-4} 74604 0.08 0.03 0.00 0.44 0.00 0.45 0.03 1.00 18^{+4} 36^{+10}_{-8} 37^{+8}_{-10} 74680 0.96 0.09 0.36 1.00 0.00 1.00 0.31 1.00 21^{+10}_{-4} 22^{+6}_{-8} 0.05 74716 0.34 0.28 0.00 0.01 0.63 0.61 0.00 34^{+10}_{-8} 6^{+2}_{-2} 74778 0.88 0.83 0.38 0.08 0.89 0.03 0.01 0.05 28^{+16}_{-14} 74859 0.73 0.63 0.87 29^{+2}_{-2} 28^{+2}_{-2} 0.16 0.00 0.00 0.00 74875 1.00 1.00 1.000.00 72_{-10}^{+28} 61^{+40}_{-24} 20^{+2}_{-2} 0.80 74938 1.00 0.32 1.00 0.97 1.000.99 1.00 74963 0.97 0.84 0.00 $32^{+32}_{-\circ}$ 27^{+22}_{-10} 75095 0.67 0.04 0.73 0.26 0.25 0.75 0.73 0.28 32_{-8}^{+10} 47_{-6}^{+10} 1.00 0.43 1.00 1.00 0.04 1.00 0.98 1.00 44^{+8}_{-6} 75110 27_{-4}^{+10} 26^{+8}_{-2} 0.00 0.83 0.07 0.00 0.93 0.90 0.20 75141 0.64 69^{+2}_{-2} 24^{+4}_{-6} 75174 1.00 1.00 0.53 1.00 1.00 0.97 0.00 1.00 37^{+6}_{-6} 32+6 1.00 0.00 75257 1.00 0.08 0.00 1.00 1.00 0.00 236^{+82}_{-48} 190^{+143}_{21} 75711 1.00 0.93 1.00 0.69 1.00 1.00 1.00 1.00 22^{+2}_{-2} 1.00 1.00 0.00 75729 _ _ _ _ _ _ 40⁺⁶ 120^{+2}_{-4} 1.00 1.00 75769 1.00 0.01 1.00 1.00 1.000.93 20^{+8}_{-10} 75812 0.58 0.48 0.52 _ 75959 _ _ 0.80 0.15 0.99 _ 22^{+6}_{-4} 0.00 16^{+2}_{-2} 15^{+2}_{-2} 75965 0.00 0.00 0.37 0.00 0.01 0.00 1.00 70^{+6}_{-6} 20^{+2}_{-4} 76013 1.00 1.00 1.00 1.00 1.00 0.79 0.00 1.00 25^{+8}_{-8} 76236 0.80 0.80 0.00 45^{+2}_{-2} 22^{+2} 76304 1.00 1.00 0.00 0.01 1.00 0.99 0.00 1.00 15^{+4} 76401 0.28 0.02 0.99 _ _ 22^{+20}_{-8} 0.59 0.27 76416 _ _ _ 0.55 _ _ _ 35^{+12}_{-8} 18^{+20}_{-4} 76426 _ _ _ _ _ 1.00 0.65 1.00 _ 76581 0.51 0.45 0.39 82^{+8}_{-4} 76605 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.12 31^{+8}_{-4} $44^{+8}_{-6} \\ 56^{+2}_{-4}$ 17^{+10}_{-6} 54^{+2}_{-2} 1.00 0.92 0.38 1.00 0.94 0.48 0.38 0.26 76642 76664 1.00 1.00 1.00 1.00 0.01 1.001.001.00 20^{+4}_{-6} 19^{+8}_{-2} 76733 0.17 0.00 0.26 0.00 0.00 0.55 0.24 0.50 21^{+2}_{-6} 21^{+4}_{-4} 76768 0.15 0.00 0.25 0.18 0.00 0.81 0.44 0.69 26^{+18}_{-8} 0.74 0.33 76849 0.67 _ _ _ _ _ _ 24^{+4}_{-6} _ _ _ _ _ 0.95 0.93 0.00 _ 76934 71____ 79_{-14}^{+44} 76947 1.00 1.00 0.24 0.05 0.04 1.00 1.00 0.03 37^{+20}_{-6} 77023 1.00 1.00 0.84 27^{+2}_{-4} 4^{+2}_{-2} 77042 0.74 0.00 0.18 0.00 0.88 0.00 0.00 0.00 24^{+18}_{-10} 77056 0.63 0.56 0.54 _ _ _ $25\substack{+10\\-4}$ 21^{+8}_{-6} 77092 0.55 0.00 0.60 0.08 0.02 0.64 0.64 0.16 77178 1.00 0.98 1.00 62^{+22}_{-12} _ _ 25^{+2}_{-2} 8^{+12}_{-2} _ 77396 _ _ _ _ 1.00 0.00 1.00 36^{+6}_{-8} 0.97 0.97 0.04 77471 0.90 0.20 0.86 0.27 0.26 18^{+12}_{-6} 60^{+44}_{-18} 77481 0.47 0.20 0.80 _ _ _ _ 77575 _ _ 1.00 0.67 1.00 _ _ _ _ 0.97 0.48 48^{+34}_{-14} 77658 0.97 31^{+4}_{-4} 31^{+4}_{-4} 77676 0.99 0.17 0.00 1.00 0.00 1.00 0.00 1.00 17^{+4}_{-4} 0.47 0.09 1.00 77720 _ _ _ _ _ _ 22^{+2}_{-2} 77730 _ _ 1.00 0.00 1.00 _ _ _ _ 22^{+2}_{-2} 19^{+2}_{-2} 0.00 0.00 0.00 0.00 0.00 0.88 77835 0.00 1.00 28^{+38}_{-4} 4^{+2}_{-2} 0.59 0.51 0.01 0.00 0.00 0.00 77990 0.40 0.60 28^{+30}_{-4} 42^{+10}_{-4} 28^{+6}_{-4} 77995 1.00 0.00 1.00 0.99 0.94 0.98 0.98 0.01 34^{+4}_{-4} 25^{+2}_{-2} 78078 1.00 0.92 0.00 0.00 0.55 1.00 0.00 1.00 0.94 16^{+2}_{-4} 78131 _ _ _ _ _ 0.34 0.00

Table C.2: - Continued. -

HIP $P_{v_{r,pec}}$ $P_{v_{t,pec}}$ $P_{v_{l,pec}}$ $P_{v_{b,pec}}$ $P_{v_{pec}}$ P_U P_V P_W Vpec V_{t,pec} [km/s] [km/s] $9^{+2}_{-2} \\ 6^{+2}_{-2} \\ 12^{+8}_{-2}$ 36^{+4}_{-8} 78145 0.95 0.65 0.74 0.01 0.96 0.00 0.00 0.00 18^{+4}_{-6} 0.01 0.00 0.00 78168 0.06 0.00 0.53 0.09 0.00 78171 0.26 0.09 0.56 _ _ _ _ 0.00 30^{+6}_{-6} 4^{+2} 78355 0.85 0.66 0.01 0.90 0.00 0.00 0.00 4^{+2}_{-2} 7^{+2}_{-4} 58^{+6}_{-6} 1.00 0.95 0.02 0.00 78582 1.00 0.97 1.00 0.01 55^{+2}_{-2} 1.00 0.00 0.00 1.00 1.00 51^{+2}_{-2} 78592 1.00 0.00 1.00 22^{+12} 78604 0.70 0.70 0.01 _ _ 32^{+4}_{-4} 0.04 0.34 0.00 31^{+4}_{-4} 78681 1.00 1.00 1.00 1.00 0.91 12^{+4}_{-2} 0.15 78805 0.09 0.52 _ _ _ _ _ 23_{-4}^{+6} _ _ 0.97 1.00 78846 _ _ _ 0.01 _ 16^{+12}_{-6} 78855 _ _ _ _ _ 0.44 0.22 0.71 _ 31____ 78884 0.96 0.97 0.00 25^{+4}_{-4} 79225 0.50 0.04 0.56 0.04 0.00 0.92 0.93 0.00 24^{+6}_{-6} 21^{+2}_{-2} 21^{+2}_{-2} 79357 0.02 0.02 0.00 0.00 0.00 0.98 0.97 0.00 36^{+6}_{-8} 11^{+2}_{-2} 0.08 79466 0.91 0.48 0.75 0.90 0.06 0.04 0.07 21^{+6}_{-6} 79687 0.76 0.02 1.00 23^{+6}_{-4} 0.00 0.29 0.08 17^{+2}_{-2} 79740 0.37 0.26 0.35 0.02 1.00 54^{+2}_{-8} 31^{+4}_{-2} 1.00 1.00 0.00 0.06 1.00 1.00 0.34 1.00 79853 31^{+14}_{-6} 120^{+10}_{-12} 17^{+6}_{-2} 0.21 79932 0.74 0.78 0.06 0.11 0.55 0.54 0.32 38^{+28}_{-8} 79974 1.00 0.85 1.00 0.99 1.00 0.95 0.94 0.74 23^{+2}_{-2} 80021 0.46 0.00 0.82 0.00 0.00 1.00 1.00 0.00 25^{+2}_{-2} 0.69 26^{+22}_{-8} 80305 0.71 0.59 _ _ _ _ _ 26^{+12}_{-6} 22^{+8}_{-8} 80405 0.55 0.00 0.50 0.50 0.03 0.69 0.49 0.73 21^{+6}_{-2} 80448 0.29 0.09 0.21 0.00 0.11 0.51 0.33 0.00 18^{+4}_{-4} 80675 0.56 0.55 0.01 64^{+12}_{-10} $62^{+14}_{-\circ}$ 1.00 1.00 1.00 1.00 0.34 28^{+2}_{-2} 16^{+2}_{-2} 80752 0.90 0.01 0.00 1.00 0.29 0.16 0.00 1.00 20^{+6}_{-4} 80778 0.77 0.05 0.73 14^{+2}_{-4} 12^{+2}_{-4} 0.01 80782 0.12 0.09 0.59 0.03 0.21 0.07 0.59 85^{+30}_{-22} 86^{+36}_{-18} 80917 1.00 1.00 0.10 1.00 0.00 1.00 1.00 1.00 $12\substack{+2\\-2}$ 80941 0.00 0.00 0.00 1.00 0.00 0.01 0.00 0.02 17^{+2}_{-2} 17^{+8}_{-4} 16^{+2}_{-4} 0.19 0.00 0.12 0.93 0.03 0.40 0.16 0.92 80945 12^{+2}_{-2} 80988 0.03 0.00 0.55 267^{+88}_{-52} 238^{+98}_{-56} 80990 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 19^{+2}_{-2} 14^{+2}_{-2} 81007 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 43^{+6}_{-4} 9^{+2}_{-2} 81100 1.00 0.98 0.80 0.03 0.99 0.02 0.00 0.05 57^{+14}_{-12} 33^{+12}_{-8} 15^{+2}_{-2} 56_{-10}^{+18} 81104 1.00 0.03 1.00 1.00 0.00 1.00 0.00 1.00 6_{-} 5^{+4}_{-2} 5^{+2}_{-2} 81122 0.86 0.83 0.33 0.12 0.92 0.18 0.12 0.15 81289 0.00 0.00 0.00 0.28 0.00 0.08 0.00 0.96 50^{+10}_{-10} 81305 1.00 0.99 0.17 0.03 0.99 0.00 0.00 0.35 11^{+2}_{-2} 25^{+2}_{-2} 25^{+2}_{-2} 0.00 1.00 0.00 0.00 81377 0.72 1.00 1.00 0.00 12^{+2}_{-2} 81438 0.20 0.11 0.58 _ _ _ _ _ 32^{+22}_{-8} 81620 _ _ 0.90 0.22 1.00 31^{+4}_{-2} 81630 0.99 0.99 0.00 0.00 0.14 0.97 0.42 0.99 23^{+2}_{-6} 36^{+4}_{-6} 18^{+2}_{-2} 0.56 81696 1.00 0.23 0.81 0.46 0.97 0.31 0.41 18^{+2}_{-2} 12^{+2}_{-2} 0.00 0.00 0.00 0.00 0.00 0.00 1.00 81724 0.00 23^{+2}_{-2} 22^{+2}_{-2} 81741 0.03 0.00 0.50 0.00 0.00 1.00 0.99 0.00 $20^{+\overline{6}}_{-4}$ 81814 0.18 0.03 0.02 0.27 0.07 0.05 0.00 0.87 13^{+2}_{-2} 27^{+2}_{-2} 81904 0.72 0.00 0.58 0.33 0.00 0.84 0.48 0.67 21^{+2}_{-6} 65^{+24}_{-6} 48^{+4}_{-6} 57^{+28}_{-16} 81963 1.00 0.91 1.00 1.00 1.00 1.00 1.00 0.32 33+8 82000 1.00 1.00 0.00 0.31 1.00 1.00 1.00 0.97 36⁺¹⁸_-82133 1.00 0.11 1.00 1.00 1.00 75^{+10}_{-20} 67^{+10}_{-26} 1.00 1.00 0.76 0.95 0.93 1.00 82171 71^{+14}_{-10} 20^{+2}_{-2} 72^{+12}_{-12} 82204 1.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 20^{+2}_{-2} 82216 0.00 0.00 0.06 0.00 0.00 0.97 0.96 0.00 37^{+4}_{-6} 9^{+4}_{-2} 82217 0.99 0.98 0.03 0.13 1.00 0.04 0.04 0.00

 $P_{v_{l,pec}}$ HIP $P_{v_{pec}}$ $P_{v_{r,pec}}$ $P_{v_{t,pec}}$ $P_{v_{b,pec}}$ P_U P_V P_W Vpec V_{t,pec} [km/s] [km/s] 15^{+2}_{-2} 15^{+2}_{-2} 0.00 0.55 0.00 0.00 1.00 82273 0.00 0.00 0.00 $43^{+26}_{-8}\\116^{+8}_{-18}$ 0.97 82304 0.98 0.92 _ _ _ _ _ 120^{+10}_{-12} 82324 1.00 1.00 0.02 1.00 0.92 1.00 1.00 1.00 27^{+10}_{-4} 6^{+2}_{-2} 82378 0.64 0.49 0.07 0.03 0.67 0.10 0.09 0.04 23^{+4}_{-2} 21^{+4}_{-2} 82385 0.21 0.00 0.00 1.00 0.00 0.92 0.06 1.00 29^{+12}_{-4} 29^{+20}_{-10} 82391 0.68 0.20 0.95 0.21 0.03 0.87 0.73 0.80 82475 1.00 0.00 1.00 23^{+4}_{-2} 17^{+2}_{-2} 0.00 1.00 16^{+2}_{-2} 82504 0.00 0.00 0.00 0.00 0.00 0.82 17^{+4}_{-2} 15^{+2}_{-2} 82526 0.01 0.00 0.00 0.74 0.00 0.00 0.00 0.00 22^{+12}_{-6} 25^{+12}_{-6} 0.03 82596 0.69 0.65 $\begin{array}{r} 25^{+16}_{-6} \\ 30^{+34}_{-4} \end{array}$ 82604 0.51 0.05 0.49 0.05 0.04 0.78 0.75 0.01 7^{+2}_{-2} 82617 0.57 0.54 0.13 0.04 0.57 0.02 0.01 0.05 0.90 0.02 1.00 26^{+8}_{-8} 82649 0.87 27^{+4}_{-4} 27^{+4}_{-4} 0.70 0.00 0.00 0.00 1.00 0.00 82650 1.00 32^{+22}_{-12} 82658 0.81 0.80 0.06 26^{+12}_{-4} 5^{+4}_{-2} 0.55 0.43 0.16 0.06 0.45 0.20 0.06 82676 0.20 6^{+2}_{-2} 2^{+2}_{-2} 33^{+6}_{-4} 82691 0.92 0.89 0.01 0.00 0.94 0.01 0.01 0.00 118^{+8}_{-6} 1.00 1.00 0.98 0.01 1.00 0.01 0.01 0.00 82775 6^{+4}_{-2} 20^{+2}_{-2} 33^{+2}_{-4} 25^{+2}_{-2} 82783 1.00 0.98 0.05 0.01 0.94 0.11 0.11 0.01 82798 0.33 0.00 0.00 0.00 0.00 0.99 0.00 1.00 82817 1.00 0.96 0.17 1.00 0.97 1.00 1.00 0.00 42^{+4}_{-4} 26^{+2}_{-2} 20^{+16}_{-4} 0.57 0.53 0.07 82848 _ _ _ _ _ _ 27^{+6}_{-4} 7^{+2}_{-2} 82868 0.68 0.62 0.00 0.00 0.75 0.00 0.00 0.00 25^{+6}_{-8} 5^{+2}_{-2} 82911 0.51 0.39 0.03 0.04 0.53 0.04 0.03 0.03 60^{+28}_{-12} 83003 1.00 1.00 0.05 _ _ 26^{+10} 83132 _ _ _ _ 0.80 0.68 0.68 _ _ 33^{+24}_{-10} 0.87 0.23 83250 _ 0.85 103^{+36}_{-30} 18^{+16}_{-6} 108^{+26}_{-52} 83254 1.00 1.00 1.00 0.99 0.11 1.00 1.00 0.57 83266 0.50 0.39 0.50 _ _ -83377 0.82 0.78 0.00 23^{+8}_{-4} _ _ _ _ _ _ 33^{+12}_{-16} 0.88 0.86 0.02 83505 _ _ 38^{+18}_{-10} 25^{+14}_{-4} 83574 0.89 0.65 0.50 0.73 0.75 0.70 0.49 0.81 22^{+4}_{-6} 38^{+8}_{-4} 83587 1.00 0.99 0.08 0.00 0.91 0.77 0.77 0.00 33^{+14}_{-10} 83629 0.92 0.88 0.56 28^{+6}_{-4} 8^{+2}_{-2} 0.75 0.45 0.00 0.01 0.81 0.00 0.00 83635 0.00 20+8 45^{+4}_{-4} 1.00 1.00 1.00 0.17 1.00 0.61 0.03 0.96 83643 211_____ 84038 1.00 1.00 1.00 _ _ 21+12 28+6 0.79 0.70 0.00 0.01 0.18 0.64 0.07 84139 0.61 31^{+8}_{-2} 5^{+2}_{-2} 84226 0.84 0.88 0.00 0.00 0.90 0.00 0.00 0.01 29^{+8}_{-6} 27^{+12}_{-4} 0.80 84239 0.78 0.23 0.52 0.00 0.95 0.93 0.17 44^{+8}_{-8} 22^{+10}_{-4} 84260 1.00 0.03 1.00 0.25 0.97 0.77 0.22 0.83 51^{+24}_{-26} 7^{+2}_{-2} 84282 0.87 0.88 0.05 0.06 0.88 0.07 0.07 0.11 19^{+8}_{-4} 84326 0.58 0.58 0.02 30^{+4}_{-2} 6^{+2}_{-2} 0.97 0.99 0.06 84338 0.10 0.98 0.03 0.03 0.02 28^{+2}_{-4} 22^{+2}_{-4} 0.98 0.95 84345 0.92 0.00 0.00 0.00 0.73 0.31 16^{+2}_{-2} 13^{+2}_{-2} 84380 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 24_{-8}^{+14} 84385 0.72 0.06 0.97 $32\substack{+10\\-6}$ 15^{+8}_{-4} 84401 0.87 0.76 0.37 0.29 0.90 0.43 0.38 0.32 22^{+10}_{-4} 19^{+10}_{-4} 84483 0.36 0.04 0.17 1.00 0.04 0.56 0.18 0.98 32^{+2}_{-4} 26^{+2}_{-4} 84625 1.00 0.03 0.00 1.00 0.00 1.00 0.00 1.00 85^{+2}_{-4} 66^{+4}_{-4} 0.09 84671 1.00 1.00 0.01 1.00 1.00 1.00 1.00 83^{+52}_{-18} 1.00 0.75 84680 1.00 _ _ _ _ 47^{+52}_{-4} 10^{+2}_{-2} 84687 0.73 0.70 0.44 0.06 0.75 0.02 0.01 0.01 21^{+10}_{-8} 36^{+2}_{-8} 18^{+6}_{-6}

84731

84745

0.37

0.99

0.00

0.83

0.50

0.04

0.01

0.48

0.05

0.88

0.48

0.28

0.50

0.06

0.00

0.50

Table C.2: - Continued. -

 12^{+12}_{-4}

Table C.2: - Continued. -HIP P_V $P_{v_{t,pec}}$ $P_{v_{l,pec}}$ $P_{v_{b,pec}}$ $P_{v_{pec}}$ P_U P_W $P_{v_{r,pec}}$ Vpec V_{t,pec} [km/s] [km/s] 21^{+2}_{-2} 24^{+4}_{-2} 84794 0.33 0.32 0.00 0.05 0.00 1.00 0.00 1.00 40^{+32}_{-12} 77^{+22}_{-22} 0.97 1.00 84946 _ _ 0.88 _ _ _ _ 85015 _ _ _ 1.00 1.00 1.00 _ $29^{+16}_{-8}\\22^{+2}_{-2}$ 15_4 85035 0.63 0.39 0.36 0.42 0.59 0.43 0.29 0.61 0.00 1.00 1.00 21^{+2}_{-2} 85112 0.08 0.06 0.89 0.00 0.00 32^{+24}_{-10} 28^{+16}_{-18} 0.45 85159 0.71 0.40 0.51 0.40 0.10 0.72 0.69 85162 0.91 0.04 0.94 0.00 0.39 0.87 0.81 0.00 30^{+4}_{-4} 20^{+2}_{-2} 48^{+2}_{-2} 0.95 39^{+4}_{-2} 85294 1.00 1.00 0.00 1.00 1.00 0.93 1.00 0.10 76^{+6}_{-10} 31^{+8}_{-8} 0.99 85331 1.00 1.00 0.02 1.00 1.00 1.00 17^{+14}_{-12} 0.47 0.25 0.65 85357 20^{+12}_{-8} $21\substack{+16\\-6}$ 85398 0.39 0.01 0.19 0.80 0.05 0.54 0.23 0.78 30^{+4}_{-12} 3^{+2}_{-2} 85409 0.77 0.71 0.19 0.04 0.85 0.07 0.08 0.02 85453 0.76 0.73 0.30 27^{+20}_{-4} _ _ _ _ _ _ 20^{+2}_{-2} 85530 0.98 0.87 0.00 _ _ _ _ _ 43_4 28^{+8}_{-6} 0.05 85560 1.00 0.51 1.00 0.63 0.98 0.99 0.98 17-10 32^{+12}_{-8} 85885 0.83 0.62 0.33 0.04 0.57 0.48 0.46 0.03 5^{+6}_{2} 26^{+8}_{-8} 85919 0.60 0.46 0.14 0.33 0.64 0.21 0.12 0.25 18^{+10}_{-6} 0.50 0.21 0.73 86023 _ _ _ _ _ $57^{+26}_{-20} \\ 81^{+8}_{-4}$ 55^{+38}_{-10} 1.00 0.97 1.00 0.23 86107 0.11 1.00 0.99 1.00 76^{+lpha}_{-8} 86153 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 27^{+8}_{-2} 86246 0.73 0.73 0.26 0.13 0.97 0.28 0.23 0.09 8^{+4}_{-2} 0.00 0.00 0.00 0.00 26^{+6}_{-6} 10^{+2}_{-2} 86269 0.55 0.57 0.54 0.00 21^{+2}_{-2} 20^{+2}_{-2} 86284 0.01 0.00 0.47 0.00 0.00 0.95 0.91 0.00 27^{+12}_{-8} 86450 0.61 0.00 0.24 0.89 0.39 0.47 0.00 0.99 18^{+4}_{-2} 6^{+2}_{-2} 86476 0.99 0.95 0.03 0.00 36+6 0.99 0.00 0.00 0.00 36+10 35⁺⁸ 86709 1.00 0.85 0.00 1.00 0.00 1.00 0.49 1.00 38^{+2}_{-2} 19^{+2}_{-2} 1.00 1.00 0.00 0.00 0.94 0.00 86732 1.00 0.44 17^{+6}_{-4} 86747 0.48 0.22 0.85 14^{+4}_{-4} 86807 _ _ _ _ _ 0.27 0.09 0.73 _ 86937 1.00 0.00 1.00 26^{+6}_{-4} _ _ _ 39^{+24}_{-12} 35^{+24}_{-10} 87099 0.84 0.02 0.74 0.85 0.10 0.86 0.78 0.83 23^{+18}_{-10} 20^{+10}_{-8} 0.47 87244 0.44 0.03 0.54 0.12 0.60 0.49 0.41 35^{+22}_{-4} 32^{+22}_{-8} 87251 0.86 0.01 0.05 0.96 0.06 0.94 0.04 1.00 20^{+2}_{-2} 21^{+4}_{-2} 87280 0.05 0.06 0.00 0.00 0.00 0.89 0.88 0.00 31^{+2}_{-2} 19^{+2}_{-2} 87379 1.00 1.00 0.00 0.00 0.94 1.00 0.00 1.00 $54^{+14}_{-12} \\ 42^{+2}_{-4}$ 22^{+26}_{-8} 87397 1.00 0.99 0.31 0.27 0.95 0.60 0.57 0.43 6^{+2}_{-2} 47^{+12}_{-20} 87430 1.00 1.00 0.09 0.01 1.00 0.00 0.00 0.02 87522 1.00 0.99 0.53 _ _ _ _ _ 22^{+16}_{-10} 87723 _ _ 0.63 0.25 0.87 _ _ _ _ 21^{+4}_{-2} 0.02 0.99 16^{+} 87728 0.03 0.00 0.18 0.00 0.00 0.00 18_{-6}^{+10} 87742 0.46 0.16 0.81 _ _ _ _ 69^{+24}_{-16} 87747 1.00 1.00 0.28 0.95 0.90 1.00 1.00 0.04 62^{+18}_{-22} 341^{+38}_{-96} 290^{+98}_{-62} 87788 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 19^{+10}_{-6} 0.56 0.25 87809 0.51

 15^{+4}_{-2}

 37^{+6}_{-4} 47^{+6}_{-14}

 18^{+2}_{-2}

 42^{+4}_{-6}

 39^{+28}_{-8} 45^{+6}_{-4}

 $25\substack{+14\\-10}$

_

12

 15^{+2}_{-2}

 16^{+8}_{-2}

 $17^{+2}_{-2}\\19^{+10}_{-6}$

 2^{+2}_{-2}

37-22

 11^{+2}_{-2}

 23^{+18}_{-8}

 18^{+8}_{-6}

 30^{+12}_{-8}

0.74

0.03

0.87

0.99

0.02

0.00

0.12

0.01

0.07

0.02

1.00

0.01

1.00

1.00

0.00

1.00

0.84

1.00

0.47

_

87812

87839

87864

87866

87869

87886

87928

88004

88055

88147

88156

0.00

0.98

0.93

0.00

1.00

0.01

1.00

0.46

_

_

0.00

0.03

0.12

0.00

0.00

0.91

0.00

0.07

_

0.26

0.02

1.00

1.00

0.01

0.25

0.04

0.04

_

_

0.00

0.98

0.95

0.00

1.00

0.12

1.00

0.07

_

0.03

0.14

0.43

0.18

0.53

0.01

0.94

0.01

0.66

0.51

0.95

0.00

0.11

0.22

0.00

0.54

0.01

0.94

0.00

0.66

0.50

0.01

						ntinueu. –				
HIP	$P_{v_{pec}}$	P _U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	<i>v_{pec}</i> [km/s]	<i>v_{t,pec}</i> [km/s]
88171	_	_	_	_	_	0.65	0.66	0.16	_	24^{+16}_{-6}
88201	_	_	_	_	_	0.47	0.05	0.76	_	17^{+14}_{-6}
88258	0.75	0.01	0.77	0.17	0.19	0.80	0.78	0.16	31^{+16}_{-10}	26^{+10}_{-8}
88294	0.76	0.38	0.03	0.00	0.53	0.07	0.06	0.00	28^{+4}_{-10}	14^{+2}_{-3}
88305	1.00	1.00	0.01	1.00	1.00	1.00	1.00	1.00	58 ⁺⁸	45^{+6}_{-2}
88328	_	_	_	_	_	0.53	0.40	0.42	_4 _	18^{+12}
88346	0.39	0.00	0.44	0.01	0.53	0.00	0.00	0.00	24 ⁺⁸	6^{+2}
88380	0.05	0.00	0.08	0.10	0.00	0.60	0.32	0.11	19^{+4}	19^{+4}
88434	0.15	0.01	0.08	0.63	0.08	0.08	0.01	0.16	19^{+6}	9 ⁺⁴
88496	0.70	0.69	0.13	0.12	0.73	0.14	0.12	0.11	28^{+6}	5^{+2}
88518	1.00	0.80	1.00	0.07	1.00	1.00	1.00	1.00	62^{+6}	38^{+12}
88562	1 00	0.23	0.00	1 00	1 00	0.00	0.00	0.00	34^{+2}	13^{+2}
88620	_	_	_	_	_	1 00	0.99	0.33		60^{+38}
88652	0 99	0.92	0.08	0.21	0.88	0.15	0.55	0.00	34+4	7 ⁺²
88671	0.55	0.00	0.00	1.00	0.00	1.00	0.12	1 00	25^{+4}	$^{-2}_{25^{+4}}$
88714	0.01	0.00	0.00	0.12	0.00	0.00	0.02	1.00	17^{+2}	13^{+2}
88730	0.02	0.01	0.00	0.12	0.01	0.00	0.00	0.06	$\frac{1}{20^{+4}}$	6^{+2}
00730	0.97	0.07	0.11	0.00	0.05	1.00	1.00	0.00	30_{-2}	0_{-2}
00745	0.90	0.35	0.00	0.00	0.01	0.10	1.00	0.02	20^{-2}	$\frac{22}{10+2}$
00055	0.50	0.35	0.04	0.55	0.51	0.10	0.04	0.54	20_{-6}^{-6}	10_{-2}
00059	0.01	0.77	0.01	0.00	0.70	0.00	0.09	0.00	29-4	11_{-4} 10^{+8}
88900	_	_	_	-	_	0.53	0.49	0.17	10+4	19_{-10}^{+2}
88981	0.02	0.00	0.00	0.74	0.00	0.18	0.00	0.67	19^{+1}_{-2}	10^{+2}_{-4}
88984	_	_	-	-	-	0.74	0.59	0.76	-	28_{-8}^{+20}
89061	0.24	0.03	0.07	0.81	0.06	0.26	0.07	0.78	21^{++}_{-6}	14_{-2}^{++}
89217	0.09	0.01	0.05	0.50	0.02	0.09	0.09	0.04	17^{+4}_{-4}	9^{+2}_{-2}
89302	_	_	_	_	-	0.61	0.52	0.44	_	21^{+0}_{-8}
89366	—	_	_	_	—	0.72	0.69	0.02	_	21^{+0}_{-4}
89382	0.44	0.00	0.42	0.00	0.00	0.82	0.72	0.03	24^{+0}_{-6}	23^{+6}_{-6}
89386	1.00	0.07	0.99	1.00	0.47	1.00	1.00	1.00	36^{+4}_{-8}	28^{+2}_{-4}
89394	_	_	_	_	_	0.93	0.83	0.38	_	24^{+6}_{-4}
89397	_	_	_	-	-	1.00	0.99	0.47	_	30^{+10}_{-8}
89535	0.18	0.01	0.13	0.73	0.00	0.29	0.12	0.74	16^{+6}_{-6}	14^{+4}_{-2}
89553	-	-	_	-	-	0.84	0.83	0.01	-	26^{+10}_{-10}
89584	1.00	1.00	0.30	0.12	1.00	0.20	0.17	0.11	48^{+6}_{-10}	4^{+2}_{-2}
89683	0.97	0.04	0.00	1.00	0.00	1.00	0.02	1.00	35^{+10}_{-4}	34^{+6}_{-12}
89688	0.53	0.57	0.02	0.09	0.42	0.21	0.24	0.02	26^{+8}_{-4}	13^{+8}_{-4}
89743	0.68	0.41	0.05	0.21	0.62	0.11	0.04	0.19	28^{+6}_{-6}	9^{+2}_{-2}
89755	1.00	1.00	0.88	0.04	1.00	0.03	0.00	0.22	53^{+6}_{-4}	9^{+2}_{-4}
89789	1.00	0.02	0.71	0.75	0.07	0.77	0.14	0.89	30^{+6}_{-4}	23^{+14}_{-4}
89828	1.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	39^{+2}_{-2}	4^{+2}_{-2}
89859	_	_	_	_	_	0.65	0.50	0.26	_	21^{+6}_{-4}
89866	_	_	_	_	_	0.52	0.32	0.70	_	18^{+8}_{-4}
89902	_	_	_	_	_	1.00	1.00	1.00	_	35^{+6}_{-4}
89956	0.49	0.43	0.13	0.15	0.55	0.11	0.09	0.12	25^{+8}_{-4}	6^{+2}_{-2}
89975	0.83	0.84	0.02	0.07	0.33	0.84	0.87	0.00	32^{+6}_{10}	25^{+4}_{-12}
90001	0.74	0.63	0.10	0.14	0.70	0.15	0.13	0.13	29^{+6}	3^{+2}_{2}
90018	_	_	_	_	_	1.00	1.00	0.33		50^{+26}_{-12}
90231	0.72	0.44	0.17	0.68	0.74	0.00	0.00	0.00	31+14	10^{+2}
90314	1.00	0.96	0.23	1.00	0.80	1.00	0.98	1.00	62^{+46}_{-4}	57^{+46}
90452	_	_	_	_	_	0.76	0.73	0.24		34^{+22}
90494	0 55	0 49	0.00	0.00	0.60	0.00	0.00	0.00	25^{+2}	9 ⁺²
90407	0.01	0.00	0.05	0.00	0.00	0.65	0.47	0.00	$\frac{-9}{-8}$ 20 ⁺²	⁹ -2 19 ⁺²
90507		_	_	_		0.05	0.77	0.00		23^{+12}
90604	በ 6ጾ	0.28	0.21	0.02	0.20	0.75	0.02 0.48	0.90	27 ⁺⁶	10^{-4}
00610	0.00	0.20	0.21	0.02	0.20	0.57	0.40	0.05	$\frac{2}{28}$ -6	¹⁹ -6 30 ⁺¹⁴
90010	0.57	0.05	0.04	0.15	0.08	0.74	0.70	0.17	∠o12	30_{-10}

Table C.2: - Continued. -

HIP $P_{v_{r,pec}}$ $P_{v_{t,pec}}$ $P_{v_{l,pec}}$ $P_{v_{pec}}$ P_U P_V P_W $P_{v_{b,pec}}$ Vpec V_{t,pec} [km/s] [km/s] 4^{+2}_{-2} 39^{+4}_{-6} 90692 1.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 32^{+24}_{-8} 64^{+4}_{-4} 32^{+18}_{-8} 13^{+2}_{-2} 0.05 0.15 90761 0.67 0.69 0.18 0.18 0.87 0.88 90797 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 $23\substack{+10\\-6}$ 21^{+8}_{-6} 90804 0.37 0.00 0.46 0.27 0.01 0.67 0.56 0.28 -6 0.50 19^{+14}_{-10} 90871 0.52 0.42 _ _ _ _ _ 59^{+34}_{-22} 1.00 0.85 90886 _ _ _ _ 1.00 _ 23^{+16}_{-10} 90927 0.64 0.45 0.74 _ _ 29^{+22}_{-8} 0.70 0.09 28^{+16}_{-4} 90950 0.61 0.03 0.19 0.78 0.78 0.21 0.03 26^{+8}_{-6} 19^{+4}_{-4} 0.00 90971 0.57 0.75 0.14 0.21 0.55 0.51 20^{+14}_{-6} 3^{+2}_{-2} 0.58 0.06 90992 0.56 ${}^{62^{+6}_{-6}}_{22^{+8}_{-6}}$ 91003 1.00 0.99 0.39 0.13 0.99 0.15 0.11 0.10 21^{+6}_{-4} 91004 0.35 0.00 0.49 0.00 0.00 0.65 0.63 0.00 91049 1.00 1.00 0.85 0.99 0.98 1.00 1.00 0.05 100^{+40}_{-20} 91^{+62}_{-24} 0.64 25^{+12}_{-8} 23^{+6}_{-4} 91066 0.52 0.07 0.49 0.08 0.08 0.10 0.62 35^{+2}_{-2} 10^{+2}_{-2} 0.00 0.00 91233 1.00 1.00 1.00 0.00 0.00 0.00 123+60 91292 0.73 1.00 1.00 23⁺¹² 27^{+4}_{-4} 0.92 0.03 91302 0.80 0.10 0.60 0.83 0.66 0.46 21^{+22}_{-8} 19^{+14}_{-6} 0.40 0.04 0.36 0.51 0.14 0.53 0.44 0.52 91352 116^{+12}_{-10} 35^{+14}_{-2} 21+20 1.00 0.54 91359 1.00 1.00 0.99 1.00 0.56 0.42 35-10 91373 0.95 0.94 0.00 0.04 0.00 1.00 1.00 0.00 91444 1.00 0.21 1.00 48^{+24}_{-8} 0.88 0.05 0.08 0.06 41^{+14}_{-12} 3^{+2}_{-2} 91477 0.92 0.26 0.94 0.07 73^{+4}_{-10} 54^{+8}_{-10} 1.00 0.00 91594 1.00 0.11 1.00 1.00 1.00 0.11 91599 1.00 1.00 0.13 0.00 1.00 0.99 0.98 0.00 53^{+4}_{-2} 29^{+8}_{-6} 91659 1.00 1.00 0.00 0.01 0.00 32^{+2}_{-2} 14^{+2}_{-2} 1.00 0.01 0.00 20^{+10}_{-2} 91713 0.52 0.37 0.82 _ _ _ _ _ 24^{+14}_{-10} 91828 _ _ 0.72 0.02 _ _ 0.71 20^{+2}_{-2} 0.00 91845 0.01 0.01 0.00 0.00 0.90 0.83 0.00 20^{+} 55^{-2}_{-4} 25 91851 1.00 1.00 0.07 0.93 0.99 0.76 0.50 0.86 46^{+6}_{-4} 91898 1.00 1.00 1.00 0.93 1.00 1.00 0.92 1.00 35^{+10}_{2} 27^{+6}_{-2} 9^{+2}_{-2} 91974 0.63 0.63 0.00 0.00 0.67 0.00 0.00 0.00 29_{-4}^{+6} 0.49 91988 0.82 0.05 0.04 0.57 0.13 0.00 0.41 14^{+4}_{-2} 26^{+12}_{-6} 25^{+10}_{-4} 92038 0.53 0.00 0.64 0.00 0.01 0.79 0.81 0.01 37^{+4}_{-6} 19^{+2}_{-2} 92041 1.00 0.74 0.60 0.99 0.96 1.00 0.00 0.00 29^{+2}_{-2} 27^{+2}_{-2} 92056 1.00 1.00 0.00 0.00 0.00 1.00 0.00 1.00 56^{+24}_{-14} 92130 1.00 1.00 0.84 _ _ _ _ _ _ 23^{+4}_{-2} 24^{+8}_{-8} 92133 0.24 0.00 0.20 0.91 0.01 0.79 0.00 1.00 20^{+} 20^{+6}_{-4} 92136 0.41 0.03 0.26 0.69 0.05 0.61 0.40 0.67 25^{+4}_{-4} 92175 0.48 0.00 0.76 0.00 0.01 0.89 0.76 0.00 21^{+4}_{-2} 25^{+4}_{-6} 0.52 0.02 0.93 23^{+4}_{-4} 92178 0.54 0.00 0.00 0.78 0.21 271^{+146}_{-72} 272^{+157}_{-64} 92202 1.00 1.00 1.00 1.00 0.89 1.00 1.00 1.00 92301 0.71 0.38 0.00 0.15 0.32 0.03 0.03 0.02 26^{+2}_{-2} 13^{+2}_{-2} 56+8 56^{+8}_{-6} 92390 1.00 0.00 1.00 1.00 0.00 1.00 1.00 1.00 0.86 25^{+10}_{-6} 25_{-6}^{+8} 0.00 92391 0.48 0.62 0.14 0.01 0.85 0.16 37^{+8}_{-6} 19^{+10}_{-4} 0.97 0.98 0.01 0.60 0.02 92434 0.01 0.91 0.54 17^{+8}_{-12} 11^{+8}_{-4} 92478 0.30 0.07 0.14 0.53 0.18 0.27 0.04 0.43 36^{+8}_{-12} 31^{+14}_{-4} 92488 0.94 0.74 0.76 0.31 1.00 0.99 0.84 0.14 36^{+2}_{-2} 92512 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 37^{+2}_{-2} 92525 71^{+26}_{-14} 1.00 1.00 1.00 _ 45^{+8}_{-12} 44^{+10}_{-6} 0.00 0.97 92747 1.00 1.00 0.00 1.00 1.00 0.98 31⁺²⁰ 92758 0.84 0.79 _ 0.20 _ 30^{+10}_{-8} 12^{+2}_{-2} 92787 _ _ 0.96 0.93 0.68 _ _ _ 18^{+2}_{-2} 92791 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98

 $86^{+10}_{-14} \\ 40^{+2}_{-2}$

1.00

1.00

 39^{+2}_{-2} 30^{+2}_{-2}

92845

92919

1.00

1.00

1.00

1.00

0.00

0.00

1.00

1.00

1.00

1.00

1.00

1.00

0.00

1.00

HIP $P_{v_{r,pec}}$ $P_{v_{t,pec}}$ $P_{v_{l,pec}}$ $P_{v_{b,pec}}$ $P_{v_{pec}}$ P_U P_V P_W v_{pec} V_{t,pec} [km/s] [km/s] 31^{+2}_{-2} 50^{+4}_{-4} 93015 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 26^{+2}_{-2} 20^{+2}_{-2} 17+6 0.04 0.69 93034 0.88 0.01 0.32 0.04 0.41 0.02 19^{+2}_{-2} 93051 0.01 0.00 0.03 0.00 0.00 0.78 0.56 0.00 40^{+2}_{-2} 22^{+2}_{-4} 1.00 0.00 1.00 1.00 1.00 0.93 0.65 0.53 93111 22^{+8}_{-6} 20^{+10}_{-6} 93118 0.35 0.00 0.10 0.92 0.01 0.58 0.16 0.84 18^{+4}_{-2} 15^{+4}_{-4} 93132 0.04 0.00 0.00 0.41 0.00 0.19 0.00 0.64 25^{+4}_{-8} 25⁺⁶ 93234 0.53 0.00 0.79 0.00 0.00 0.93 0.92 0.01 21^{+4}_{-2} 22^{+2}_{-2} 93279 0.09 0.16 0.00 0.00 0.00 0.97 0.96 0.00 27^{+2}_{-2} 16^{+2}_{-2} 93340 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 $40^{+38}_{-10}\\56^{+8}_{-6}$ 41^{+40}_{-8} 0.85 0.95 93396 0.77 0.63 0.27 0.05 0.88 0.86 46^{+12}_{-6} 93417 1.00 1.00 0.34 0.00 1.00 1.00 1.00 0.00 93449 0.97 0.41 0.06 0.97 0.84 0.53 0.10 0.65 34^{+6}_{-4} 18^{+2}_{-4} 93510 1.00 1.00 0.39 51^{+24}_{-14} _ 33^{+12}_{-12} 30^{+14}_{-6} 0.80 0.01 0.84 0.36 0.14 0.89 0.53 93537 0.86 25^{+10}_{-8} 20^{+10}_{-6} 0.08 93581 0.48 0.38 0.12 0.06 0.54 0.58 0.11 13^{+2}_{-2} 0.87 93602 0.01 0.00 21^{+2}_{-2} 93629 _ _ _ _ _ 1.00 1.00 0.01 _ 95^{+24}_{-36} _ _ 1.00 1.00 1.00 _ 93631 _ _ _ $22^{+2}_{-2} \\ 41^{+8}_{-4}$ 13^{+2}_{-2} 0.09 0.65 93642 0.00 0.00 0.00 0.00 0.00 0.00 5^{+2}_{-2} 93796 1.00 1.00 0.76 0.00 1.000.00 0.00 0.00 30^{+6}_{-4} 93867 0.88 0.02 0.75 0.12 0.00 1.00 1.00 0.12 28^{+6}_{-2} 0.28 19^{+4}_{-4} 18^{+2}_{-4} 0.00 0.10 0.30 0.00 0.52 0.28 93892 0.13 23^{+12}_{-6} 93895 0.65 0.61 0.34 _ _ _ _ 28^{+14}_{-8} 26^{+28}_{-4} 93934 0.63 0.17 0.69 0.58 0.09 0.81 0.77 0.51 20^{+4} 93941 0.76 0.62 0.04 _ _ _ _ _ 21_{-6}^{+14} _ _ 93952 _ _ _ 0.56 0.59 0.24 19^{+4}_{-4} 17^{+4}_{-2} 0.05 0.01 0.69 0.52 93974 0.00 0.00 0.35 0.02 27_{-6}^{+10} 94014 0.88 0.83 0.46 27_{-6} 26_{-10}^{+12} 33^{+6}_{-2} 94103 1.00 0.12 1.00 0.42 0.33 0.84 0.78 0.45 18^{+2}_{-2} 94141 0.01 0.00 0.08 0.00 0.00 0.56 0.52 0.00 19^{+2}_{-2} 29^{+4}_{-4} 19^{+4}_{-4} 0.75 0.23 0.39 0.00 0.37 0.56 0.50 0.00 94157 29^{+20}_{-10} 94198 0.79 0.57 0.90 22^{+4}_{-4} 94260 0.24 0.05 0.00 0.57 0.00 0.74 0.24 0.64 20^{+4}_{-4} 32^{+2}_{-2} 3^{+2}_{-2} 94344 1.00 1.00 0.00 0.65 1.00 0.00 0.00 0.00 22^{+8}_{-6} 15^{+4}_{-4} 0.37 0.11 0.28 0.03 0.41 0.79 94356 0.20 0.27 20^{+2}_{-2} 17^{+2} 94385 0.01 0.00 0.00 0.98 0.00 0.19 0.00 1.00 58+12 94391 1.00 1.00 1.00 _ 20^{+4}_{-2} 23^{+6}_{-2} 94434 0.35 0.01 0.27 0.00 0.01 0.66 0.62 0.00 0.49 31^{+6}_{-2} 22^{+6}_{-6} 94445 0.98 0.96 0.00 0.01 0.77 0.67 0.01 42^{+10}_{-6} 94492 1.000.86 1.00_ _ _ _ _ _ 20^{+6}_{-8} 94500 _ _ _ _ _ 0.61 0.53 0.17 _ 35^{+2}_{-2} 94528 1.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 13^{+2}_{-2} 18,+2 94589 0.65 0.64 0.00 94716 34^{+10}_{-6} 32^{+10}_{-4} 0.97 0.93 0.02 0.47 0.02 1.00 1.000.28 32^{+20}_{-8} 28^{+4}_{-6} 27^{+22}_{-10} 0.47 0.67 0.80 94730 0.72 0.04 0.16 0.04 0.84 17^{+4}_{-2} 15^{+4}_{-2} 94740 0.69 0.00 0.76 0.56 0.36 0.33 0.12 0.14 17^{+4}_{-4} 94747 0.02 0.00 0.00 0.99 0.00 0.18 0.00 1.00 38^{+2}_{-2} 94761 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 63^{+2}_{-2} 33_{-4}^{+16} 94843 1.00 0.18 1.00 _ _ _ _ _ _ 33^{+8}_{-12} 94859 _ _ _ 0.97 0.96 0.43 _ _ _ 164^{+8}_{-4} 1.00 1.00 1.00 1.00 1.00 48^{+6}_{-4} 94899 1.00 0.35 1.00 105^{+22}_{-22} 109^{+26}_{-22} 1.00 0.70 0.15 1.00 0.31 94934 1.00 0.13 1.00 30^{+12}_{-6} 38^{+8}_{-10} 94937 0.99 0.04 0.00 1.00 0.52 0.97 0.02 1.00 19^{+10}_{-2} 13^{+2}_{-2} 21^{+8}_{-8} 95099 0.35 0.02 0.33 0.02 0.06 0.52 0.51 0.05 0.86 95138 _ _ _ _ _ 0.15 0.01 _

Table C.2: - Continued. -

HIP	$P_{v_{pec}}$	P_U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	<i>v_{pec}</i> [km/s]	v _{t,pec} [km/s]
0.5251						0.07	0.01	0.00		46+32
95251	_ 0.22	0.05	0.01	-	- 0.01	0.97	0.01	0.99	- 23 ⁺²	20^{+0}
95300	0.22	0.03	0.01	0.00	0.01	0.70	0.47	0.00	25_{-2}	20_{-4} 20^{+12}
05370	0.40	0.05	0.00	0.40	0.20	0.50	0.45	0.00	23_{-8}	20_{-6} 10 ⁺²
95572	0.09	0.10	0.00	0.00	0.00	0.05	0.00	0.00	23_{-2} 18 ⁺²	19_{-2}
05524	1 00	1 00	1.00	1.00	1.00	1.00	1.00	1.00	10_{-2} 81 ⁺²⁴	-4 74 ⁺²⁴
95524	1.00	1.00	1.00	1.00	1.00	0.84	0.70	0.47	01-12	$^{74}-16$ 31 $^{+22}$
95551	0.84	0.32	0.81	0.00	0.80	0.04	0.79	0.47	37 ⁺⁸	6^{+2}
95551	0.04	0.52	0.01	0.00	0.09	0.00	0.00	0.00	26^{+14}	0^{-2}_{-2}
95648	_	_	_	_	_	0.14	0.03	0.24	20_8	³ -2 10 ⁺⁴
95702	1 00	0.98	1 00	0.24	1 00	1.00	1.00	1 00	259+4	46^{+16}
95750	_	_	_	_	_	0.62	0.59	0.45	8	22^{+14}
95818	0 99	0.00	1 00	0.29	0.87	0.83	0.64	0.13	36 ⁺⁸	21^{+4}
95873	1.00	1.00	0.68	0.08	1.00	1.00	1.00	0.29	49^{+4}	30^{+8}
95911	_	_	_	_	_	0.92	0.90	0.07		39^{+34}
95952	0.33	0.00	0.38	0.00	0.01	0.69	0.67	0.01	22^{+10}	21^{+8}
96003	1.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00	33^{+4}	32^{+2}
96045	_	_	_	_	_	0.85	0.80	0.61		30^{+22}
96115	1.00	0.73	1.00	1.00	1.00	1.00	1.00	1.00	160^{+20}	112^{+16}
96130	1.00	0.97	0.03	0.98	1.00	0.05	0.03	0.23	40 ⁺⁸	11^{+2}
96132	_	_	_	_	_	0.74	0.25	0.20	-4	19^{+4}_{-2}
96254	0.70	0.20	0.63	0.64	0.62	0.43	0.06	0.71	32^{+16}_{-12}	15^{+12}_{-2}
96357	_	_	_	_	_	1.00	0.99	0.41	- 12	56^{+46}_{-14}
96362	0.37	0.43	0.01	0.04	0.00	0.66	0.63	0.03	23 ⁺⁸	21^{+10}
96428	0.99	0.00	1.00	0.22	0.89	0.79	0.18	0.53	35^{+4}_{6}	20^{+2}
96546	1.00	1.00	0.01	1.00	0.75	1.00	1.00	0.64	40^{+4}_{-2}	32^{+8}_{4}
96599	1.00	0.99	1.00	0.98	1.00	1.00	1.00	1.00	396_{-14}^{-26}	92^{+54}_{-48}
96693	1.00	1.00	0.00	0.00	0.04	1.00	1.00	0.00	35^{+2}_{-4}	32^{+2}_{-2}
96700	0.97	0.64	0.03	0.00	0.74	0.15	0.11	0.00	29^{+2}_{-2}	13_{-2}^{-2}
96825	1.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00	29^{+2}_{-2}	28^{+2}_{-2}
96860	_	_	_	_	_	1.00	0.03	1.00	_	33_{-6}^{+16}
96910	_	_	_	_	_	0.97	0.01	0.94	_	23^{+4}_{-4}
96966	0.98	0.98	0.03	0.01	0.60	0.97	0.96	0.00	37^{+6}_{-6}	26^{+8}_{-4}
96986	_	_	_	_	_	1.00	0.32	1.00	_	49^{+18}_{-14}
97006	1.00	0.00	1.00	1.00	1.00	0.95	0.00	1.00	39^{+2}_{-2}	21^{+4}_{-2}
97045	0.45	0.04	0.34	0.84	0.52	0.17	0.09	0.33	25^{+6}_{-6}	10^{+4}_{-2}
97084	-	_	_	_	_	0.58	0.61	0.05	_	20^{+12}_{-6}
97135	1.00	0.76	1.00	1.00	0.50	1.00	1.00	1.00	99^{+58}_{-26}	96^{+44}_{-42}
97198	-	_	_	-	_	1.00	0.60	1.00	_	47^{+8}_{-10}
97201	0.66	0.63	0.07	0.28	0.03	0.80	0.84	0.27	31^{+22}_{-12}	29^{+22}_{-12}
97246	0.84	0.60	0.55	0.02	0.82	0.09	0.06	0.02	34^{+10}_{-10}	12^{+2}_{-2}
97260	0.46	0.13	0.00	0.93	0.54	0.00	0.00	0.00	25^{+6}_{-4}	7^{+2}_{-2}
97275	0.49	0.22	0.25	0.16	0.52	0.09	0.07	0.12	24^{+10}_{-8}	4^{+2}_{-4}
97365	0.21	0.00	0.12	1.00	0.03	0.34	0.00	1.00	22^{+2}_{-4}	17^{+2}_{-2}
97394	1.00	1.00	0.00	1.00	1.00	0.09	0.02	0.21	106^{+4}_{-4}	10^{+6}_{-4}
97395	-	_	_	—	_	1.00	0.28	1.00	-	51^{+24}_{-18}
97402	1.00	0.00	0.00	1.00	0.00	1.00	0.00	1.00	37^{+4}_{-2}	36^{+4}_{-2}
97432	1.00	0.76	1.00	0.01	0.99	1.00	1.00	0.47	38^{+2}_{-2}	26^{+4}_{-2}
97450	1.00	0.92	0.09	1.00	0.95	1.00	0.02	1.00	37^{+4}_{-4}	22^{+2}_{-2}
97475	_	_	_	_	_	1.00	1.00	0.31	_	34^{+20}_{-6}
97518	_	_	_	_	_	0.96	0.96	0.34	_	51^{+40}_{-14}
97545	0.74	0.65	0.01	0.03	0.44	0.22	0.10	0.50	28^{+6}_{-2}	15^{+4}_{-2}
97560	0.92	0.92	0.00	0.00	0.09	0.86	0.85	0.00	30 ⁺⁶	23 ⁺⁶
97611	0.35	0.00	0.69	0.29	0.01	1.00	1.00	0.00	24^{+2}_{-4}	21^{+2}_{-2}
97618	_					0.66	0.19	0.90	_	22^{+8}_{-10}

Table C.2: - Continued

				Table C	z: – Cor	ntinueu. –				
HIP	$P_{v_{pec}}$	P _U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	<i>v_{pec}</i> [km/s]	v _{t,pec} [km/s]
97678	_	_	_	_	_	1.00	1.00	0.22	_	53^{+24}_{-8}
97679	0.09	0.00	0.00	1.00	0.00	0.77	0.00	1.00	23^{+2}_{-2}	19^{+2}_{-2}
97680	0.20	0.02	0.08	0.96	0.00	0.45	0.10	0.95	20^{+8}_{-2}	17^{+4}_{-2}
97774	0.43	0.13	0.01	0.00	0.00	1.00	1.00	0.00	25^{+4}_{-2}	23^{+2}
97778	_	_	_	_	_	0.51	0.49	0.22		18^{+18}
97804	0.28	0.05	0.15	0.47	0.07	0.33	0.03	0.55	16^{+10}	13^{+10}
97845	1.00	0.00	1 00	0.00	1.00	0.99	0.84	0.20	61^{+6}	20^{-6}
97874	_	_	_	_	_	0.99	0.01	0.20	-2	56^{+40}
97886	0.48	0.42	0.00	0.00	0.00	0.55	0.55	0.00	25^{+2}	20^{+2}
07805	0.40	0.42	0.00	0.00	0.00	1.00	1.00	0.00	25_{-2}	20_{-2} 25^{+4}
97957	_	_		_		0.47	0.07	0.60		18 ⁺⁸
07070	1.00	0.04	0.84	0.67	1.00	0.77	0.07	0.00	31+4	10_{-4}
07005	0.05	0.04	0.04	0.07	0.00	1.00	1.00	0.02	20^{+2}	26^{+4}
97905	1.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00	29_{-4}	20_{-4}
90075	1.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00	39_{-2}^{+20}	34_{-2}
98085	0.54	0.04	0.52	0.05	0.19	0.02	0.10	0.08	27_{-8}	21_{-8}
98163	1.00	0.02	1.00	0.00	0.96	1.00	1.00	1.00	66_{-10}^{+3}	58_{-8}^{+10}
98242	0.21	0.01	0.65	0.34	0.07	0.19	0.04	0.42	23^{-2}_{-2}	10^{+0}_{-2}
98286	_	_	_	_	_	1.00	1.00	0.04	_ +2	28^{+4}_{-6}
98353	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	49^{+2}_{-4}	24^{+2}_{-2}
98360	0.49	0.20	0.12	0.38	0.22	0.61	0.50	0.05	25^{+0}_{-6}	19^{+4}_{-4}
98371	1.00	0.94	1.00	0.00	1.00	0.10	0.10	0.00	38^{+2}_{-2}	14^{+2}_{-4}
98377	0.84	0.86	0.12	0.62	0.33	0.95	0.94	0.71	44^{+28}_{-18}	40^{+32}_{-16}
98388	_	_	_	-	-	0.39	0.00	0.98	_	18^{+2}_{-2}
98396	0.90	0.65	0.90	0.04	0.92	0.03	0.02	0.02	52^{+24}_{-16}	8^{+2}_{-2}
98418	1.00	0.89	0.41	0.06	0.90	0.76	0.72	0.04	38^{+8}_{-2}	22^{+6}_{-6}
98443	—	—	—	_	—	1.00	1.00	0.45	_	47^{+24}_{-10}
98458	0.40	0.02	0.38	0.50	0.23	0.24	0.01	0.54	23^{+10}_{-8}	12^{+8}_{-2}
98610	1.00	0.11	0.76	0.00	0.00	1.00	1.00	0.00	31^{+2}_{-2}	26^{+2}_{-4}
98661	0.99	0.99	0.00	0.02	0.42	0.98	0.98	0.01	34^{+6}_{-4}	24^{+6}_{-4}
98738	0.95	0.00	0.00	1.00	0.00	0.77	0.00	1.00	27^{+2}_{-2}	20^{+2}_{-4}
98753	0.36	0.14	0.32	0.07	0.05	0.51	0.51	0.07	23^{+8}_{-6}	19^{+6}_{-4}
98762	_	—	_	_	_	1.00	1.00	1.00	_	79^{+40}_{-24}
98773	1.00	1.00	0.36	1.00	0.84	1.00	1.00	1.00	64^{+18}_{-14}	52^{+26}_{-6}
98817	1.00	1.00	0.00	0.00	0.45	1.00	1.00	0.00	78^{+8}_{-8}	75^{+10}_{-6}
98995	0.08	0.00	0.00	0.97	0.00	0.54	0.03	0.98	19^{+4}_{-2}	18_{-4}^{+2}
99005	0.26	0.20	0.04	0.06	0.05	0.53	0.46	0.05	20^{+8}_{-4}	19^{+6}_{-4}
99067	0.92	0.05	0.94	0.13	0.81	0.14	0.09	0.26	31^{+4}_{-8}	11^{+2}_{-2}
99070	_	_	_	_	_	0.73	0.05	0.88		30^{+36}_{-5}
99120	1.00	1.00	0.00	0.04	1.00	1.00	1.00	1.00	56^{+6}	38 ⁺²
99221	0.01	0.00	0.09	0.01	0.00	0.86	0.69	0.00	20^{+4}	20^{+2}
99234	0.56	0.31	0.05	0.03	0.54	0.09	0.02	0.13	26^{+4}	10^{+4}
99250	0.41	0.01	0.27	0.34	0.00	0.93	0.79	0.42	24^{+6}	23^{+4}
99283	0.90	0.00	0.97	0.02	0.87	0.05	0.03	0.03	$\frac{-}{31^{+8}}$	10^{+2}
99203	0.30	0.00	0.00	1.00	0.07	1.00	0.05	1.00	24^{+2}	$\frac{10^{-2}}{24^{+2}}$
00310	0.52	0.02	0.00	1.00	0.00	0.28	0.00	0.01	2- 2	24-4 16 ⁺²
00363						0.20	0.05	0.91		22^{+6}
99303	1.00	0.11	0 50	0.20	0.20	1.00	0.10	1.00	- 22+2	23_{-6}
99435	1.00	1.00	0.56	0.30	1.00	1.00	0.11	0.01	53_{-6}	$\frac{24}{-4}$
99921	1.00	1.00	0.99	0.03	1.00	1.00	0.01	0.01	50_2	2 25 ⁺⁶
99546	-	-	-	-	-	1.00	0.84	0.88	- 	25_{-2}^{+3}
99580	1.00	0.06	0.96	1.00	0.93	1.00	0.14	1.00	52^{+10}_{-6}	35^{+10}_{-8}
99618	0.54	0.19	0.41	0.08	0.02	0.84	0.85	0.09	25_{-6}^{+10}	24_{-4}^{+10}
99670	0.30	0.07	0.10	0.54	0.32	0.26	0.11	0.35	24^{+2}_{-4}	9^{+12}_{-4}
99943	-	-	-	_	_	1.00	1.00	0.07	_	74_{-20}^{+40}
99953	0.52	0.48	0.01	0.00	0.00	0.99	0.96	0.00	25^{+0}_{-4}	24^{+4}_{-6}
100005	_	_	_	_	_	0.96	0.55	1.00	_	25^{+4}_{-6}

Table C.2: - Continued. -

 $P_{v_{r,pec}}$ $P_{v_{t,pec}}$ $P_{v_{l,pec}}$ $P_{v_{b,pec}}$ HIP $P_{v_{pec}}$ P_U P_V P_W Vpec V_{t,pec} [km/s] [km/s] ${}^{31^{+18}_{-12}}_{43^{+2}_{-4}}$ 30^{+18}_{-8} 100088 0.66 0.58 0.12 0.05 0.01 0.89 0.87 0.05 1.00 100110 1.00 1.00 _ _ _ _ _ _ 25^{+4}_{-4} 26^{+2}_{-4} 100142 0.61 0.58 0.00 0.00 0.00 1.00 0.99 0.00 63^{+2}_{-2} 35_4 100172 1.00 0.00 1.00 1.00 1.00 1.00 0.00 1.00 106^{+61}_{-39} 100180 1.00 1.00 1.00 _ _ _ _ _ 12^{+8}_{-2} 26^{+6}_{-6} 0.05 0.01 0.01 100296 0.60 0.76 0.42 0.23 0.23 30^{+10}_{-8} 28^{+14}_{-6} 100308 0.77 0.67 0.03 0.13 0.10 0.95 0.90 0.11 20^{+4}_{-2} 100314 0.80 0.23 0.59 100346 1.00 0.33 48^{+14}_{-18} _ _ _ _ _ 1.00_ _ _ _ _ _ 0.65 0.08 19^{+}_{-} 100376 0.45 32^{+6}_{-4} 100390 1.00 0.39 0.01 0.98 0.02 0.92 0.41 0.93 25^{+}_{-} 25^{+6}_{-6} 100391 0.44 0.02 0.53 0.35 0.23 0.21 0.06 0.40 14 100392 1.00 0.01 1.00 0.06 1.00 0.02 0.01 0.04 43^{+6}_{-4} 5^{+2}_{-4} 66^{+6}_{-6} 9^{+2}_{-2} 0.01 0.97 0.08 0.04 0.17 100409 1.00 1.00 1.00 14^{+2}_{-2} 12^{+2}_{-2} 100524 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.66 67^{+24}_{-20} 33^{+24}_{-14} 0.43 100534 _ _ 1.00 1.00 100556 _ _ _ _ _ 0.87 0.41 0.95 $55^{+14}_{-8} \\ 81^{+8}_{-2} \\ 30^{+6}_{-6}$ 55^{+10}_{-14} 1.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 100651 73^{+6}_{-6} 100684 1.00 1.00 0.97 1.00 0.99 1.00 1.00 1.00 5^{+2}_{-2} 100708 0.85 0.01 0.95 0.08 0.88 0.04 0.01 0.11 100845 _ 1.00 1.00 0.00 22^{+2}_{-2} 0.35 0.03 0.03 20^{+14}_{-6} 18^{+12}_{-6} 100866 0.33 0.10 0.49 0.50 0.10 44^{+22}_{-10} 100903 _ _ _ _ _ 1.00 0.82 1.00 _ 27^{+6}_{-4} 8^{+2}_{-2} 101112 0.65 0.08 0.74 0.08 0.55 0.10 0.07 0.14 0.99 29^{+6}_{-8} 22^{+10}_{-6} 101186 0.73 0.25 0.05 0.96 0.03 0.71 0.35 42^{+38} 101219 0.94 0.95 0.43 _ _ _ 15^{+2}_{-2} 12_4 0.03 0.00 0.00 0.59 0.00 0.14 0.45 101316 0.01 38_{-4}^{+4} ⊢4 101350 1.00 0.00 0.37 1.00 0.48 1.00 0.00 1.00 30^{+}_{-} 66^{+28}_{-16} 101412 1.00 1.00 0.04 1.00 0.02 1.00 1.00 1.00 66^{+}_{-} 14 101608 0.00 0.00 0.00 1.00 0.00 0.75 0.00 1.00 20^{+2}_{-2} 19^{+2}_{-2} 24^{+4}_{-6} 19^{+10}_{-4} 0.38 0.02 0.32 0.55 0.02 0.55 0.15 0.98 101634 25^{+8}_{-2} 25^{+6}_{-2} 101692 0.54 0.00 0.22 0.99 0.00 0.96 0.02 1.00 18^{+4}_{-4} 101790 0.53 0.54 0.11 _ _ _ _ _ 19^{+6}_{-2} 101796 _ _ _ _ _ 0.55 0.51 0.02 37^{+32}_{-12} 0.92 101832 _ _ _ _ _ 0.88 0.66 $27^{+24}_{-8}\\14^{+4}_{-2}\\22^{+2}_{-4}$ 24^{+26}_{-10} 0.53 0.50 0.12 0.26 0.13 0.70 0.67 0.25 101841 11^{+6} 101870 0.07 0.01 0.00 0.60 0.00 0.19 0.01 0.47 101909 0.16 0.00 0.00 0.06 0.00 0.92 0.85 0.08 21^{+}_{-} 26^{+10}_{-4} 25^{+10}_{-4} 101921 0.56 0.46 0.01 0.04 0.01 0.94 0.93 0.14 $25\substack{+10\\-4}$ 25^{+8}_{-6} 0.00 101923 0.50 0.53 0.15 0.00 0.89 0.87 0.21 27^{+4}_{-4} 101938 1.00 1.00 0.00 _ _ _ _ _ 47^{+2}_{-2} 37_4 101953 1.00 1.00 0.00 0.05 1.00 1.00 1.00 1.00 38^{+22}_{-12} 33^{+24}_{-10} 101967 0.85 0.02 0.90 0.83 0.22 0.86 0.43 0.93 21_4 0.78 0.71 102000 0.00 $\begin{array}{r} 87^{+18}_{-10} \\ 31^{+8}_{-4} \end{array}$ 85^{+18}_{-8} 1.00 1.00 1.00 1.00 0.00 1.00 1.00 102096 1.00 28-6 102377 0.92 0.00 0.00 1.00 0.00 0.99 0.00 1.00 28^{+10}_{-6} 0.69 102387 1.00 1.00 27^{+14}_{-6} 22^{+14}_{-6} 102440 0.55 0.06 0.22 0.83 0.03 0.70 0.03 0.93 $49^{+36}_{-12} \\ 36^{+2}_{-2}$ 45^{+26}_{-14} 102504 0.96 0.59 0.93 0.74 0.14 1.00 0.99 0.84 102531 1.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 36^{+2}_{-2} 17^{+2}_{-2} 12^{+2}_{-4} 0.00 0.00 0.00 0.52 0.00 0.70 102589 0.01 0.00 44^{+6}_{-6} 9^{+6}_{-2} 0.99 0.21 0.98 0.20 0.27 102609 1.00 0.14 0.15 $70_{-26}^{+\overline{36}}$ 102641 1.00 1.00 0.45 _ _ _ _ _ 73^{+12}_{-6} 20^{+4}_{-4} $90^{+4}_{-10}\\21^{+6}_{-4}$ 0.00 102658 1.00 1.00 0.85 1.00 1.00 1.00 1.00 102772 0.17 0.00 0.28 0.05 0.00 0.66 0.28 0.42

Table C.2: - Continued. -

					z. – Cor	ntinueu. –				
HIP	$P_{v_{pec}}$	P _U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	<i>v_{pec}</i> [km/s]	v _{t,pec} [km/s]
102804	_	_	_	_	_	1.00	0.00	1.00	_	32^{+6}_{-2}
102912	1.00	1.00	0.00	0.04	0.00	1.00	1.00	0.09	43^{+2}_{-6}	43^{+4}_{-4}
102916	0.78	0.81	0.00	0.00	0.36	0.57	0.00	1.00	28^{+6}_{-2}	18^{+2}_{-2}
102918	0.53	0.55	0.04	0.25	0.03	0.72	0.69	0.24	28^{+22}_{-10}	26^{+20}_{-10}
102943	_	_	_	_	_	0.73	0.69	0.08	-10	21^{+6}
102950	0.77	0.75	0.00	0.09	0.57	0.00	0.00	0.21	28+4	14^{+2}_{-2}
102953	0.10	0.05	0.07	0.45	0.11	0.19	0.06	0.54	16^{+4}	14^{+2}
102978	0.78	0.14	0.00	0.14	0.00	1.00	0.00	1.00	26^{+2}_{-2}	22^{+2}
102979	_	_	_	_	_	0.10	0.04	0.78		13^{+2}
102999	1.00	0.45	1.00	1.00	0.95	1.00	1.00	1.00	94^{+48}	77+44
103035	0.39	0.07	0.00	0.00	0.00	1.00	1.00	0.00	24^{+2}	23 ⁺²
103049	_	_	_	_	_	1 00	0.00	1 00		23^{+2}
103141	0.24	0.08	0.03	0 48	0.03	0.71	0.27	0.60	22^{+4}	20^{-2}
103242	0.21	0.28	0.00	0.09	0.03	0.74	0.21	0.00	21^{+6}	20_{-2} 21^{+6}
103263	1.00	1 00	0.00	0.00	0.00	1 00	1 00	0.00	43 ⁺⁴	42^{+2}
103358	0.63	0.62	0.00	0.00	0.00	0.82	0.82	0.00	$^{+3}-2$ 31 $^{+24}$	$\frac{-4}{30^{+26}}$
103330	0.05	0.02	0.00	0.00	0.10	0.02	0.02	0.15	23^{+2}	21^{+4}
103471	0.52	0.00	0.02	0.00	0.00	0.55	0.52	0.00	23_{-4}	$\frac{21-2}{31+18}$
103740	0.70	0.71	0.07	0.00	0.00	0.05	0.04	1 00	50_12	25^{-16}_{-16}
103740	0.10	0.06	0.01	033	0.01	0.90	0.15	1.00	- 19 ⁺⁸	$\frac{23-6}{14+6}$
102060	0.19	0.00	0.01	0.33	0.01	0.30	0.00	1.00	20^{-4}	$^{14}-6$
104020	0.90	0.52	0.51	0.52	0.05	1.00	0.00	1.00	52-2	21 - 4 22+4
104030	_ 1.00	1.00	-	- 0.57	_ 1.00	1.00	0.49	1.00		$\frac{32}{-6}$
104100	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	47_{-4}	10^{+2}
104172	0.00	0.00	0.00	1.00	0.00	0.81	0.00	1.00	20^{+}_{-2}	19_{-2}^{+4}
104205	1.00	0.88	0.00	0.01	0.00	0.96	0.95	0.01	30_{-2}^{+16}	23_{-4}
104201	0.87	0.14	0.98	0.02	0.02	1.00	0.99	0.17	34_{-4}^{+6}	32_{-4}
104268	0.53	0.00	0.82	0.00	0.07	0.00	0.00	0.00	20_{-6}^{+10}	9^{+-}_{-1}
104316	0.97	0.01	0.49	0.97	0.84	0.62	0.02	0.87	37_{-10}^{+	22_{-6}^{+32}
104320	0.96	0.72	0.02	1.00	0.02	1.00	0.95	1.00	50^{+10}_{-18}	50^{+02}_{-16}
104444	_	_	_	_	_	1.00	1.00	1.00	_	92^{+02}_{-16}
104523	_	-	_	-	_	0.33	0.00	0.64	- ac+18	17^{+1}_{-2}
104548	0.80	0.03	0.00	1.00	0.02	0.98	0.14	1.00	36^{+10}_{-12}	35_{-4}^{+2+}
104579	0.57	0.51	0.07	0.05	0.08	0.83	0.78	0.12	28_{-6}^{+10}	27^{+10}_{-6}
104609	0.14	0.09	0.00	0.43	0.00	0.47	0.19	0.59	18^{+0}_{-6}	17^{+0}_{-4}
104732	1.00	0.00	1.00	0.00	1.00	0.00	0.00	0.00	33^{+2}_{-2}	16^{+2}_{-2}
104814	0.99	0.00	1.00	0.12	0.97	0.07	0.00	0.22	32^{+4}_{-4}	8 ⁺⁴ ₋₂
104871	1.00	0.00	0.00	1.00	0.01	1.00	0.29	1.00	35^{+4}_{-2}	29^{+4}_{-4}
105016	0.99	0.98	0.02	0.26	0.01	1.00	0.99	0.43	49^{+20}_{-12}	44^{+32}_{-8}
105113	0.12	0.08	0.01	0.02	0.01	0.63	0.49	0.02	20^{+2}_{-4}	19^{+2}_{-2}
105164	0.97	0.10	0.08	0.00	0.00	1.00	1.00	0.00	29^{+4}_{-2}	29^{+4}_{-2}
105182	1.00	0.39	0.99	0.48	1.00	0.99	0.97	0.27	35^{+2}_{-2}	23^{+2}_{-2}
105186	1.00	0.06	0.30	1.00	0.06	1.00	0.13	1.00	60^{+22}_{-18}	57^{+22}_{-20}
105205	0.84	0.49	0.02	0.53	0.32	0.69	0.64	0.12	29^{+6}_{-4}	20^{+4}_{-4}
105268	0.39	0.37	0.00	0.00	0.00	0.96	0.97	0.00	24^{+4}_{-4}	24^{+4}_{-4}
105307	_	-	_	_	-	0.98	0.65	0.00	_	19^{+2}_{-2}
105353	-	_	_	_	-	1.00	0.99	0.99	-	68^{+38}_{-34}
105423	-	_	-	_	-	0.00	0.00	1.00	_	13^{+2}_{-2}
105581	_	_	_	_	_	1.00	1.00	0.72	_	61^{+16}_{-14}
105607	0.39	0.01	0.00	0.00	0.00	0.81	0.79	0.00	25^{+2}_{-2}	19^{+2}_{-2}
105633	_	_	_	_	_	0.97	0.08	1.00	_	58^{+42}_{-28}
105649	-	_	_	_	_	0.85	0.56	0.95	_	27^{+14}_{-8}
105669	0.22	0.24	0.04	0.06	0.05	0.67	0.65	0.04	20^{+4}_{-4}	20_{-4}^{+4}
105690	0.94	0.07	0.89	0.14	0.84	0.21	0.10	0.20	40^{+12}_{-10}	14^{+2}_{-2}
105709	0.96	0.84	0.18	0.07	0.10	0.98	0.96	0.09	43^{+24}_{-10}	41_{-8}^{+28}
105881	0.08	0.00	0.65	0.00	0.00	1.00	0.00	1.00	24^{+2}_{-2}	23^{+2}_{-2}

Table C.2: - Continued. -

 $P_{v_{pec}}$ $P_{v_{r,pec}}$ $P_{v_{t,pec}}$ $P_{v_{l,pec}}$ $P_{v_{b,pec}}$ HIP P_U P_V P_W Vpec V_{t,pec} [km/s] [km/s] ${}^{42^{+40}_{-14}}_{47^{+4}_{-4}}$ ${}^{42^{+34}_{-14}}_{46^{+4}_{-4}}$ 105912 0.79 0.37 0.77 0.55 0.09 0.90 0.81 0.87 0.00 0.01 105949 1.00 1.00 0.00 0.00 1.00 1.00 37^{+6}_{-6} 37^{+6}_{-6} 106052 1.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 34^{+4}_{-2} 106053 1.00 1.00 0.00 0.00 0.00 1.00 1.00 0.52 31+4 -4 24^{+6}_{-4} 0.00 0.00 0.00 10^{+2}_{-2} 106306 0.41 0.75 0.42 0.00 0.00 14^{+6}_{-4} 0.62 106343 0.31 0.03 _ _ _ _ _ 39^{+20}_{-14} _ _ 0.95 0.94 0.03 106448 13^{+2}_{-2} 0.00 11^{+2}_{-2} 106474 0.00 0.00 0.00 0.00 0.00 0.00 0.52 25^{+10}_{-2} 24^{+6}_{-6} 0.92 106564 0.53 0.01 0.48 0.08 0.00 0.84 0.40 $51^{+20}_{-16} \\ 84^{+6}_{-6}$ 31^{+30}_{-4} 0.98 0.08 0.98 0.61 0.87 0.35 0.90 106620 0.82 106643 1.00 1.00 0.22 0.13 0.00 1.00 1.00 1.00 83^{+4}_{-6} 106716 0.90 0.82 0.42 0.05 0.39 1.00 1.00 0.06 38^{+14}_{-12} 30^{+10}_{-6} 25^{+2}_{-2} 97^{+32}_{-16} 106723 0.52 0.19 0.00 0.49 0.22 0.00 0.00 0.00 12^{+2}_{-2} 97^{+20}_{-28} 106746 1.00 1.00 0.00 1.00 1.00 0.66 1.00 1.00 27^{+4}_{-2} 27^{+4}_{-2} 0.00 106848 0.88 0.89 0.00 0.01 0.00 1.00 1.00 75_{-4}^{+12} 47^{+16}_{-12} 0.91 0.28 1.00 106850 1.00 1.00 1.00 1.00 1.00 $91\substack{+42\\-26}$ 82^{+52}_{-24} 106917 1.00 1.00 0.17 0.76 1.00 1.00 0.51 1.00 23^{+4}_{-4} 0.30 0.02 0.00 0.58 0.00 0.93 0.56 21^{+4}_{-2} 106973 0.56 21_-^2 22^{+10}_{-4} 106974 0.33 0.30 0.00 0.06 0.00 0.67 0.63 0.06 18^{+2}_{-4} 107012 0.56 0.29 0.25 _ _ _ _ $19\substack{+2\\-2}$ 107173 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.40 11^{+4}_{-2} 0.99 83^{+34}_{-14} 65^{+32}_{-18} 107259 1.00 1.00 1.00 1.00 1.00 1.00 1.00 25^{+26}_{-4} 10^{+2}_{-2} 107276 0.50 0.04 0.52 0.10 0.49 0.04 0.03 0.07 22^{+2}_{-2} 19^{+2}_{-2} 107315 0.00 0.00 0.00 1.00 0.00 0.92 0.24 0.00 23^{+14}_{-10} 107325 0.71 0.62 0.36 20^{+8}_{-4} 107418 0.30 0.02 0.26 0.70 0.36 0.34 0.19 0.40 16^{+2}_{-2} 15^{+2}_{-2} 0.30 0.75 107588 0.11 47_4 4^{+2}_{-2} 31^{+2}_{-2} 0.01 107653 1.00 1.00 0.47 1.00 0.01 0.01 0.00 33^{+2}_{-2} 107723 1.00 1.00 0.00 1.00 0.00 1.00 1.00 1.00 31^{+}_{-} 107734 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.00 13^{+2}_{-2} 9^{+2}_{-2} 45^{+24}_{-22} 18^{+12}_{-4} 45^{+28}_{-16} 0.93 0.91 0.04 0.15 0.03 0.98 0.98 0.25 107751 16^{+6}_{-4} 107789 0.31 0.06 0.23 0.52 0.20 0.43 0.17 0.56 20^{+4}_{-2} 17^{+2}_{-2} 107887 0.09 0.00 0.00 0.65 0.01 0.15 0.02 0.00 24^{+16}_{-4} 13^{+2}_{-2} 107913 0.52 0.00 0.53 0.27 0.45 0.02 0.01 0.04 61^{+2}_{-2} 33+4 1.00 0.00 1.00 1.00 1.00 1.00 0.00 1.00 107923 26^{+4}_{-6} 26+6 0.63 0.18 0.01 0.00 0.00 0.99 0.96 0.01 107952 34_2 107998 1.00 1.00 1.00 _ 24^{+4}_{-2} 28^{+4}_{-2} 108030 0.81 0.09 0.29 0.00 0.01 1.00 1.00 0.00 18^{+2}_{-2} 108085 0.00 0.00 0.00 0.91 0.00 0.39 0.00 1.00 18^{+2} 100^{+58}_{-16} 100^{+50}_{-32} 108099 1.00 1.00 0.02 0.60 0.01 1.00 1.00 0.85 17^{+12}_{-4} 68^{+4}_{-8} 108215 1.00 1.00 0.76 0.98 1.00 0.47 0.38 0.35 23_4 108233 0.36 0.41 0.00 0.00 0.00 0.79 0.78 0.00 23^{+6}_{-6} 40+6 39+8 108296 1.00 0.17 1.00 1.00 0.00 1.00 0.96 1.00 33^{+4}_{-4} 16^{+4}_{-8} 108378 1.00 0.44 1.00 0.00 1.00 0.34 0.36 0.00 18⁺¹⁰_4 0.51 0.19 108410 0.38 9^{+2}_{-4} 31^{+2}_{-4} 108427 0.94 0.02 0.94 0.04 0.91 0.04 0.03 0.04 18^{+2}_{-2} 0.00 0.00 0.00 0.00 0.00 0.01 0.00 1.00 16^{+2}_{-2} 108543 108552 0.75 0.02 0.93 19^{+2}_{-2} _ _ _ _ _ _ 36^{+6}_{-2} 108578 1.00 1.00 0.00 _ _ _ _ _ 28^{+10}_{-6} 23^{+4}_{-2} 0.09 108597 0.67 0.36 0.49 0.32 0.96 0.60 0.80 32^{+18}_{-8} 33^{+18}_{-10} 0.00 0.94 0.44 108766 0.76 0.78 0.15 0.01 0.96 $45^{+20}_{-6}\\42^{+16}_{-10}$ 34_14 0.06 0.24 1.00 0.86 0.83 0.03 0.97 108886 1.00 9^{+2}_{-4} 108911 0.91 0.04 0.91 0.08 0.87 0.07 0.06 0.07 15^{+4}_{-2} 17^{+4}_{-4} 108975 0.05 0.00 0.01 0.45 0.00 0.25 0.00 0.59

0.45

0.01

0.98

 18^{+2}_{-2}

Table C.2: - Continued. -

109051

_

_

_

_

_

Table C.2: - Continued -

Table C.2: Continued.										
HIP	$P_{v_{pec}}$	P _U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	<i>v_{pec}</i> [km/s]	<i>v_{t,pec}</i> [km/s]
109082	0.33	0.03	0.14	0.78	0.24	0.44	0.05	0.79	19^{+14}_{-6}	16^{+12}_{-4}
109096	0.01	0.00	0.00	1.00	0.00	0.53	0.00	1.00	18^{+2}_{-2}	18^{+2}_{-2}
109114	_	_	_	_	_	1.00	1.00	0.87	_	51_{-8}^{+24}
109247	_	_	_	_	_	1.00	1.00	0.97	_	94^{+56}_{-28}
109311	0.77	0.00	0.59	0.12	0.70	0.02	0.00	0.09	29^{+6}_{-4}	11^{+2}_{-2}
109332	0.35	0.00	0.44	0.00	0.00	0.62	0.59	0.09	21^{+6}_{-6}	20_{-4}^{+6}
109339	_	_	_	_	_	0.95	0.90	0.01	_	20^{+2}_{-2}
109393	0.33	0.32	0.07	0.03	0.04	0.91	0.91	0.04	23^{+4}_{-4}	22^{+4}_{-2}
109556	1.00	1.00	1.00	0.50	1.00	1.00	1.00	0.13	66^{+4}_{-2}	36^{+6}_{-2}
109562	1.00	0.34	0.99	0.99	0.98	0.40	0.13	0.55	64^{+4}_{-2}	17^{+2}_{-2}
109602	1.00	1.00	0.05	0.58	0.05	1.00	1.00	0.63	82^{+48}_{-26}	84^{+58}_{-20}
109726	_	_	_	_	_	1.00	1.00	0.65	-30	53^{+14}_{14}
109737	0.93	0.85	0.00	0.80	0.65	0.24	0.00	0.19	30+4	18^{+2}
109933	1.00	0.99	0.07	0.17	0.48	1.00	1.00	0.97	41^{+10}	33^{+8}
109989	0.98	0.73	0.05	0.00	0.00	1.00	1.00	0.00	30^{+6}	28 ⁺²
109990	1.00	0.00	0.00	1.00	1.00	0.47	0.00	0.99	34^{+2}	18^{+2}
109996	0.99	0.33	0.94	0.06	0.92	0.25	0.25	0.06	42^{+4}	15^{+2}_{-4}
110025	1 00	0.08	1 00	0.04	1 00	0.02	0.01	0.01	47 ⁺⁶	15^{+2}
110073	1 00	1.00	0.01	1 00	0.00	1.00	1.00	1.00	71^{+16}	70^{+16}
110119	0.76	0.64	0.03	0.17	0.01	0.95	0.87	0.23	28^{+6}	25^{+6}
110154	1 00	0.99	1 00	0.25	1.00	0.07	0.01	0.12	116^{+6}	14^{+2}
110200	0.65	0.06	0.44	0.14	0.50	0.07	0.01	0.15	28^{+4}	12^{+2}
110266	0.05	0.00	0.99	0.00	0.50	0.10	0.14	0.10	20_{-8} 30^{+4}	12^{-2} 13^{+2}
110275	0.52	0.04	0.55	0.00	0.00	0.01	0.01	0.00	26^{+16}	10_{-2} 11^{+6}
110273	0.02	0.54	0.04	0.00	0.14	0.15	0.10	0.00	20_{-6} 25^{+16}	24^{+16}
110207	0.45	0.04	0.02	0.15	0.00	1 00	1.00	0.13	23-10 33 ⁺⁶	27-12 33 ⁺⁶
110230	_	_	_	_	_	1.00	0.03	0.51		27^{+6}
110356	0.72	0.03	0 70	0.00	0.53	0.25	0.55	0.00	20^{+6}	$\frac{2}{14^{+6}}$
110362	0.72	0.05	0.06	0.00	0.95	0.25	0.23	0.00	$\frac{29-6}{51+6}$	14^{-4}
110386	0.33	0.40	0.00	0.00	0.00	1 00	0.12	0.00	24^{+4}	$\frac{1}{26^{+4}}$
110/31	1.00	0.12	0.00	0.00	0.00	0.00	0.55	0.00	2	13^{+2}
110407	0.17	0.15	0.99	0.23	0.90	0.09	0.00	0.12	20^{+4}	20^{+4}
110504	0.27	0.13	0.00	0.00	0.00	0.00	0.00	0.00	20-6 34 ⁺⁸	20_{-6} 0^{+2}
110504	0.05	0.02	0.01	0.05	0.79	1.00	1.00	0.05	54 -10	9^{-2}
110517	_	_	_	_	_	1.00	0.56	1.00	_	23 ₋₂ 65 ⁺⁵⁸
110505	_	_	_	_	_	1.00	1.00	0.00	_	40^{+18}
110590	_	_	_	_	_	1.00	1.00	0.90	_	40 ₋₈
110600	0.05	- 0.01		-		0.72	0.16	0.00	$^{-}_{22+2}$	$^{44}-8$ 10 ⁺²
110622	0.05	0.01	0.00	0.52	0.00	0.72	0.10	0.25	22-2	19_{-2}
110052	-	- 0.10	_	_ 0.1F	_	0.00	0.17	0.92	20+4	24_{-8}
110002	0.95	0.12	0.88	0.15	0.90	0.18	0.10	0.10	38_{-8}^{+16}	12_{-2}^{+12}
110017	0.40	0.17	0.55	0.02	0.44	0.44	0.02	0.75	25_{-10}	17_{-4} 10^{+4}
110949	0.15	0.00	0.00	0.99	0.01	0.65	0.00	1.00	20^{+2}_{-2}	19_{-2}^{+16}
110975	0.37	0.26	0.01	0.51	0.01	0.57	0.48	0.43	20^{+1}_{-8}	20^{+10}_{-6}
110992	1.00	1.00	1.00	0.06	1.00	1.00	1.00	1.00	55_{-4}	42_{-8}^{+10}
110993	-	_	_	-	_	0.51	0.38	0.29	- 21 +12	18^{+10}_{-4}
110998	0.66	0.07	0.74	0.13	0.72	0.02	0.02	0.03	31^{+12}_{-16}	6^{+2}_{-2}
111003	_	_	-	_	-	1.00	1.00	0.12	— —	55_{-10}^{+10}
1110/1	0.99	0.34	0.96	0.08	0.96	0.12	0.10	0.10	51_{-8}^{+4}	12^{+2}_{-2}
111086	1.00	0.00	1.00	0.00	0.95	1.00	0.02	1.00	40_{-4}	31_{-4}^{+32}
111522	-	_	-	_	-	1.00	1.00	0.99	- 22 ^{±14}	84_{-34}^{+32}
111713	0.40	0.37	0.01	0.35	0.02	0.64	0.62	0.34	22^{+14}_{-10}	23^{+10}_{-8}
111810	1.00	1.00	0.93	0.00	0.00	1.00	1.00	1.00	60^{+2}_{-4}	58^{+2}_{-4}
111893	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	$59^{+\circ}_{-4}$	51^{+0}_{-6}
111946	1.00	0.07	0.36	1.00	0.99	0.99	0.04	1.00	53^{+4}_{-4}	25^{+10}_{-4}
111972	0.55	0.06	0.22	0.08	0.32	0.20	0.10	0.07	26^{+0}_{-6}	14^{+2}_{-2}

 $P_{v_{r,pec}}$ $P_{v_{t,pec}}$ $P_{v_{l,pec}}$ HIP $P_{v_{pec}}$ P_U P_V P_W $P_{v_{b,pec}}$ Vpec V_{t,pec} [km/s] [km/s] 27^{+2}_{-2} 18^{+2}_{-2} 112098 1.00 0.00 1.00 0.00 0.00 0.28 0.09 0.00 70^{+36}_{-10} 19^{+22}_{-2} 66^{+28}_{-16} 112138 1.00 1.00 0.00 0.46 0.00 1.00 1.00 0.59 112248 0.53 0.24 0.70 _ _ _ _ _ 21^{+20}_{-4} 112250 0.62 0.06 0.78 _ _ _ _ _ _ 51^{+12}_{-14} 112272 _ _ _ 1.00 0.73 1.00 _ _ _ 42^{+4}_{-2} 0.05 26^{+6}_{-4} 112415 1.00 1.00 0.00 1.00 1.00 1.00 1.00 40^{+14}_{-8} 36^{+12}_{-10} 0.99 0.95 0.54 0.42 0.00 1.00 1.00 0.83 112482 112551 1.00 0.00 1.00 25^{+4}_{-2} 21^{+2}_{-2} 19^{+2}_{-2} 0.01 0.02 0.00 0.00 0.00 0.83 0.00 112689 0.88 26^{+6}_{-2} 28^{+4}_{-2} 0.00 0.00 112698 0.84 0.34 0.17 0.02 1.00 1.00 38^{+12}_{-8} 112790 1.00 0.89 1.00 _ 19^{+2}_{-4} 112809 0.02 0.00 0.00 1.00 0.00 80.0 0.01 0.83 14^{+2}_{-2} 0.03 0.05 0.00 0.00 0.00 0.90 0.89 0.00 20^{+2}_{-4} 20^{+4}_{-2} 112821 31^{+12}_{-4} 30_{-4}^{+10} 0.83 0.20 0.19 1.00 0.05 0.42 1.00 112894 1.00 23^{+4}_{-4} 112931 0.91 0.56 0.74 _ _ _ $53^{+28}_{-22}\\14^{+2}_{-2}$ $52^{+32}_{-22} \\ 8^{+2}_{-4}$ 0.97 0.26 0.77 1.00 0.05 0.99 1.00 112987 0.48 113009 0.00 0.00 0.00 0.54 0.00 0.01 0.00 0.13 37^{+16}_{-10} 36^{+18}_{-12} 0.85 0.05 0.59 1.00 0.00 0.97 0.03 1.00 113064 20^{+2}_{-2} 113236 0.06 0.03 0.00 0.07 0.00 0.56 0.46 0.06 18^{+}_{-} 113432 1.00 1.000.00 47_ _ _ _ _ 44^{+8}_{-4} 113478 1.00 1.00 0.00 0.26 0.00 1.00 1.00 0.26 40^{+8}_{-6} 0.07 0.00 30^{+4}_{-6} 27^{+8}_{-6} 113556 0.89 0.54 0.00 0.97 0.86 0.85 34^{+6}_{-6} 9^{+2}_{-2} 113561 0.86 0.01 0.82 0.06 0.80 0.05 0.04 0.07 113562 1.00 0.00 1.00 0.88 0.99 1.00 1.00 1.00 83^{+4}_{-6} 75^{+4}_{-6} 22_4 0.87 17^{+10}_{4} 113577 0.42 0.19 0.16 0.25 0.45 0.21 0.87 34^{+2}_{-8} 14+4 113726 0.98 0.00 0.99 0.08 0.95 0.10 0.11 0.00 29^{+10}_{-8} 0.08 113732 0.96 0.88 _ _ _ _ _ _ 30____ _ _ 113787 _ 1.00 0.05 1.00 61^{+2}_{-2} 14^{+2}_{-2} 59^{+2}_{-2} 113881 1.00 1.00 0.00 0.48 0.00 1.00 1.00 1.00 113952 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 14^{+2}_{-2} 36^{+12}_{-8} 84^{+6}_{-2} 37^{+14}_{-6} 1.00 1.00 0.17 0.56 0.05 1.00 1.00 0.54 114009 41^{+6}_{-6} 114025 1.00 0.93 1.00 1.00 1.00 1.00 1.00 0.97 33^{+4}_{-2} 32^{+2}_{-4} 114093 1.00 1.00 0.02 0.00 0.00 1.00 1.00 0.00 33^{+2}_{-2} 24^{+2}_{-2} 114155 1.00 0.01 1.00 0.00 0.00 1.00 1.00 1.00 33^{+2}_{-2} 30^{+4}_{-2} 1.00 0.99 0.05 0.01 0.01 0.00 114201 1.00 1.00 28^{+6}_{-2} 24^{+4} 0.88 0.02 0.00 1.00 0.00 1.00 0.02 1.00 114213 20+2 114343 0.81 0.81 0.10 _ _ _ 30^{+2}_{-2} 34^{+2}_{-2} 114389 1.00 1.00 0.03 0.00 0.00 1.00 1.00 1.00 25^{+2}_{-2} 114398 0.55 0.00 0.00 1.00 0.99 0.00 0.00 0.00 1^{+2}_{-2} 23^{+14}_{-4} 313^{+4}_{-4} 114426 1.00 0.93 1.00 1.00 1.00 0.73 0.64 0.23 69^{+4}_{-8} 16^{+4}_{-2} 114482 1.00 1.00 0.99 0.14 0.99 0.34 0.08 0.33 0.34 0.20 0.00 0.03 0.01 0.97 0.77 0.01 24^{+4}_{-2} 21^{+2}_{-2} 114507 24^{+2}_{-4} 22+2 114594 0.30 0.27 0.04 0.05 0.02 0.97 0.88 0.04 107^{+10}_{-12} 56^{+20}_{-12} 0.00 114656 1.00 1.00 0.55 1.00 1.00 1.00 1.00 48^{+18}_{-6} 14^{+2}_{-2} 0.79 0.22 114685 0.97 0.86 0.18 0.89 0.14 0.14 105^{+44}_{-38} 114692 1.00 1.00 1.00 _ _ _ _ _ 46^{+44}_{-8} 0.95 0.59 0.99 114998 _ 28^{+4}_{-2} 115144 0.85 0.02 0.99 0.07 0.00 1.00 0.92 1.00 30^{+4}_{-4} 35_{-14}^{+22} 0.35 0.49 27^{+24}_{-14} 0.75 0.64 0.07 0.64 0.65 0.34 115186 20^{+2}_{-2} 115195 0.87 0.01 1.00 _ _ _ _ 19^{+6}_{-4} 15^{+4}_{-4} 0.10 0.00 0.27 0.04 0.00 0.87 115263 0.21 0.00 47^{+24}_{-10} 115352 1.00 1.00 0.14 _ _ _ _ _ 12^{+2}_{-2} 115406 _ _ 0.01 0.01 0.65 _ _ _ _ 22^{+2}_{-2} 115516 _ _ _ 1.00 1.00 0.00 41^{+12}_{-8} 6^{+8}_{-2} 115566 0.98 0.36 0.99 0.14 0.99 0.20 0.19 0.11

Table C.2: - Continued. -

				Tuble C		tinucu.				
HIP	$P_{v_{pec}}$	P_U	P_V	P_W	$P_{v_{r,pec}}$	$P_{v_{t,pec}}$	$P_{v_{l,pec}}$	$P_{v_{b,pec}}$	<i>v_{pec}</i> [km/s]	<i>v_{t,pec}</i> [km/s]
115591	0.10	0.00	0.88	0.00	0.21	0.00	0.00	0.00	23^{+2}_{-2}	8^{+2}_{-2}
115729	0.80	0.05	0.05	1.00	0.77	0.21	0.21	0.20	$27^{+\bar{4}}_{-2}$	12_{-2}^{+4}
115755	0.97	0.90	0.00	0.00	0.00	1.00	1.00	0.00	27^{+2}_{-2}	27^{+2}_{-2}
115809	_	_	_	_	_	0.45	0.22	0.74	_	17_{-6}^{+12}
115906	1.00	1.00	0.00	0.03	0.00	1.00	1.00	1.00	79^{+20}_{-4}	74^{+6}_{-16}
116279	0.01	0.00	0.00	0.18	0.00	0.98	0.58	0.21	21^{+2}_{-2}	20^{+2}_{-2}
116292	0.47	0.00	0.47	0.95	0.06	1.00	0.00	1.00	25^{+2}_{-2}	20^{+2}_{-2}
116483	0.70	0.03	0.69	0.00	0.79	0.01	0.02	0.00	28^{+6}_{-4}	6^{+2}_{-2}
116484	_	_	_	_	_	0.98	0.92	0.98	_	40^{+16}_{-14}
116549	_	_	_	_	_	1.00	0.41	1.00	_	52^{+20}_{-20}
116653	1.00	1.00	0.99	0.00	0.00	1.00	1.00	0.00	45^{+4}_{-2}	44^{+2}_{-4}
116799	1.00	1.00	1.00	0.78	0.02	1.00	1.00	1.00	80^{+36}_{-22}	82^{+30}_{-36}
116987	_	_	_	_	_	1.00	1.00	0.02	_	31^{+8}_{-4}
117088	1.00	0.00	1.00	0.18	0.00	1.00	0.11	1.00	42^{+2}_{-2}	39^{+2}_{-2}
117254	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	323^{+16}_{-12}	322^{+14}_{-14}
117290	0.46	0.49	0.02	0.24	0.08	0.61	0.59	0.17	25^{+18}_{-10}	21^{+12}_{-16}
117299	0.02	0.00	0.00	0.80	0.00	0.06	0.00	0.75	15^{+4}_{-2}	$13\substack{+2\\-4}$
117309	_	_	_	-	-	1.00	0.95	0.00	-	22^{+2}_{-2}
117315	0.03	0.00	0.00	0.03	0.00	0.87	0.00	1.00	20^{+2}_{-2}	19^{+2}_{-2}
117514	0.54	0.52	0.04	0.02	0.06	0.99	0.97	0.02	25^{+6}_{-4}	22^{+2}_{-2}
117700	_	_	_	-	-	0.93	0.86	0.06	-	22^{+4}_{-2}
117842	0.46	0.41	0.02	0.50	0.26	0.52	0.45	0.42	21^{+20}_{-10}	18^{+28}_{-2}
117887	1.00	1.00	0.07	0.48	0.00	1.00	1.00	1.00	51^{+4}_{-4}	48^{+2}_{-4}
117956	1.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00	33^{+4}_{-2}	31^{+4}_{-2}
118077	0.98	0.00	0.97	0.00	0.01	1.00	1.00	0.00	28^{+2}_{-2}	22^{+2}_{-2}
118121	0.82	0.00	0.63	0.87	0.79	0.00	0.00	0.00	29^{+4}_{-6}	$11\substack{+2\\-2}$
118192	_	_	_	-	_	0.86	0.85	0.10	-	36^{+26}_{-12}
118214	0.54	0.60	0.00	0.00	0.00	0.91	0.89	0.00	26^{+10}_{-6}	25^{+8}_{-4}

Table C.2: – Continued. –

Table C.3: Runaway probabilities for runaway star candidates found by comparison with OB associations and clusters (as listed in Table A.1). 25 runaway stars are identified from \vec{v}_{pec} and ten from $\vec{v}_{t,pec}$. Four stars are included in both lists (see section 2.3.2.3). Columns 2 and 3 list the possible parent association/cluster as well as the runaway probability *P*. The absolute velocity values are given in Columns 4 and 5. Errors correspond to 68% confidence. The last column indicates whether the star was already identified as a runaway star in sections 2.3.2.1 and 2.3.2.2 ("prev" for previous identification; "new" for new identification).

HIP	Assoc./cl.	Р	$ \vec{v}_{pec} $ [km/s]	$ \vec{v}_{t,pec} $ [km/s]	new ident.
			from $ec{v}_{pec}$		
1803	Argus	0.56	27^{+1}_{-1}	27^{+2}_{-2}	prev
16147	lpha Per	0.52	11^{+2}_{-2}	10^{+2}_{-2}	new
16826	lpha Per	0.67	$14^{+\bar{1}}_{-2}$	$13^{+\bar{2}}_{-2}$	new
17499	Pleiades	0.91	$16^{+\bar{2}}_{-1}$	$15^{+\bar{2}}_{-2}$	new
17694	Pleiades	0.54	$14^{+ar{4}}_{-1}$	$13^{+\overline{4}}_{-2}$	new
17702	Pleiades	0.77	$15^{+\bar{2}}_{-3}$	$13^{+\bar{2}}_{-2}$	new
17847	Pleiades	0.82	15^{+3}_{-3}	$12^{+\bar{2}}_{-2}$	new
28370	Ori OB1	0.67	28^{+1}_{-2}	3^{+2}_{-2}	prev
42459	IC 2391	0.63	8^{+1}_{-2}	7^{+2}_{-2}	new
42504	IC 2391	0.52	8^{+3}_{-1}	7^{+2}_{-2}	new
42536	IC 2391	0.65	18^{+2}_{-1}	17^{+2}_{-2}	new
42637	η Cha	1.00	7^{+7}_{-1}	1^{+2}_{-2}	new
42726	IC 2391	0.95	14^{+6}_{-1}	9^{+2}_{-2}	new
42794	η Cha	1.00	9^{+4}_{-5}	2^{+2}_{-2}	new
43783	CarA	1.00	18^{+4}_{-4}	11^{+2}_{-2}	new
52502	IC 2602	0.57	21^{+5}_{-4}	9^{+2}_{-2}	new
52633	ϵ Cha	0.51	17^{+7}_{-4}	2^{+2}_{-2}	new
52736	IC 2602	0.60	12^{+4}_{-4}	7^{+2}_{-2}	new
61199	ϵ Cha	0.52	8^{+1}_{-1}	7^{+2}_{-2}	new
61585	ϵ Cha	0.51	10^{+3}_{-7}	2^{+2}_{-2}	new
76664	ϵ Cha	0.52	55^{+3}_{-2}	54^{+2}_{-4}	prev
109492	Cep OB6	0.57	12^{+1}_{-1}	11^{+2}_{-2}	new
110991	Cep OB6	0.92	13^{+2}_{-2}	12^{+2}_{-2}	new
115527	Argus	1.00	10^{+1}_{-1}	9^{+2}_{-2}	new
118008	eta Pic-Cap	1.00	18^{+3}_{-2}	15^{+2}_{-2}	new
			from $\vec{v}_{t,pec}$		
1803	AB Dor	0.90	27^{+1}_{-1}	27^{+2}_{-2}	prev
13402	AB Dor	1.00	11^{+1}_{-1}	10^{+2}_{-2}	new
16244	lpha Per	0.63	13^{+2}_{-1}	$12^{+\bar{2}}_{-2}$	new
24478	ColA	1.00	_	$15^{+\bar{2}}_{-2}$	prev
25859	ColA	0.51	30^{+4}_{-3}	$20^{+\bar{2}}_{-2}$	prev
42536	IC 2391	0.66	18^{+2}_{-2}	$17^{+\bar{2}}_{-2}$	new
43783	CarA	1.00	$18^{+\overline{3}}_{-5}$	$11^{+\bar{2}}_{-2}$	new
63253	Her-Lyr	1.00	16^{+2}_{-2}	$16^{+\overline{2}}_{-2}$	prev
67422	Her-Lyr	1.00	17^{+1}_{-1}	13^{+2}_{-2}	prev
115527	Argus	1.00	10^{+1}_{-1}	9^{+2}_{-2}	new

Table C.4: Additional young stars situated well outside any OB association/cluster and the Galactic plane (see section 2.3.2.4), i.e. runaway star candidates. Columns 3 and 4 give the distance z to the Galactic plane as well as the stellar velocity W_{pec} in this direction. The absolute velocity values are given in columns 5 and 6. Errors correspond to 68% confidence.

HIP	other name	<i>z</i> [pc]	<i>W_{pec}</i> [km/s]	<i>v_{pec}</i> [km/s]	<i>v_{t,pec}</i> [km/s]
5805	HD 7598	-477^{+280}_{-350}	_	_	13^{+13}_{-13}
11242	HD 14920	-609^{+310}_{-255}	—	—	16^{+10}_{-16}
50684	RS Sex	555^{+135}_{-245}	-16^{+10}_{-8}	12^{+6}_{-10}	7^{+5}_{-7}
56473	90 Leo	488_{-280}^{+320}	-3^{+6}_{-10}	14^{+8}_{-10}	8_{-8}^{+6}

D Procedure

D.1 Estimating the Supernova Progenitor Mass Using ²⁶Al

The mass of the supernova progenitor can be estimated from the measured 1.8 MeV γ flux since the ejected amount of ²⁶Al depends upon the mass of the progenitor star (Fig. 1.2). From the COMPTEL 1.8 MeV map the flux integrated over the (calculated) area of the SNR can be directly obtained in units of [photons \cdot cm⁻² \cdot s⁻¹ \cdot sr⁻¹] using the software *fitsview*⁶⁷. The pixelsize is one square degree, hence the flux must be multiplied by $3 \cdot 10^{-4}$. The number of emitted photons N_{ph} can be calculated as

$$N_{ph} = 2f \cdot 4\pi d_{\odot,today}^2 \cdot \frac{\tau_{^{26}\text{Al}}}{\ln 2},\tag{1}$$

where f is the 1.8 MeV COMPTEL flux in units of [photons \cdot cm⁻² \cdot s⁻¹], $d_{\odot,today}$ is the distance of the supernova to the Sun as it is today and $\tau_{2^{6}Al} = 0.72$ Myr is the half-time of ²⁶Al [432, 490]. The factor of two is owing to that only half of the flux is observable, i.e. the part that is emitted towards the observer.

The ejected mass M_{ej} of ²⁶Al can then be derived using the decay law,

$$M_{ej} = N_{ph} \cdot m_{^{26}\text{Al}} \cdot 2^{\frac{t_{SN}}{\tau_{^{26}\text{Al}}}},$$
(2)

with $m_{^{26}Al}$ being the mass of an atom of ^{26}Al . M_{ej} can then be compared with theoretical models as shown in Fig. 1.2.

D.2 Evolution of the Smallest Separation *d_{min}* Found Between Two Objects Depending on the Number of Monte Carlo Runs

To evaluate the smallest separation between two objects after a certain number of Monte Carlo runs, cases were constructed in which a NS and a runaway star once were at the same place at some specific time in the past.

Five pairs of NSs and runaway stars were randomly selected from a population synthesis as described in section 3.2.1. The corresponding positions of the supernovae in which each pair was ejected as well as the peculiar velocities of the NSs and runaway stars are given in Table D.1. The trajectory of each star was then calculated up to 5 Myr (into the future) and their positions and velocities logged at 1, 2, 3, 4 and 5 Myr. These positions and velocities were treated as "present parameters". Adopting the median errors of these parameters from the real samples of NSs and runaway stars, "new present parameters" were achieved that are consistent within the errors with the original "present parameters" to make the data comparable to the real sample data. Utilising a Monte Carlo simulation, the stellar

⁶⁷This software is available at http://heasarc.gsfc.nasa.gov.

Table D.1: Supernova positions and peculiar NS and runaway star velocities for five artificial cases. X, Y and Z are coordinates in a right-handed coordinate system centred at the Sun at t = 0, i.e. the beginning of the population synthesis (here 100 Myr in the past). U, V, and W are the components of the peculiar space velocity (corrected for Solar motion and Galactic rotation).

(XYZ_{SN})	(UVW_{NS})	(UVW _{run})
(-1083, 1944, 100)	(95.4, -236.6, 192.3)	(17.5, 17.8, 21.3)
(1020, -1512, 30)	(494.2, -292.9, 238.4)	(-25.7, -50.1, 0.5)
(5501, -892, -127)	(-194.4, -211.1, 107.1)	(-0.8, 0.9, -38.5)
(-1809, -2292, -21)	(307.5, 308.1, 402.2)	(-44.1, -6.9, 17.8)
(-1190, 1715, -83)	(-78.8, -168.3, 73.9)	(-36.5, -27.3, 11.3)

Table D.2: d_{min} thresholds for the selection of former companion candidates for Monte Carlo simulations with 10^4 , 10^5 and $3 \cdot 10^6$ runs.

	for runaw	vays with	known <i>v</i> r	for runaw	vays with u	nknown v _r
	104	10 ⁵	$3 \cdot 10^{6}$	10 ⁴	10 ⁵	3 · 10 ⁶
1 Myr	\leq 4 pc	$\leq 2{ m pc}$	$\leq 1{ m pc}$	\leq 7 pc	\leq 5 pc	$\leq 1{ m pc}$
2 Myr	\leq 6 pc	\leq 3 pc	\leq 1 pc	\leq 20 pc	\leq 7 pc	\leq 2 pc
3 Myr	\leq 7 pc	\leq 4 pc	\leq 1 pc	\leq 40 pc	$\leq 10{ m pc}$	\leq 2 pc
4 Myr	\leq 9 pc	\leq 5 pc	\leq 1 pc	\leq 40 pc	$\leq 10{ m pc}$	\leq 3 pc
5 Myr	$\leq 15{ m pc}$	\leq 7 pc	\leq 3 pc	\leq 40 pc	\leq 10 pc	\leq 3 pc

positions were then again calculated backwards for 1, 2, 3, 4 and 5 Myr, respectively. The smallest separation found after a certain number of runs was then logged. After 10^4 runs it is typically a few tens of pc while after a few million runs it is only a few pc (Fig. D.1). The same was done assuming that the runaway star has unknown radial velocity v_r , i.e. varying v_r within ± 500 km/s as assumed for the real cases (right panel in Fig. D.1). Thereafter, the thresholds for choosing former companion candidates were derived. They are given in Table D.2. Note that stellar associations and clusters share similar kinematic properties as runaway stars. The uncertainty in size due to the velocity dispersion, and hence the difference between the radius of the association and the critical radius R_{crit} (see section 3.1), is a few pc after 1 Myr calculation and ranges up to a few tens of pc after 5 Myr calculation.⁶⁸ This is comparable to the smallest d_{min} values found in the cases of NS/runaway star pairs. Therefore, choosing a threshold R_{crit} (or even $3R_{assoc}$) is sufficient.

⁶⁸To be on the safe sidee, it is neglected that stellar associations expand, i.e. were smaller in the past.

Figure D.1: Evolution of d_{min} during a Monte Carlo simulation for constructed cases where the NS and the runaway star with known (left panel) and unknown v_r (right panel) were at the same place 1, 2, 3, 4 and 5 Myr (from top to bottom) in the past. Dashed lines mark the 1σ standard deviation.

Figure D.1: - Continued -

D.3 The Initial Size of a Stellar Association or Cluster

Typically, stellar groups expand due to the velocity dispersion of their member stars. In the following, the initial size of a stellar group is derived. The stellar distribution within an association or cluster is often described with a Plummer model for which $N(r) \propto \left(1 + \frac{r^2}{R^2}\right)^{-\frac{5}{2}}$, with N being the number of stars within a radius r from the association/cluster centre [415]. A Gaussian distribution with standard deviation $\sigma = R/3$ is in good agreement with the Plummer model and used here for simplicity. Then, the number of stars within a radius r from the association/cluster centre is

$$N(r) = \frac{1}{\sqrt{2\pi\frac{R}{3}}} \exp\left|-\frac{r^2}{2\left(\frac{R}{3}\right)^2}\right|.$$
(3)

The position of a star at radius \tilde{r} and with velocity v after time t is

$$r_t = \tilde{r} + vt. \tag{4}$$

Assuming that the velocity distribution of the member stars is also Gaussian,

$$f(\mathbf{v}) = \frac{1}{\sqrt{2\pi}\sigma_{\mathbf{v}}} \exp\left|-\frac{\mathbf{v}^2}{2\sigma_{\mathbf{v}}^2}\right|,\tag{5}$$

with σ_v being the velocity dispersion within the stellar group, the probability of finding a star at a radius r_t after time t is given by

$$\hat{N}(r_t) = \int_{-\infty}^{\infty} N(\tilde{r}) f\left(\frac{r_t - \tilde{r}}{t}\right) d\tilde{r}$$

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{\sigma_v^2 t^2 + \left(\frac{R}{3}\right)^2}} \exp\left|-\frac{r_t^2}{2\left[\sigma_v^2 t^2 + \left(\frac{R}{3}\right)^2\right]}\right|.$$
(6)

The expression $3\sqrt{\sigma_v^2 t^2 + \left(\frac{R}{3}\right)^2}$ corresponds then to the association/cluster radius after time *t* which is observed today and *R* is the initial association/cluster radius R_{init} . Hence, the initial radius of an association/cluster with observed radius R_{assoc} , velocity dispersion σ_v and age *t* is

$$R_{init} = 3\sqrt{\left(\frac{R_{assoc}}{3}\right)^2 - \sigma_v^2 t^2}.$$
(7)

Figure D.2: Distibution of the number of runs in the τ - d_{min} space. As an example the separation between RX J1856.5–3754 and US is shown here (see section 4.1.1). The rectangle marks the region for determination of the present NS parameters and the position of the supernova [for the shown case given in Table 4.1, panel (b)].

D.4 Derivation of Present-Day Neutron Star Parameters and Supernova Position

In chapter 4, present NS parameters (proper motions μ_{α}^* and μ_{δ} , heliocentric radial velocities v_{r} , peculiar space velocities v_{sp} , parallaxes π or distances d_{NS}) as well as position (distance to the Sun at the time of the supernova $d_{\odot,SN}$ and as seen today, $d_{\odot,today}$, and Galactic coordinates *I*, *b*, as seen from Earth at present) and time of the proposed supernova event are given for the most promising cases where the parent association of a NS or even a former companion candidate was found. Note that it is possible that the derived value for v_r is larger than that of v_{sp} because v_r is heliocentric whereas v_{sp} is the peculiar velocity of the NS that reflects its kick velocity.

To obtain these parameters, an area within the τ - d_{min} contour plot is defined such that its boundaries approximately reflect a 68% decline from the peak.⁶⁹ The parameter values were then derived by selecting the input parameters (π or d_{NS} , μ_{α}^* , μ_{δ} , v_r) which correspond to runs that fall into a rectangular region compassing the defined area and also runs with the smallest d_{min} (Fig. D.2). The distance to the Sun as well as Galactic coordinates at the time of the supernova were then calculated for each parameter set.

From the histogram of each parameter its value and error is obtained by drawing an interpolation curve to better characterise the shape of the distribution (which is not necessarily Gaussian, Fig. D.3). The "mean" of the parameter is then given by the maximum of the curve. The error intervals include about 68% of the histogram area (note that these are not 1σ errors as the distributions are not Gaussian).

⁶⁹Since the histogram part beyond the peak (in some cases it is even a plateau) is not well represented by equation 3.2 in most cases, the area is limited to $d_{min} \lesssim \mu + \sigma$.

Figure D.3: NS parameters and supernova position derived from Monte Carlo runs falling into the rectangular region shown in Fig. D.2. (a)-(e): Distributions of present-day parameters for RX J1856.5–3754 if it was born in US (section 4.1.1). (f)-(i): Position of the potential supernova. Lines are interpolation curves to easier see the shape of the histogram and determine the confidence intervals of the parameters.

E Results

E.1 PSR J0034–0721 – Search for Former Companion Candidates

After one million Monte Carlo runs, 39 runaway stars with full 3D kinematics were found for which the smallest separation to PSR J0034–0721 was less than 1 pc. For further 60 runaway stars with unknown radial velocity it was less than 2 pc assuming reasonable space velocities for these stars (see appendix D.2 for justification of the separation thresholds). Three of these 99 possible encounters are significant, 12 further could have occurred inside Argus, the possible birth association of the NS (section 4.3.1). Altogether, these are 15

HIP Properties and conclusion 52093 This B8 star (Simbad) has no published v_r measurement. 63356 This star is a G8III star (Simbad; Hipparcos catalogue gives G9II-III, thus included in the sample of massive, i.e. possibly young, stars because of its luminosity class). Hence, it is probably too old to be the former companion to PSR J0034-0721 (potential massive, hence young stars for luminosity class III must be earlier than A0). 85294 This K2II supergiant (Simbad) has a near-zero rotational velocity [124]. It is unlikely that this star is a BSS runaway star. 92056 This K0II-III single star [147] has a near-zero rotational velocity [124]. It is unlikely that this star is a BSS runaway star. This star is a G9IIIb variable star of RS CVn type (Simbad; Hippar-92512 cos catalogue gives K0II-III, thus included in the sample of massive, i.e. possibly young, stars because of luminosity class) and a spectroscopic binary [147]. Its $v \sin i = 14.7 \pm 1.0 \text{ km/s}$ [124]. RS CVn variables show augmented chromospheric activity [437]⁷⁰. [25] determine a stellar age of 94 Myr from the mass-age relation of chromospherically active binary stars. Hence, the star is too old to be associated with PSR J0034-0721. This K3II supergiant (Simbad) has a near-zero rotational velocity [124]. 95873 It is unlikely that this star is a BSS runaway star. The v_r of this K0II-III star (Simbad) is unknown. 97198 101938 This B8 star (Simbad) has no published v_r measurement. This F4II supergiant (Simbad) has $v \sin i = 20.1 \pm 2.0 \text{ km/s}$ [124]. It is 113952 unlikely that this star is a BSS runaway star. 115263 This star is a A5II supergiant (Simbad). This star is a B9III variable star of α^2 CVn type. Stars of this type are 115755 rotating variables with strong magnetic fields and show chemical peculiarities such as strong silicon, strontium and chromium lines as well as rare earths [437].

 Table E.1: Discussion on possible former companion candidates to PSR J0034-0721.

possible former companion candidates. The distributions of separations d_{min} are very broad. This is probably due to the broad velocity distribution for PSR J0034–0721 because there is only minor restriction from the small transverse velocity of 78^{+8}_{-6} km/s. Therefore, for many cases no clear conclusion could be drawn from adapting equations 3.2 and 3.3 to the d_{min} distributions. Hence, 11 of the 15 preliminary candidates remain. For them, it is possible that they were at the same place at the same time in the past as PSR J0034–0721. They are discussed in Table E.1.

Concluding, five former companion candidates remain: HIP 52093, HIP 97198, HIP 101938, HIP 115263 and HIP 115755.

⁷⁰http://www.sai.msu.su/groups/cluster/gcvs/gcvs/iii/vartype.txt

E.2 PSR J0454+5543 – Search for Former Companion Candidates

Seven runaway stars with full 3D kinematic data were found for which the smallest separation to PSR J0454+5543 after three million Monte Carlo runs was smaller than 1 pc. Further nine stars with unknown radial velocity were found for which the smallest separation to PSR J0454+5543 did not exceed 2 pc assuming plausible space velocities for the runaway star (see appendix D.2 for justification of the d_{min} thresholds). None of these 16 possible encounters is significant. For two stars (HIP 11279, HIP 11347), the encounter position is situated within one of the possible parent associations of PSR J0454+5543, Table 4.23 (both in Cam OB1). HIP 11279 is a B2lae supergiant star (Simbad) with a low $v \sin i = 50 \text{ km/s}$ [3, 454]. HIP 11347 is also an early B type supergiant, B1lb. Comparing the d_{min} distribution with the theoretically expected one (equations 3.2) yields that both candidates were not at the same place at the same time as PSR J0454+5543 but might have experienced a close fly-by instead ($\mu = 5.0$, $\sigma = 2.5$ for HIP 11279; $\mu = 8.3$, $\sigma = 4.9$ for HIP 11347). Hence, no convincing former companion candidate was found for PSR J0454+5543.

E.3 PSR J0630–2834 – Search for Former Companion Candidates

After three million Monte Carlo runs, 34 runaway stars with full 3D kinematics and 17 stars with unknown radial velocity were found for which the smallest separation to PSR J0630-2834 was less than 1 pc assuming reasonable space velocities for stars with unknown v_r . Eight of these 51 possible encounters are significant. They are possible former companions to the NS. For 24 stars the putative encounter could have occurred inside one of the possible birth associations (section 4.3.3, all inside the YLA). These stars were treated as possible former companions as well. Altogether, 26 (eight significant encounters, 24 encounters inside YLA, six included in both) preliminary former companion candidates were identified. For 17 of the 26 cases it was found that both stars could have been at the same place at the same time in the past ($\mu = 0$, equation 3.3). Details for these 17 stars are summarised in the Table E.2. Considering their properties, eight former companion candidates to PSR J0630-2834 remain: HIP 37385, HIP 39121, HIP 40326, HIP 47018, HIP 47155, HIP 48745, HIP 50901 and HIP 53759. For one of these stars, HIP 47155, the predicted supernova position coincides with the Antlia SNR (see section 4.3.3. The predicted SNR distance, however, would be only \approx 60 pc which is at the lower boundary of the estimated distance to the Antlia SNR by [353], which is uncertain though.

lab	IE E.2: Discussion on possible former companion candidates to PSR J0630–2834.
HIP	Properties and conclusion
37385	This star is a B8V star (Simbad).
39121	This A311/111 star is an astrometric binary (Simbad, [331]) without radial
	velocity measurement.
40326	This K1II-III star is a spectroscopic binary [147].
40430	This star is an O9nne cataclysmic variable star (Simbad), hence too old to be associated with PSR J0630–2834 (see footnote 49).
47018	This A211/111 star is a λ Bootes star (Simbad).
47155	This A611w λ Bootes star (Simbad) has no radial velocity measurement
11 100	published yet.
47267	This G811 supergiant is a barium star [359], hence too old to be the former
	companion to PSR J0630–2834 (see footnote 45).
48745	This star is a B311 star (Simbad).
50901	This star is a A4II supergiant (Simbad) without radial velocity measure-
	ment.
53759	This star is a A2/A311/111 star (Simbad) without radial velocity measure-
	ment.
56703	This A0 main sequence star (Simbad) has no radial velocity measure-
	ment. In the HR diagram it lies slightly below the model ZAMS. The
	evolutionary model by [88] predicts an age of $pprox$ 400 Myr. Hence, the star
	is too old to be associated with a young NS.
60979	This star is a M2II-III semi-pulsating variable star (Simbad). Since it is
	an S star ⁷¹ [253], it is too old to be associated with PSR J0630 -2834 .
66252	This K5Ve star is a flare star [179] with low $v \sin i$ of 8.3 ± 0.5 km/s [343],
	hence probably not a BSS runaway star, unless it is observed pole-on.
66732	This O type subdwarf is the central star of a planetary nebula [533], hence
	too old to be the former companion to PSR J0630–2834.
75729	This star is a A0 main sequence star (Simbad) without radial velocity
	measurement. In the HR diagram it lies slightly below the model ZAMS.
	The evolutionary model by [88] predicts an age of $pprox$ 160 Myr. Hence,
	the star is too old to be associated with a young NS.
54282	This star is a A0 main sequence star (Simbad) without radial velocity
	measurement. In the HR diagram it lies slightly below the model ZAMS.
	The evolutionary model by [88] predicts an age of \approx 400 Myr. Hence.

Tabla E 2. Di · · · ·

E.4 The Geminga Pulsar (PSR J0633+1746) – Search for Former Companion Candidates

the star is too old to be associated with a young NS.

As the radial velocity of the Geminga Pulsar is restricted by the observation of its bow shock and could be confirmed by the identification of its probable birth association Ori OB1a, a uniform v_r distribution in the range -300 to +300 km/s was used in the calculations to

⁷¹ S stars are late-type stars on the asymptotic giant branch. They show bands of s-process elements. It is believed that S stars are in an intermediate stage between normal M type giants and Carbon stars [352]. Many of them are long-period variable stars [266, 364] with their companion being a white dwarf.

search for former companion candidates.

19 runaway stars (11 with 3D full kinematics and eight with unknown v_r) could have come as close as 1 pc to the Geminga Pulsar (assuming reasonable spatial velocities for the runaway stars without v_r), two of them within Ori OB1. They are treated as possible former companion candidates to the Geminga Pulsar. Two further encounters were found to be significant. These two stars are also regarded as possible former companion stars. For two of the altogether four cases the NS and runaway star could have been at the same place at the same time in the past (i.e. $\mu = 0$, equation 3.3), HIP 29678 and HIP 108543. In the case of HIP 108543 a present parallax of the Geminga pulsar of $7.5^{+0.4}_{-0.2}$ mas is predicted, inconsistent with the measurement of 4.0 ± 1.3 mas [156].

The remaining candidate HIP 29678 is a B1V star in a double system with zero $v \sin i$ [3] and a helium abundance of He/H = 0.122 ± 0.018 [322].⁷² These parameters suggest that the star gained its runaway status from dynamical ejection rather than a supernova of a former companion. [230] suggested the runaway star HIP 22061 (and a possible third unidentified component) as a former companion of HIP 29678, indicating that this system got disrupted due to dynamical interactions in its parent cluster.

Concluding, no plausible former companion candidate was found for the Geminga Pulsar.

E.5 PSR J0659+1414

E.5.1 Search for Possible Parent Associations

To exclude or propose other possible formation sites of PSR J0659+1414, it was investigated whether it could have been born within a young association or cluster. Eight associations were found within which PSR J0659+1414 could be placed within the past ≈ 2.5 Myr.⁷³ As further indication, equation 3.2 was adapted to the first bins of the d_{min} distributions to estimate the distances of the putative supernovae to the association centres (in a few cases, where equation 3.2 could not be adapted to the slope of the distribution, the d_{min} peak and 68% interval was determined). For all eight cases, the supernova site was found to be consistent with the association boundaries. However, the nominal radii of the majority of candidate associations are rather large ($\gtrsim 50$ pc). In Table E.3 the position of the supernova and the properties PSR J0659+1414 would currently have if it was born in the respective association are given. For the five associations that belong to the YLA (section 2.1.2), the proposed supernova sites would have been recent (≈ 0.5 Myr⁷⁴) and very close to Earth ($\approx 30 - 70$ pc). A lower limit of the intensity of a γ ray emission feature (COMPTEL 1.8 MeV, ²⁶Al) can be estimated by assuming a minimum supernova ²⁶Al yield of $1.5 \cdot 10^{-5}$ M_☉ (for a progenitor star with ≈ 8 M_☉ [301, 548]) uniformly distributed over

⁷²Known BSS runaways such as ζ Ophiuchi or ξ Persei have helium abundances of He/H \approx 0.2 [230] (converted from $\epsilon = \text{He}/(\text{He} + \text{H})$ into He/H).

 $^{^{73}}$ Note, that this is already ≈ 25 times the characteristic age of the pulsar. No further association was identified up to 5 Myr into the past.

 $^{^{74}}$ Note, however, that this is already 5 au_{char} .

Table E.3: Present-day para	meters of PSRJ0659	9+1414 and supe	ernova position	and time for
possible parent associations.	Column designations	are as in Table	4.2.	

Assoc.	(μ, σ)	au	Pre	Predicted present-day NS parameters				Predicted supernova position				M _{prog}
			Vr	μ^*_{lpha}	μ_{δ}	Vsp	π	$d_{\odot,SN}$	$d_{\odot,today}$	1	Ь	
_	[pc]	[Myr]	[km/s]	[mas/yr]	[mas/yr]	[km/s]	[mas]	[pc]	[pc]	[°]	[°]	$[M_{\odot}]$
Tuc-Hor	(33.8, 1.7)	$0.56\substack{+0.15 \\ -0.14}$	532^{+84}_{-114}	44.1±0.6	$-2.4{\pm}0.3$	529^{+101}_{-93}	$3.6^{+0.3}_{-0.3}$	34^{+6}_{-4}	33^{+7}_{-4}	$91.2^{+10.7}_{-13.9}$	$-70.2^{+1.5}_{-1.0}$	7 - 30
β Pic-Cap	32^{+30}_{-16}	$0.58\substack{+0.43 \\ -0.19}$	536^{+73}_{-118}	44.1±0.6	$-2.4{\pm}0.3$	511^{+104}_{-86}	$3.5^{+0.4}_{-0.2}$	37^{+4}_{-6}	37^{+6}_{-6}	$108.0^{+14.3}_{-16.2}$	$-70.4^{+1.2}_{-1.0}$	7 - 38
AB Dor	(0, 27.6)	$0.62\substack{+0.35 \\ -0.25}$	478^{+122}_{-75}	44.1±0.6	$-2.4{\pm}0.3$	501^{+106}_{-92}	$3.5^{+0.4}_{-0.3}$	35^{+5}_{-9}	37^{+5}_{-9}	$150.3^{+8.5}_{-8.3}$	$-65.5^{+3.0}_{-2.5}$	4 – 9
Cas-Tau	120^{+7}_{-16}	$0.36\substack{+0.34 \\ -0.14}$	188^{+120}_{-54}	44.1±0.6	$-2.4{\pm}0.3$	220^{+93}_{-75}	$3.3\substack{+0.3\\-0.4}$	99^{+12}_{-9}	110^{+14}_{-10}	$190.8\substack{+1.7 \\ -4.1}$	$-18.4^{+3.4}_{-10.4}$	6 – 7
Mon OB1	(44.0, 5.5)	$0.58\substack{+0.38 \\ -0.20}$	$-415\substack{+87\\-105}$	44.1±0.6	$-2.4{\pm}0.3$	435^{+100}_{-84}	$3.4^{+0.4}_{-0.3}$	$562\substack{+4\\-4}$	572^{+4}_{-3}	$199.8\substack{+0.3 \\ -0.4}$	$4.9^{+0.7}_{-1.0}$	\gtrsim 9
λ Ori	(17.1, 3.9)	$2.18\substack{+0.24 \\ -0.08}$	-29^{+3}_{-9}	44.1±0.6	$-2.3{\pm}0.3$	64^{+3}_{-2}	$3.6^{+0.4}_{-0.2}$	368^{+3}_{-11}	399^{+6}_{-9}	$194.2\substack{+0.4 \\ -0.2}$	$-11.1\substack{+0.6 \\ -0.8}$	47 - 62
ColA	(50.1, 3.3)	$0.47\substack{+0.38 \\ -0.17}$	464^{+113}_{-62}	44.1±0.6	$-2.4{\pm}0.3$	477^{+97}_{-38}	$3.5^{+0.4}_{-0.3}$	50^{+3}_{-4}	56^{+4}_{-3}	$190.0^{+2.2}_{-2.3}$	$-24.9^{+5.4}_{-4.0}$	8 – 9
Argus	$24\substack{+29\\-14}$	$0.57\substack{+0.09 \\ -0.12}$	549^{+104}_{-90}	44.0±0.6	$-2.4{\pm}0.3$	559^{+96}_{-98}	$3.6\substack{+0.3\\-0.3}$	$36\substack{+5\\-5}$	$36\substack{+5\\-6}$	$76.9^{+15.4}_{-8.4}$	$-69.2\substack{+2.5\\-1.3}$	7 – 8

Note that it is possible that the derived value for v_r is larger than that of v_{sp} because v_r is heliocentric whereas v_{sp} is the peculiar velocity of the NS that reflects its kick velocity.

a circle with the size of the SNR (calculated from time and distance to the supernova, section 1.3). For such recent and nearby supernovae, the average pixel value (for COMPTEL 1.8 keV) in the SNR area is ≈ 1 to $2 \cdot 10^{-5}$ cm⁻²s⁻¹sr⁻¹. This small value (due to the large angular sizes of the possible SNRs of a few tens of degrees) does not allow further exclusion of associations. However, Cas-Tau may be excluded since the supernova position would lie at the association edge although the nominal radius is very large (108 pc, $R_{crit} = 111$ pc). Futhrmore, the predicted progenitor mass is smaller than the minimum mass required for a core-collapse supernova (pprox 8 - 9 M $_{\odot}$, [e.g. 214]). Only 0.04 % of runs yield separations d_{min} to the centre of λ Ori that are consistent with R_{crit} (18 pc, nominal radius 15 pc). The predicted radial velocity for those encounters is very small. For a low-density environment [391] predict a toroidal pulsar wind nebula (bow shock) with a radius of \approx 3". In fact, [401] found a nearly circular feature around the pulsar in a Chandra image that suggests a face-on torus, i.e. the pulsar is mainly moving in radial direction. That would be inconsistent with an origin in λ Ori. Hence, the YLA Tuc-Hor, eta Pic-Cap, AB Dor, ColA and Argus as well as Mon OB1 remain possible parent associations (although the YLA seem less likely due to their present mass functions, see section 2.1.2) if PSR J0659+1414 was not born in the supernova that created the Monogem Ring SNR.

E.5.2 Search for Possible Former Companions Not Connected with the Monogem Ring

It was checked whether a runaway star could be connected with PSR J0659+1414 that would support a non-association between the SNR and the pulsar, i.e. it was searched for possible encounters between PSR J0659+1414 and runaway stars that could have occurred also outside the Monogem Ring. Twelve candidates (nine with full 3D kinematics, three with unknown v_r) were found for which either encounters with PSR J0659+1414 appear significant (three stars) or the encounter may have occurred inside one of the six pos-

Table E.4: Discussion on possible former companion candidates to PSR J0659+1414 if it is not connected to the Monogem Ring SNR.

HIP	Properties and conclusion
5081	This star is a F4II-III spectroscopic binary [147] with low $v \sin i = 6.6 \pm 0.9$ km/s [461], hence probably no BSS runaway star
5477	This star is a G611-111 giant star (Simbad).
17952	This star is a K1II supergiant with near-zero $v \sin i$ [124], hence probably not a BSS runaway star unless it is observed pole-on. The kinematic age of PSR J0659+1414 would be \approx 1.6 Myr. Assuming an initial spin period of 20 ms as estimated for the Crab Pulsar [341], this implies a braking index as small as $n \approx 0.5$. The smallest braking indices observed are that of Vela with $n = 1.4 \pm 0.2$ [320] and PSR J1734-3333 with $n = 0.9 \pm 0.2$ [152]. Hence, it might be unlikely that PSR J0659+1414 is already 1.6 Myr old although the initial spin period could be much smaller $(\leq 10^{-3} \text{ s required for } n \approx 1)$.
19855	[334] give a gyro age of this G8V star in a binary system (B component, A component = HIP 19859, [147]) of 500 ± 60 Myr. This is in accordance with being a member of the UMa group as proposed by [382]. However, according to [300], HIP 19855 could be a weak-line T Tauri star. If treated as pre-main sequence star its age is 40 ± 17 Myr (section 2.3).
101608	This star is a A511/111 giant with $v \sin i = 93 \text{ km/s} [7, 434]$.
112790	This B5V star with unknown v_r is a SB1 candidate [347] with $v \sin i =$ 70 km/s and normal disk abundance (i.e. no He enhancement) [346], hence probably not a BSS runaway star.
115195	This star without v_r measurement is designated as sdO in Simbad. It is a white dwarf [5].
115527	This G5V star is a young isolated nearby star (35 \pm 8 Myr; [486], section 2.3).

sible parent associations (if PSR J0659+1414 did not form inside the Monogem Ring), see Table E.3. For eight cases, equations 3.2 and 3.3 suggest that the runaway star and the NS could have been at the same place and time in the past ($\mu = 0$). Those eight former companion candidates to PSR J0659+1414 are discussed in Table E.4. Four of them are possible BSS runaway stars (HIP 5477, HIP 19855, HIP 115527). The present parameters of PSR J0659+1414 if the respective runaway star was the former companion are given in Table E.5. Since the predicted supernovae would have occurred only recently and very close to the Sun, ²⁶Al cannot be used as further indicator because the SNRs would cover several tens of degrees that makes it impossible to measure the associated 1.8 MeV γ flux.

E.6 PSR J0820–1350 – Search for Former Companion Candidates

Four runaway stars with known radial velocities and further three stars without v_r were found, for which the smallest separation to PSR J0820-1350 found after three million
HIP	Assoc./cl.	au	Pi	Predicted present-day NS parameters				Predicted supernova position				M _{prog}
	[pc]	[Myr]	<i>v_r</i> [km/s]	μ^*_{lpha} [mas/yr]	μ_δ [mas/yr]	<i>v₅p</i> [km/s]	π [mas]	<i>d</i> ⊙, <i>s</i> ∧ [pc]	d _{⊙,today} [pc]	/ [°]	<i>ь</i> [°]	[M _☉]
5477 19855 ^s	ColA ColA	$0.90^{+0.19}_{-0.09}$ $0.52^{+0.08}_{-0.12}$	$298^{+39}_{-33}\\681^{+110}_{-124}$	44.1±0.6 44.0±0.6	-2.4±0.3 -2.4±0.3	$286^{+36}_{-35}\\617^{+170}_{-64}$	$3.2^{+0.2}_{-0.4}$ $3.7^{+0.4}_{-0.2}$	$65^{+9}_{-5}\ 29^{+3}_{-2}$	$71^{+9}_{-6} \\ 34^{+3}_{-2}$	$160.1^{+6.3}_{-3.7}$ $188.2^{+1.5}_{-1.9}$	$-59.1^{+2.0}_{-2.8}$ $-30.7^{+4.6}_{-1.7}$	_ 6 – 11
101608	β Pic-Cap, Argus	$0.54^{+0.12}_{-0.12}$	566^{+128}_{-112}	44.0±0.6	$-2.4{\pm}0.3$	598 ⁺⁹⁷ -139	$3.8^{+0.3}_{-0.4}$	74^{+2}_{-3}	69^{+2}_{-2}	$32.0^{+2.7}_{-2.4}$	$-34.3^{+2.2}_{-6.9}$	_
115527 ^s	ColA	$0.43\substack{+0.04 \\ -0.05}$	653^{+73}_{-73}	44.0±0.7	$-2.4{\pm}0.3$	700^{+49}_{-97}	$3.8\substack{+0.2\\-0.4}$	$32\substack{+1\\-4}$	$30\substack{+1\\-2}$	$55.0^{+6.9}_{-6.6}$	$-64.6\substack{+3.9\\-2.6}$	6 - 10

Table E.5: Present-day parameters of PSRJ0659+1414 and supernova position and time for former companion candidates and the respective parent association/cluster. Column designations are as in Table 4.5.

Note that it is possible that the derived value for v_r is larger than that of v_{sp} because v_r is heliocentric whereas v_{sp} is the peculiar velocity of the NS that reflects its kick velocity.

For , no age estimation was possible (hence, no M_{prog}). It was considered young because of its luminosity class (section 2.3.1).

Monte Carlo runs was less than 3 pc (assuming plausible space velocities for those stars with unknown v_r). None of these seven possible encounters is significant nor can be placed within one of the proposed birth associations (Table 4.24).

Hence, no former companion candidate was found for PSR J0820-1350. However, it is still well possible that PSR J0820-1350 is \approx 5 Myr old or even older. By constraining the NS parameters it might be possible to calculate the orbits even for larger ages than done in this work; a restriction on the radial velocity of the NS (and runaway stars) is crucial here.

E.7 PSR J0826+2637 – Search for Former Companion Candidates

In total, 137 runaway stars could have come close to the PSR J0826+2637 sometime in the past 5 Myr (109 with known v_r , 28 with unknown v_r). None of these encounters are significant, however one association between PSR J0826+2637 and a runaway star is highly interesting: The G0Ia supergiant HIP 13962 could have been at the same place as PSR J0826+2637 inside (or at least close to) the small cluster Stock 7 (nominal radius $\approx 2 \text{ pc}$ [268]; $R_{crit} = 30 \text{ pc}$). The predicted radial velocity of PSR J0826+2637 would be close to zero. Therefore, the calculations were repeated with $v_r = 0 \pm 100 \text{ km/s}$ for the NS. Using those Monte Carlo runs for which both stars were within 30 pc around the cluster centre, adapting equation 3.3 to the d_{min} distribution predicts that both objects could have been at the same place $3.0 \pm 0.6 \text{ Myr}$ in the past. Considering the small size of the cluster that potentially hosted the birth place of both stars it is very likely that PSR J0826+2637 and HIP 13962 were ejected in the same supernova event in Stock 7.

E.8 PSR J0953+0755 – Search for Former Companion Candidates

After three million Monte Carlo runs, ten runaway stars with full 3D kinematics were found for which the smallest separation to PSR J0953+0755 was less than 1 pc. They are considered possible former companion candidates. 19 further stars with unknown v_r

Table E.6: Discussion on possible former companion candidates to PSR J0953+0755.

HIP	Properties and conclusion
5100	This star is a WN2 star without v_r measurement. The predicted super- nova would have occurred inside one of the YLA. No Wolf-Rayet stars, i.e. very massive stars are expected to have formed in the YLA (section 2.1.2). Hence, HIP 5100 cannot be the former companion to PSR J0953+0755.
9362	This K0II/II star without v_r measurement is a carbon star ⁷⁵ , hence too old to be associated with a young NS.
12653	This F8V star has a low $v \sin i = 4.2 \pm 0.6$ km/s [7], hence is probably no BSS runaway star unless it is observed pole-on.
16566	This star is an O type star. From its position in the HR diagram it is an O type subdwarf, hence too old to be associated with a young NS (see footnote 48). Moreover, no O type stars (i.e. very massive stars) are expected to have formed in the YLA (section 2.1.2) where the predicted position of the supernova is situated.
28675	According to the Hipparcos catalogue, this star has a spectral type of K3II/III [231]. A more recent determination gives K3III [147]. Hence the star is too old to be associated with a young NS.
30444	In the Hipparcos catalogue this star has a spectral type of K1II/III whereas [147] list it as G6III star in a binary system. Furthermore, [146] classified it as old disk star. Hence, it cannot be associated with PSR J0953+0755.
33774	This star is a G811-111 star (Simbad).
37017	This O9 star without v_r measurement is a hot subdwarf [183], hence old.
40929	This A6/A711/111 star has no v_r measurement yet (Simbad).
47904	This F2Ib star is a variable star of δ Scuti type (Simbad).
53557	This astrometric binary [331] with spectral type F9II/III has no v_r measured yet.
60134	This A411 λ Bootes star [e.g. 191] has no v_r measurement yet.
66057	This F511/111 star without v_r measurement is a binary system [448].
75769	This K0 PMS star is a double or multiple system. It is a foreground star to the Sco-Cen associations [386].
93015	This F5lb-II single star is a variable star of W Virginis type ⁷⁶ , hence too old to be associated with a young NS.

94899 This B2V star is in a double system (Simbad).

were found for which the smallest d_{min} value found was less than 2 pc assuming reasonable space velocities for these stars. Two of these 29 encounters are significant, 14 further could have occurred inside one of the possible birth associations (Table 4.13). In total, these are 16 possible former companion candidates. The distributions of separations d_{min} are very broad. This is probably due to the broad velocity distribution for PSR J0953+0755 because there is only minor restriction on v_r from the small transverse velocity of 37^{+1}_{-1} km/s. For that reason, for any case no clear conclusion could be drawn from adapting equations 3.2 and 3.3 to the d_{min} distribution. For all 16 cases, it could be possible that both stars were at the same place at the same time in the past. The properties of these 16 runaway stars are summarised in Table E.6. Eight stars remain former companion candidates considering their properties: HIP 33774, HIP 40929, HIP 47904, HIP 53557, HIP 60134, HIP 66057, HIP 75769 and HIP 94899.

E.9 PSR J1136+1551 – Search for Former Companion Candidates

Since it was found that the radial velocity of PSRJ1136+1551 is most probably low (also supported by the evidence of a bow shock [559], see also section 4.4.4), for the following analysis $v_r = 0 \pm 100 \text{ km/s}$ was adopted.

After three million Monte Carlo runs, five runaway stars with complete 3D kinematics were found for which the smallest separation to the NS was less than 1 pc. They are regarded as possible former companion candidates. Further ten stars with unknown v_r were found for which the smallest d_{min} did not exceed 2 pc assuming reasonable space velocities for the runaway stars. Three possible encounters are significant (HIP 61766, HIP 63049, HIP 63449). No further possible encounter could have occurred inside one of the possible birth associations/clusters of PSR J1136+1551 (Table 4.27).

E.10 PSR J1239+2453 – Search for Former Companion Candidates

After three million Monte Carlo runs, three runaway stars with full 3D kinematics were found for which the smallest separation to PSR J2330–2005 was less than 1 pc. 15 further stars with unknown v_r were identified for which the smallest separation to the NS did not exceed 3 pc assuming reasonable space velocities for these stars (see appendix D.2 for justification of the d_{min} thresholds). Neither of these encounters is significant nor could have occurred inside one of the possible birth associations (section 4.4.5). Hence, no former companion candidate was found for PSR J1239+2453.

E.11 PSR J1509+5531 – Search for Former Companion Candidates

Three runaway stars with known radial velocity were found, for which close encounters with PSRJ1509+5531 are possible, HIP 44676, HIP 103141 and HIP 105669. Only one of these stars, HIP 103141, could have been at the same place in the past as the NS. However, for a close encounter with this star, PSRJ1509+5531 would need an extraordinary high peculiar space velocity of 1730^{+60}_{-360} km/s, hence this association is unlikely. Among those runaway stars with unknown radial velocity, only one could have come close to PSRJ1509+5531 assuming a plausible runaway star space velocity, HIP 112250. For this case, however,

⁷⁵Carbon stars are old evolved late-type giant stars on the asymptotic giant branch. Their spectra show enhanced carbon [352]. Related to the carbon stars are barium and s stars (see also footnotes 45, 71).

⁷⁶These type II cepheids are old low-mass stars [161, 504].

equation 3.2 predicts a rather large fly-by distance of \approx 200 pc. Hence, no former companion candidate was found for PSR J1509+5531.

E.12 RX J1605.3+3249 – Search for Former Companion Candidates

After 10^6 Monte Carlo runs, 24 runaway stars with full 3D kinematics were found for which the smallest separation to RX J1605.3+3249 was less than 1 pc. 26 further stars without v_r measurements were found with a smallest separation to the NS of less than 2 pc and a reasonable runaway space velocity (see appendix D.2 for justification of the d_{min} thresholds). No significant encounter was found. Seven encounters were found to have possibly occurred inside one of the possible birth associations of RX J1605.3+3249 (Table 4.6), all of them inside the Octans association. This is mainly due to the large size of the association.⁷⁷ For four stars it was found that they could have been at the same place at the same

time in the past as RX J1605.3+3249 (from equation 3.3, $\mu = 0$ possible). Those four former companion candidates to RX J1605.3+3249 are discussed in Table E.7. One former companion candidate remains: HIP 89394.

E.13 PSR B1929+10 – Search for Former Companion Candidates

After three million Monte Carlo runs, 11 runaway stars with full 3D kinematics and five stars with unknown radial velocity were found for which the smallest separation to PSR J2330-2005 was less than 1 pc (assuming reasonable space velocities for those stars with unknown v_r). Four of these encounters are significant, seven could have occurred in the vicinity of US (85 ± 50 pc). In total, these are nine possible former companion candidates (four significant encounters, seven inside US, two included in both).

One of them, HIP 78681, was already identified as barium star in section 4.1.1 and is excluded immediately. For the others the distributions of separations d_{min} are compared with the theoretically expected curve for a common origin, equation 3.3. For three cases (HIP 71096, HIP 77471, HIP 85015), the runaway star and the NS could have been at the same place in the past ($\mu = 0$ from equation 3.3). For one further case (HIP 78171), no conclusion can be drawn from the d_{min} distribution since it is very broad, probably due to the unknown v_r of both objects as well as the uncertain parallax of the runaway star (almost 50% uncertainty). These four former companion candidates are discussed in

⁷⁷ Although [498] question whether the Octans association is expanding, it could well be that it was smaller in the past, i.e. at the time of the supernova. However, the expansion of associations is neglected here in order to not miss candidate stars. The chance of finding former companion candidates is naturally higher for large associations, however each association of a NS with a runaway star is regarded individually. Every companion star candidate is discussed in detail (see e.g. for this section Table E.7). Further observation of the runaway stars might be necessary to confirm or reject a particular supernova scenario. This comment applies to all results presented in this work.

 Table E.7: Discussion on possible former companion candidates to RX J1605.3+3249.

.....

_

.

.

. .

HIP	Properties and conclusion
81969	This O6.5V star is a double star. An encounter of the system with RX J1605.3+3249 could have occurred inside the Octans association if the present distance of the runaway star candidate was 36^{+98}_{-14} pc. However, distance estimates from Ca-II column densities indicate a distance of the system of ≈ 1 kpc. Also, the Hipparcos parallax of 17.95 ± 16.68 mas [518] that was used in the Monte Carlo simulations is very uncertain. A distance of 1 kpc, thus, seems more plausible. Due to the large distance of HIP 81696 that is inconsistent with the predicted one, it is excluded as a companion candidate of RX J1605.3+3249.
83003	This star is listed as an O type Cepheid variable (Simbad). However, its large V band magnitude $V = 10.62$ mag suggests that the star might be much more distant than its parallactic distance of 163^{+68}_{-37} pc (infers absolute magnitude of $M_V = 4.6$ mag; for an O type star, $M_V \approx 0$ to -5 mag, hence its distance is $\approx 1 - 13$ kpc). Therefore, it is excluded as former companion candidate to RX J1605.3+3249.
89394	This star was classified as F0II star by [232], and revised by [395] to be Am, i.e. it is metal-rich. Also, the radial velocity of that star has not yet been published.
93015	This star is an F5lb-II W Virginis star (see footnote 76). Therefore, it cannot be a former companion to the young NS.

 Table E.8: Discussion on possible former companion candidates to PSRB1929+10.

HIP	Properties and conclusion
71096	This star is a hot O type subdwarf, hence too old to be associated with P_{1}
	a young NS (see also footnote 48).
77471	This star is a A8/A911 eclipsing binary of Algol type (Simbad). [474] give
	a spectral type of A5+F5 for this binary system (see also [63]).
78171	This K011/111 binary system (Simbad, [154]) has no measured radial ve-
	locity.
85015	This A311/111 star (Simbad) has no known radial velocity.

detail in Table E.8. Concluding from that table, three former companion candidates to PSR B1929+10 remain: HIP 77471, HIP 78171 and HIP 85015.

E.14 PSR J2048–1616 – Search for Former Companion Candidates

One runaway star with full 3D kinematic data was found for which the smallest separation to PSR J0454+5543 after three million Monte Carlo runs was smaller than 1 pc. Further five stars with unknown radial velocity were found for which the smallest separation to PSR J0454+5543 did not exceed 2 pc assuming plausible space velocities of the runaway stars (see appendix D.2 for justification of the d_{min} thresholds). None of these encounters

HIP	Properties and conclusion
70574	This star is a single B2IV variable star of β Cephei type (Simbad, [147]).
70586	For this M2II: star (Simbad) no radial velocity measurements is available.
88981	This star is a K111 supergiant (Simbad).
90804	This B2V binary star [147] has a low rotational velocity of 25 km/s [3],
	hence is probably not a BSS runaway star unless it is observed pole-on.
92845	This K1lb/ll Ba star [359] is a member of a double system with a white
	dwarf companion [147] (see also footnote 45), hence too old to be a
	former companion to PSR J2313+4253.
93051	This B8IIIe mercury (Hg) star [147] is a single star with a high rotational
	velocity of $182\pm12{ m km/s}$ [169].

 Table E.9: Discussion on possible former companion candidates to PSR J2313+4253.

is significant. Also, none of them could have occurred inside one of the possible birth associations/clusters (Ser OB1, Ser OB2, NGC 6604) of PSRJ0454+5543. Hence, no convincing former companion candidate was found.

E.15 PSR J2313+4253 – Search for Former Companion Candidates

After three million Monte Carlo runs, 32 runaway stars with full 3D kinematics were found for which the smallest separation to PSR J2330–2005 was less than 1 pc. Further 59 runaway stars with unknown v_r were identified for which the smallest d_{min} did not exceed 3 pc assuming reasonable space velocities for these stars. Six of these 91 possible encounters are significant. No further encounter could have occurred inside Ser OB1, the possible birth association (section 4.3.5). For all six cases, the d_{min} distribution is broad and no clear conclusion can be drawn using equations 3.2 and 3.3. The six former companion candidates to PSR J2313+4253 remain: HIP 70574, HIP 70586, HIP 88981 and HIP 93051.

E.16 PSR J2330–2005 – Search for Former Companion Candidates

After three million Monte Carlo runs, 34 runaway stars with full 3D kinematics were found for which the smallest separation to PSR J2330–2005 was less than 1 pc. Further 26 stars with unknown v_r were identified for which the smallest separation to the NS did not exceed 3 pc assuming reasonable space velocities for the runaway stars. Four of these 60 possible encounters are significant, seven further could have occurred inside one of the possible birth associations of the NS (section 4.3.6). Altogether, these are 11 possible former companion candidates. Since the distributions of separations d_{min} are very broad (due to the small

 Table E.10: Discussion on possible former companion candidates to PSR J2330-2005.

66690	This G8II-III star (Simbad, [554], in Hipparcos catalogue G5II:) has near- zero $v \sin i$ [124, 297]. [321] give an age for this star of 316 Myr that was determined from T_{eff} and log g and evolutionary models from [88]. Using T_{eff} and luminosity yield 360 ± 35 Myr, in good agreement with the determination by [321] (section 2.3). If the star is an evolved low- mass star, it is too old to be a former companion to PSR J2330-2005. It's spectral type should be improved. Due to its near-zero $v \sin i$ it is probably no BSS runaway.
76605	This G811/111 suspected binary (Simbad, [255]) is a barium star [255, 359], hence too old to be a former companion to PSR J2330–2005 (see footnote 45).
76768	This K3/K4V double or multiple system (Simbad) is listed as a member of the AB Dor moving group [563]. Its motion is consistent with that of AB Dor within 1σ in U and V and 2.5σ in W. Hence, it is possibly not a runaway star (although identified by its slightly larger-than-average transverse velocity, section 2.3).
78131	This star is a B6V star in a double system (Simbad).
21007	This star is a A0 main sequence star (Hipparcos, Simbad gives spectral type G). Since it is slightly below the ZAMS of the evolutionary models used to determine its age (section 2.3), it was treated as ZAMS stars by most models. Using the model by [88] yields an age of \approx 400 Myr, hence probably too old to be a former companion to PSR J2330-2005. This star is a single R0 FIII mercury mangapase (HgMn) star [147, 542]
81007	According to [234] more than two thirds of HgMn stars are spectroscopic binaries. The fact that HIP 81007 is a single star might indicate that it was ejected from a former binary system. However, the low rotational velocity of $v \sin i = 14 \pm 1 \text{ km/s}$ [3] (typical for HgMn stars) does not support a BSS origin. Searching for supernova debris in its spectrum is needed.
82475	This star is a A0 main sequence star similar to HIP 78846. Using the model by [88] yields an age of \approx 380 Myr, hence probably too old to be a former companion to PSR J2330-2005.
89828	This star is a F5II giant with $v \sin i = 70.1 \pm 7.0 { m km/s}$ [124].
94391	This star is a A0 double or multiple star (Simbad, Hipparcos catalogue B4). [470] already listed this star as early type high velocity star.
101608	This star is a A511/111 giant with $v \sin i = 93 \text{km/s}$ [7, 434].
113562	This star is a KOIICN star (Simbad, Hipparcos catalogue KOIICNIII). [147] give a spectral type of KOIII. Hence, the star is probably too old to be a former companion to PSR J2330–2005.

transverse velocity of the NS of 4_{-1}^{+5} km/s the v_r distribution is broad), it was found for all cases that both stars could have been at the same place at the same time in the past ($\mu = 0$, equation 3.3). These eleven stars are discussed in Table E.10. Considering their properties, five former companion candidates to PSR J2330-2005 remain: HIP 78131, HIP 81007, HIP 89828, HIP 94391 and HIP 101608.

Appendix

F Preliminary Results For 85 Further Neutron Stars

PSR	possible parents	$ au_{kin}$ [Myr]	^τ char [Myr]	# former <i>v_{r,run}</i> known	comp. cand. <i>v_{r,run} unknown</i>
J0014+4746	Cyg OB7, Tr37, Cep OB2, Cep OB1, NGC 7380, Cep OB3, NGC 7128,	$\gtrsim 1.1$	34.8	31	91
J0139+5814	NGC 7235, NGC 7160, NGC 7261, IC 1442, NGC 7419, Cep OB5 Per OB1, Cas OB6, IC 1805, Cep OB1, NGC 7380, Cep OB3, NGC 7128, NGC 7235, NGC 7160, NGC 7261, IC 1442, NGC 7419, Cas OB5	0.5 - 1.1	0.403	1	10
J0152-1637	Tuc-Hor, β Pic-Cap, AB Dor, Her-Lyr, Cep OB4, α Per, Cas-Tau,	$\gtrsim 0.3$	10.2	110	532
J0206–4028	Pierades, NGC 7129, CoIA, Argus, NGC 7419, Cep OB5 US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ε Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB1, CoI 359, IC 4665, Cyg OB7, α Per, Per OB2, Cas-Tau, Pierades, Mon OB1, Ori OB1, λ Ori, Col 121, NGC 2476, Col 140, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, vdB-Hagen 99, Car OB1, Col 228, IC 2602, Car OB2, NGC 3766, Cru OB1, IC 2944, ChaT, Cen OB1, Stock 16, Hogg 16, NGC 5606, NGC 6067, R 105, Ara OB1A, NGC 6193, NGC 6204, Sco OB1, Sco OB4, Pismis 24, NGC 6383, M6, NGC 2422, Col 132, NGC 2670, NGC 2516, NGC 3532, Feinstein 1, Stock 13, NGC 3572, Stock 14, NGC 4103, NGC 4463, NGC 4609, NGC 4755, NGC 5168, NGC 5281, NGC 5316, NGC 7129, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 92, NGC 3590, Ruprecht 107,	no restriction	8.33	175	541
J0304+1932	Basel 18, Col 272, NGC 6250, ColA, CarA, Octans, Argus, Pleiades B1 TWA, Tuc-Hor, β Pic-Cap, HD 141569, AB Dor, Her-Lyr, Cyg OB7, Tr 37, Lac OB1, Cep OB2, Cep OB6, Cep OB3, Cep OB4, Cas OB14, Per OB1, Cas OB6, Cam OB1, NGC 1502, α Per, Per OB2, Cas- Tau, Pleiades, Stephenson 1, NGC 7160, Stock 7, NGC 7129, Tr 3, NGC 1513, ColA, Argus, Pleiades B1, Vel OB1, IC 2395, IC 2391, vdB- Hagen 99, Car OB1, Col 228, IC 2602, Car OB2, NGC 3766, Cru OB1, IC 2944, ChaT, Cen OB1, Stock 16, Hogg 16, NGC 5606, NGC 6067, R 105, Ara OB1A, NGC 6193, NGC 6204, Sco OB1, Sco OB4, Pis- mis 24, NGC 6383, M6, NGC 2422, Col 132, NGC 2670, NGC 2516, NGC 3532, Feinstein 1, Stock 13, NGC 3572, Stock 14, NGC 4103, NGC 4463, NGC 4609, NGC 4755, NGC 5168, NGC 5281, NGC 5316, NGC 5617, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, NGC 7129, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 92, NGC 3590, Ruprecht 107, Basel 18, Col 272, NGC 6250, ColA, CarA, Octans, Ar- arc Pleiades P1.	no restriction	17.0	228	525
J0332+5434	g s, rienaus D1 β Pic-Cap, Ext. R CrA, AB Dor, Cyg OB4, Cyg OB7, Lac OB1, Cas OB1, NGC 457, Cas OB8, Per OB1, h Per, χ Per, Cas OB6, Cam OB1, Cas-Tau, NGC 6067, Ara OB1A, NGC 6193, NGC 6204, Ara OB1B, Sco OB1, NGC 6322, Pismis 24, M6, NGC 6531, IC 4725, NGC 6716, NGC 433, NGC 581, NGC 659, NGC 957, Harvard 10, NGC 6167, Nor OB1, R103, NGC 7129, Czernik 2, NGC 654, Basel 10, Hogg 22, NGC 6250, Lynga 14, Argus, Cen OB1, Stock 16, Hogg 16, NGC 5606, NGC 6067, R 105, Ara OB1A, NGC 6193, NGC 6204, Sco OB1, Sco OB4, Pismis 24, NGC 6383, M6, NGC 2422, Col 132, NGC 2670, NGC 2516, NGC 3532, Feinstein 1, Stock 13, NGC 3572, Stock 14, NGC 4103, NGC 4463, NGC 4609, NGC 4755, NGC 5168, NGC 5281, NGC 5316, NGC 5617, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, NGC 7129, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 92, NGC 3590, Ruprecht 107, Basel 18, Col 272, NGC 6250, ColA, CarA, Octans, Argus, Pleiades B1	≳ 0.2	5.53	139	348
J0358+5413	Tuc-Hor, β Pic-Cap, AB Dor, Cam OB1, Per OB2, Cas-Tau, ChaT, NGC 1444, NGC 6087, NGC 7129, NGC 1513, ColA, CarA, Octans, Argus, NGC 6067, Ara OB1A, NGC 6193, NGC 6204, Ara OB1B, Sco OB1, NGC 6322, Pismis 24, M6, NGC 6531, IC 4725, NGC 6716, NGC 433, NGC 581, NGC 659, NGC 957, Harvard 10, NGC 6167, Nor OB1, R103, NGC 7129, Czernik 2, NGC 654, Basel 10, Hogg 22, NGC 6250, Lynga 14, Argus, Cen OB1, Stock 16, Hogg 16, NGC 5606, NGC 6067, R 105, Ara OB1A, NGC 6193, NGC 6204, Sco OB1, Sco OB4, Pismis 24, NGC 6383, M6, NGC 2422, Col 132, NGC 2670, NGC 2516, NGC 3532, Feinstein 1, Stock 13, NGC 3572, Stock 14, NGC 4103, NGC 463, NGC 6095, NGC 4755, NGC 5168, NGC 5281, NGC 5316, NGC 5617, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, NGC 7129, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 92, NGC 3590, Ruprecht 107, Basel 18, Col 272, NGC 6250, ColA, CarA, Octans, Argus, Pleiades B1	≳ 0.2	0.564	38	223

Table F.1: Preliminary results for 85 further NSs.

Table F.1: – Continued -	_
--------------------------	---

PSR	possible parents	$ au_{kin}$ [Myr]	${}^{ au_{char}}$ [Myr]	# former o <i>v_{r,run}</i> known	comp. cand. <i>v_{r,run}</i> unknown
J0452—1759	US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ϵ Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB1, Sgr OB7, Ser OB1, NGC 6611, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Col 359, IC 4665, ChaT, Pis- mis 24, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, Blanco1, NGC 6613, NGC 6716, NGC 6664, NGC 6663, ColA, CarA, Octans, Argus, Pleiades B1, Hogg 22, NGC 6250, Lynga 14, Ar- gus, Cen OB1, Stock 16, Hogg 16, NGC 5606, NGC 6067, R 105, Ara OB1A, NGC 6193, NGC 6204, Sco OB1, Sco OB4, Pismis 24, NGC 6383, M6, NGC 2422, Col 132, NGC 2670, NGC 2516, NGC 3532, Feinstein 1, Stock 13, NGC 3572, Stock 14, NGC 4103, NGC 4463, NGC 4609, NGC 4755, NGC 5168, NGC 5281, NGC 5316, NGC 5617, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, NGC 7129, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 92, NGC 3590, Ruprecht 107, Basel 18, Col 272, NGC 6250, ColA, CarA, Octans, Argus, Pleiades B1	no restriction	1.51	136	587
J0502+4654	US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ϵ Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Cas-Tau, Aur OB2, NGC 1893, Aur OB1, NGC 2129, Gem OB1, Mon OB1, NGC 2264, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, NGC 2232, CMa OB1, NGC 2287, Col 121, Col 140, Col 135, NGC 2546, Vel OB2, Tr 10, IC 2395, IC 2391, vdB-Hagen 99, IC 2602, ChaT, Cen OB1, Hogg 16, NGC 5606, NGC 6067, R 105, Ara OB1A, NGC 6193, NGC 6204, Ara OB1B, Sco OB1, Pismis 24, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, NGC 1981, NGC 1980, NGC 2422, Col 132, NGC 2547, NGC 2516, NGC 5617, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Nor OB1, R103, NGC 7129, NGC 2343, Bochum 5, Pismis 8, Pis- mis 16, Ruprecht 107, Hogg 22, NGC 6250, ColA, CarA, Octans, Ar- gus, Pleiades B1, Octans, Argus, Pleiades B1	no restriction	1.81	237	433
J0528+2200	US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ϵ Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB5, NGC 6530, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, Sct OB3, Ser OB2, Sct OB2, Col 359, Vul OB4, Cyg OB7, Lac OB1, Cep OB2, Cep OB6, Cep OB3, Cam OB1, NGC 1502, α Per, Per OB2, Cas-Tau, Pleiades, Aur OB2, NGC 1893, Aur OB1, NGC 2129, Gem OB1, Mon OB1, NGC 2264, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, NGC 2332, CMa OB1, IC 1848, NGC 2287, NGC 2367, Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, vdB-Hagen 99, IC 2602, Cru OB1, IC 2944, ChaT, Hogg 16, NGC 5606, NGC 6067, R 105, Ara OB1A, NGC 6193, NGC 6204, Sco OB1, NGC 6511, Bochum 13, Sco OB4, Pismis 24, Tr 27, NGC 6383, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, Blanco1, NGC 6716, NGC 26683, Stock 7, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2547, NGC 2670, NGC 5516, NGC 3532, Feinstein 1, Stock 13, NGC 4463, NGC 5316, NGC 5517, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6177, NGC 6157, NGC 6025, NGC 6087, Harvard 10, NGC 2343, NGC 2345, Wa- terloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, Pismis 8, Col 205, NGC 2669, Pismis 16, Ruprecht 107, Hogg 22, NGC 6250, Lynga 14, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1	no restriction	1.48	72	410

PSR	possible parents	$ au_{kin}$	τ _{char}	# former	comp. cand.
		[Myr]	[IVIyr]	<i>v_{r,run}</i> known	V _{r,run} un Kn ow n
J0538+2817	Mon OB1, Mon OB2, Ori OB1, Mon R2, NGC 2287, Col 121, Pup OB1, Col 135, Pup OB3, Vel OB2, Car OB1, Cru OB1, Cen OB1, Hogg 16, Ara OB1B, Col 132, Nor OB1, R103, Waterloo 7, Pis- mis 8, Melotte101, Ser OB2, Sct OB2, Col 359, Vul OB4, Cyg OB7, Lac OB1, Cep OB2, Cep OB6, Cep OB3, Cam OB1, NGC 1502, α Per, Per OB2, Cas-Tau, Pleiades, Aur OB2, NGC 1893, Aur OB1, NGC 2129, Gem OB1, Mon OB1, NGC 2264, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, NGC 2322, CMa OB1, IC 1848, NGC 2287, NGC 2367, Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, vdB-Hagen 99, IC 2602, Cru OB1, IC 2944, ChaT, Hogg 16, NGC 5606, NGC 6067, R 105, Ara OB1A, NGC 6193, NGC 6204, Sco OB1, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, Blanco1, NGC 6716, NGC 6683, Stock 7, NGC 1912, Stock 8, NGC 1960, NGC 1981, NGC 1960, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2547, NGC 2670, NGC 2516, NGC 3532, Feinstein 1, Stock 13, NGC 4463, NGC 5316, NGC 5617, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 7129, NGC 2186,	[Myr] ≳ 0.6	[Myr] 0.618	v _{r,run} known 5	v _{r,run} unknown 78
	SigmaOri, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bo-				
	NGC 2669, Pismis 16, Ruprecht 107, Hogg 22, NGC 6250, Lynga 14,				
J0543+2329	BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1 UCL, TWA, Tuc-Hor, β Pic-Cap, ε Cha, Ext. R CrA, AB Dor, Sgr OB1, Sgr OB7, Sgr OB4, Ser OB1, Cyg OB7, Lac OB1, Cam OB1, α Per, Per OB2, Cas-Tau, Aur OB2, Gem OB1, Mon OB2, Ori OB1, λ Ori, Mon R2, Col 121, ChaT, Ara OB1A, Pismis 24, Col 367, Blanco1, NGC 1746, NGC 7129, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Aur OB1, NGC 2129, Gem OB1, Mon OB1, NGC 2264, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, NGC 2322, CMa OB1, IC 1848, NGC 2287, NGC 2367, Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, vdB-Hagen 99, IC 2602, Cru OB1, IC 2944, ChaT, Hogg 16, NGC 5606, NGC 6067, R 105, Ara OB1A, NGC 6193, NGC 6204, Sco OB1, NGC 6231, Bo- chum 13, Sco OB4, Pismis 24, Tr 27, NGC 6383, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, Blanco1, NGC 6716, NGC 26683, Stock 7, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 2361, NGC 2516, NGC 3532, Feinstein 1, Stock 13, NGC 4863, NGC 5316, NGC 2516, NGC 7129, NGC 2186, SigmaOri, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, Pismis 8, Col 205, NGC 2669, Pismis 16, Ruprecht 107, Hogg 22, NGC 6250, Lynga 14, BH 217, NGC 6396,	no restriction	0.253	18	176
J0614+2229	ColA, CarA, Octans, Argus, Pleiades B1 US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ϵ Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB5, NGC 6530, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, NGC 6611, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Col 359, IC 4665, Vul OB4, Cyg OB7, Lac OB1, Cep OB2, Cep OB6, Cep OB3, Cep OB4, Cas OB14, Cam OB1, NGC 1502, α Per, Per OB2, Cas-Tau, Pleiades, Aur OB2, NGC 1893, Aur OB1, NGC 2129, Gem OB1, Mon OB1, NGC 2232, CMa OB1, NGC 2287, NGC 2367, Col 121, Pup OB1, NGC 2232, CMa OB1, NGC 2287, NGC 2367, Col 121, Pup OB1, NGC 2264, Mon OB2, OG 2287, NGC 2367, Col 121, Pup OB1, NGC 2235, IC 2391, vdB-Hagen 99, IC 2602, ChaT, Ara OB1A, NGC 6204, Sco OB4, Pismis 24, Tr 27, NGC 6383, M6, NGC 6514, Col 367, NGC 6633, Stephenson 1, Stock 7, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, Col 132, NGC 2516, NGC 3532, NGC 6025, NGC 6087, Harvard 10, NGC 6178, Tr 24, NGC 7129, NGC 2186, NGC 2343, NGC 2345, Waterloo 7, Bo- chum 5, Lynga 14, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 7129, NGC 2186, NGC 2669, Pismis 16, Ruprecht 107, Hogg 22, NGC 6250, Lynga 14, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1	no restriction	0.0893	29	546

possible parents	$ au_{kin}$ [Myr]	τ _{char} [Myr]	# former o v _{r.run} known	comp. cand. _{Vr,run} unknown
possible parents US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ε Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB5, NGC 6530, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, NGC 6611, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Tr 35, Col 359, IC 4665, Vul OB4, Cyg OB1, Cyg OB9, Cyg OB4, Cyg OB7, Tr 37, Lac OB1, Cep OB2, Cep OB6, Cep OB3, Cep OB4, Cas OB14, Cas OB7, Per OB1, Cas OB6, IC 1805, Cam OB1, NGC 1502, Cam OB3, α Per, Per OB2, Cas- Tau, Pleiades, Aur OB2, NGC 1893, Aur OB1, NGC 2129, Gem OB1, Mon OB1, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, NGC 2232, CMa OB1, IC 1848, NGC 2287, NGC 2414, NGC 2367, Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, NGC 2439, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, IC 2602, Car OB2, ChaT, Cen OB1, Hogg 16, R 105, Ara OB1A, NGC 6193, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, Blanco1, NGC 6613, NGC 6716, NGC 6633, Stephenson 1, NGC 7160, Stock 7, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2547, NGC 2670, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2547, NGC 2670, NGC 2516, NGC 3532, Feinstein 1, NGC 4463, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 7129, NGC 1513, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Purusech 26, Bockom 5, Tr 7, Purusech 18, NGC 2345, Waterloo 7, Purusech 26, Bockom 5, Tr 7, Purusech 18, NGC 2345, Waterloo 7, Purusech 26, Bockom 5, Tr 7, Purusech 18, NGC 2345, Waterloo 7, Purusech 26, Bockom 5, Tr 7, Purusech 18, NGC 2345, Waterloo 7, Purusech 26, Bockom 5, Tr 7, Purusech 18, NGC 2345, Waterloo 7,	τ _{kin} [Myr] no restriction	<i>τ_{char}</i> [Myr] 3.78	# former of Vr,run known 181	:omp. cand. <i>v_{r,run}</i> unknown 494
Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, Ruprecht 107, Lynga 14, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1 Tuc-Hor, β Pic-Cap, ϵ Cha, AB Dor, Lac OB1, Cas OB2, Cas OB5, Cep OB4, Cas OB1, h Per, χ Per, Cas OB6, IC 1805, Cam OB1, α Per, Cas OB8, Per OB1, h Per, χ Per, Cas OB6, IC 1805, Cam OB1, α Per, Per OB2, Cas-Tau, Pleiades, ChaT, Blanco1, NGC 7510, Stock 17, NGC 7788, NGC 7790, Stock 18, NGC 103, NGC 129, NGC 146, NGC 433, NGC 436, NGC 581, NGC 637, NGC 659, NGC 663, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 7129, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Czernik 6, Basel 10, IC 1848, NGC 1513, Col A, CarA, Octans, Argus, Cep OB5, λ Ori, NGC 1976, Mon R2, NGC 2322, CMa OB1, IC 1848, NGC 2287, NGC 2414, NGC 2367, Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, NGC 2439, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, IC 2602, Car OB2, ChaT, Cen OB1, Hogg 16, R 105, Ara OB1A, NGC 6513, NGC 6514, Col 367, NGC 6533, Merkarian 38, IC 4725, Blanco1, NGC 6514, Col 367, NGC 6683, Stephenson 1, NGC 7160, Stock 7, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 6257, NGC 2516, NGC 3532, Erinstein 1 NGC 4463, NGC 6516, NGC 6532, Markarian 38, NGC 1980, NGC 2551, MGC 3532, Feinstein 1 NGC 4463, NGC 6516	$\gtrsim 0.2$	5.07	312	477
NGC 2670, NGC 2516, NGC 3532, Feinstein 1, NGC 4463, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 7129, NGC 1513, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, Ruprecht 107, Lynga 14, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1 US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ϵ Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Col 359, IC 4665, Vul OB1, Vul OB4, Col 121, Pup OB1, Col 140, Col 135, Vel OB2, Tr 10, ChaT, NGC 2571, ColA, CarA, Octans, Argus, Pleiades B1, NGC 7788, NGC 7790, Stock 18, NGC 103, NGC 129, NGC 146, NGC 433, NGC 436, NGC 581, NGC 637, NGC 659, NGC 663, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 7129, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Czernik 6, Basel 10, IC 1848, NGC 1513, ColA, CarA, Octans, Argus, Cep OB5, λ Ori, NGC 1976, Mon R2, NGC 2322, CMa OB1, IC 1848, NGC 2287, NGC 2414, NGC 2367, Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, NGC 2439, Col 135, Pup OB3, NGC 5204, Sco OB1, Sco OB4, Pismis 24, Tr 27, NGC 6383, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, Blanco1, NGC 2192, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 2547, NGC 2670, NGC 2553, NGC 2422, NGC 2343, NGC 2445, NGC 6274, NGC 2184, NGC 2557, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 7129, NGC 1513, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, NGC 1513, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, NGC 1513, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, NGC 1513, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, NGC 1513, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, NGC 1513, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, NGC 1513, NGC 2186, Col 245, NGC 2345, NGC 2345, Waterloo 7, NGC 1513, NGC 2186, Col 167, CG 2445, NGC 2	≳ 1.1	49.2	102	530
	possible parents US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, e Cha, η Cha, HD 141569, Ext. R CrA. AB Dor. Her.Lyr. Sgr. OB5. NGC 6530. Sgr. OB1. Sgr. OB7. Sgr. OB4. Sgr. OB6. M17. Ser. OB1, NGC 6611, Sct. OB3. Ser. OB2. NGC 6604, Sct. OB2, T 35. Col 359, IC 4665, Vul. OB4. Cyg. OB1. Cyg. OB9, Cyg. OB4. Cyg. OB7, Tr 37, Lac OB1, Cap. OB2, Cep. OB6. Cep. OB3. Cep. OB4. Cas. OB14. Cas. OB7, Per. OB1. Cas. OB6. IC 1805. Cam OB1. NGC 1502. Cam OB3. α Per. Per. OB2. Cas- Tau., Pleiades. Aur OB2. NGC 1993. Aur OB1. NGC 2129. Gem OB1. Mon OB1. Mon OB2. NGC 2440. Ori OB1. A Ori. NGC 1076. Mon R2. NGC 2323. CMa. OB1. IC 1848. NGC 2247. NGC 2141. NGC 2357. Col 121. NGC 2362. Pup OB1. NGC 2476. Col 140. NGC 2439. Col 315. Pup OB3. NGC 2546. Vel OB2. Tr 10. Vel OB1. IC 2395. IC 2391. IC 2602. Car OB2. ChaT. Cen. OB1. Hogg 16. R 105. Ara OB1A, NGC 6139. NGC 6131. NGC 6613. Stophenson 1. NGC 7160. Stock 7. NGC 1912. Stock 8. NGC 1960. NGC 1746. NGC 2168. Cal 99. NGC 2149. Col 377. NGC 6631. Markarian 38. IC 4725. Blancel. NGC 6619. Gol 97. Col 106. Col 107. NGC 1981. NGC 1618. NGC 2150. Col 97. Col 106. Col 107. NGC 1981. NGC 1618. NGC 2150. Gol 97. Col 106. Col 107. NGC 1981. NGC 2645. Plannis 8. Col 205. NGC 2343. NGC 2345. Waterloo 7. Ruprecht 26, Bochum 5. Tr 7. Ruprecht 18, NGC 2371. Haffner 26. NGC 2645. Plannis 8. Col 205. NGC 2434. NGC 2351. MGC 437. Cas OB8. Por Cas OB14. Cas OB14. Cas OB1. Sc OB1. NGC 447. Cas OB8. NGC 430. NGC 5101. NGC 710. Stock 17. NGC 7789. NGC 7790. Stock 18. NGC 103. NGC 129. NGC 146. NGC 433. NGC 430. NGC 511. NGC 637. NGC 637. NGC 637. Cas OB8. NGC 436. NGC 511. NGC 710. Stock 17. NGC 7789. NGC 4790. Stock 18. NGC 193. NGC 129. NGC 146. NGC 433. NGC 436. NGC 6511. NGC 6437. NGC 637. NGC 637. Cas OB8. NGC 436. NGC 6511. NGC 6710. Stock 17. NGC 7789. NGC 430. Octans. Argus. Cep OB5. A Ori. NGC 146. NGC 4339. NGC 4360. NGC 6327. NGC 6377. NGC 6377. NGC 6377. NGC 6337. NGC 6377. NGC 6377. NGC 5310. Stock 17. NGC 7100. Stock 7. NGC 1927. NGC 957. NGC 7129. NGC 7544. King 12. MWyer 1. Zerenik 4. Saed	possible parents T _{kin} US, UCL, LCC, TWA, Tuc-Hor, <i>β</i> Pic-Cap, <i>c</i> Cha, <i>η</i> Cha, HD 141569, no restriction Ext, RCG, AB Dor, Her-Lyr, Sgr OBS, NGC 6330, Sgr OB1, Sgr OB7, no restriction Syr OB4, Sgr OB6, MT, YS, Co OB1, NGC 0611, Scr OB3, NG C6908, Cop OB4, Cop OB1, NGC 2017, NGC 1070, NGC 1076, NG R2, Cyg OB5, Cyg OB4, Cyg OB1, NGC 2017, NGC 10270, MG R2, Norm OB1, NGC 1020, Cam OB3, Or Pr, Pr OB2, Cas OB5, Tum OB1, NGC 1020, Cam OB3, Or PH, Pr OB1, Gc 3036, Cal 214, NGC 2362, Pup OB1, NGC 2476, Col 141, NGC 2439, Cal 121, NGC 6123, NGC 6204, Or OB1, Co OB1, Sco OB4, Primis 24, Tr 77, NGC 6333, MG C6 504, Sur OB1, Sco OB1, Sco OB4, Primis 24, Cr 2105, IC 2009, IC 2008, Cam OC 2016, NGC 6333, Stephenon 1, NGC 7160, NGC 6131, NGC 6137, NGC 6131, Markana 38, IC 4725, Blancal, NGC 61012, Stock 3, NGC 2430, MGC 1376, NGC 1316, NGC 6312, Finita 16, NGC 2371, NGC 2168, Ould's 253, NGC 2422, NGC 2434, Col 132, NGC 2457, NGC 6133, NGC 4242, NGC 6133, SGC 2454, Waterloo 7, NGC 1613, NGC 6101, NGC 6178, Tr 24, NGC 7129, NGC 7160, NGC 6305, Col A, Cara, Otrana, Argun, Pleiades B1 NGC 1380, MG, C 6304, Can OB1, Can OB1, Can OB1, NGC 437, NGC 7160, NGC 430, NGC 430, NGC 437, NGC 438, NGC 436, NGC 437, NGC 1300, NGC 430, NGC 437, NGC 438, NGC 430, NGC 437, NGC 433, NGC 430, NGC 437, NGC 439, NGC 4314, NGC 1310, NGC 430, NGC	possible parents T _{hat} T _{chat} MV [W/y] [W/y] [W/y] [W/y] US, UCL, LCC, TWA, Tuc, Hor, β Pic, Cap, r. Ga, n, Cha, n, Cha, HD, 141869, Ext, RCA, A B Dor, Her, Lyr, Sgr OBL, NCC 6310, Sgr OBL, Sgr OBL, Sgr OBL, Sgr OBL, Sgr DB, T 35, Col 359, LC 4655, Val OBL, Cop OBL, Cop OBL, Cog OBB, Cop OBL, Cas OB14, Cas OB7, Per OBL, Cas OB6, Cap OBB, Cap OBL, NCC 1202, Cam OB3, op Per, Per OB2, Cas- Tau, Pielades, Aur OB2, NCC 2180, Zan V, OB1, NCG 2120, Sem OB1, Non OBL, Non OB2, NCC 2240, Val OB2, Ti, Ov Ki OB1, NCG 2120, Cal 121, NCC 2302, Pur OB1, NCC 2242, Cal 140, NCC 2439, Cal 135, Pup OB3, NCC 2404, Val OB2, Ti, Ov Ki OB1, NCG 2130, Ara OB1A, NCC 6133, NGC 6204, Sco OB1, Sco OB4, Pinmi 24, T 27, NCC 6303, MCC 2404, Cal Cal 140, NCC 2410, NCC 7100, NCC 2353, NCC 2421, NCC 2344, Cal 132, NCC 7140, NCC 7100, NCC 2353, NCC 2422, NCC 2344, NCC 1340, NCC 2457, NCC 2697, NCC 2353, NCC 2422, NCC 2344, Cal 132, NCC 7140, NCC 1813, NCC 2180, Dailer 25, NCC 2333, NCC 2351, Martania 38, IC 4725, Biancal, NGC 610, Cal 617, Cal 165, Cal 107, NCC 1891, NCC 1813, NCC 2180, Dailer 25, NCC 2343, NCC 2351, Waterleo 7, NUrgen 14, BH 217, MCC 3030, Cal Qad, XCC 3547, NCC 2697, NCC 2353, NCC 2429, NCC 348, NCC 2547, NCC 2697, NCC 2351, NCC 2429, NCC 348, NCC 459, NCC 6458, Parinis 8, Cal 205, NCC 2049, Pinmis 16, Engrecht 107, Lynga 14, BH 217, MCC 3050, Cal 020, NCC 1590, NCC 1430, NCC 2430, NCC 446, OBF, IC 1390, NCC 1450, NCC 430, NCC 436, NCC 4511, NCC 437, NCC 437, NCC 430, NCC 430, NCC 436, NCC 5411, Cal 087, NCC 2371, NCG 430, NCC 430, NCC 436, NCC 4311, NCC 431, NCC 4357, NCC 431, NCC 430, NCC 4351, NCC 4307, NCC 4307, NCC 4307, NCC 4307, NCC 1352, Pup OB1, NCC 437, NCC 431, NCC 430, NCC 430, NCC 4347, NCC 4317, NCC 4310, NCC 4314, NCC 4309, NCC 2340, NCC 4347, NCC 4317, NCC 4310, NCC 4309, NCC 4354, NCC 4347, NCC 4317, NCC 4310, NC	peaking parent Tubur Tubur Tubur We are interested in the second

PSR	possible parents	$ au_{kin}$ [Myr]	τ _{char} [Myr]	# former _{vr,run} known	comp. cand. <i>v_{r,run} unknown</i>
J0742-2822	Pup OB1, NGC 2571, LCC, TWA, Tuc-Hor, β Pic-Cap, ϵ Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Col 359, IC 4665, Vul OB1, Vul OB4, Col 121, Pup OB1, Col 140, Col 135, Vel OB2, Tr 10, ChaT, NGC 2571, ColA, CarA, Octans, Argus, Pleiades B1, NGC 7788, NGC 7790, Stock 18, NGC 103, NGC 129, NGC 146, NGC 433, NGC 436, NGC 581, NGC 637, NGC 659, NGC 663, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 7129, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Czernik 6, Basel 10, IC 1848, NGC 1513, ColA, CarA, Octans, Argus, Cep OB5, λ Ori, NGC 1976, Mon R2, NGC 2232, CMa OB1, IC 1848, NGC 2287, NGC 2414, NGC 2367, Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, NGC 2439, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, IC 2602, Car OB2, ChaT, Cen OB1, Hogg 16, R 105, Ara OB1A, NGC 6193, NGC 6514, Col 367, NGC 6683, Stephenson 1, NGC 7160, Stock 7, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2469, Col 97, Col 106, Col 107, NGC 1981, NGC 2168, Col 89, NGC 2469, Col 97, Col 106, Col 107, NGC 1981, NGC 2160, Stock 7, NGC 1912, Stock 8, NGC 1960, NGC 21746, NGC 2607, NGC 2516, NGC 3532, Feinstein 1, NGC 4463, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 7129, NGC 1513, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, Ruprecht 107,	0.1 – 0.9	0.157	1	18
J0754+3231	Lynga 14, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pierades B1 US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ϵ Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Per OB2, Cas-Tau, Aur OB1, Gem OB1, Mon OB1, NGC 2264, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, NGC 2232, CMa OB1, IC 1848, NGC 2287, Col 121, NGC 2476, Col 140, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, vdB-Hagen 99, IC 2602, ChaT, Ara OB1A, NGC 6204, Sco OB1, Sco OB4, Pismis 24, M6, Blanco1, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, Col 132, NGC 2547, NGC 2516, NGC 3532, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 2343, Waterloo 7, Bochum 5, Pismis 8, Pismis 16, NGC 6250, Lynga 14, ColA, CarA, Octans, Argus, Pleiades B1, Tr 10, Vel OB1, IC 2395, IC 2391, IC 2602, Car OB2, ChaT, Cen OB1, Hogg 16, R 105, Ara OB1A, NGC 6193, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, Blanco1, NGC 6613, NGC 6716, NGC 6683, Stephenson 1, NGC 7160, Stock 7, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2547, NGC 6087, Harvard 10, NGC 6178, Tr 24, NGC 4603, NGC 6055, NGC 6087, Harvard 10, NGC 6178, Tr 24, NGC 7129, NGC 1513, NGC 2516, NGC 3532, Feinstein 1, NGC 4463, NGC 6055, NGC 6087, Harvard 10, NGC 6167, NGC 2343, NGC 2547, NGC 2516, NGC 2351, NGC 2422, NGC 2344, Col 132, NGC 2547, NGC 2670, NGC 2516, NGC 3532, Feinstein 1, NGC 4463, NGC 6055, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 7129, NGC 1513, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, Ruprecht 107,	≳ 0.2	21.2	156	549
J0758–1528	Lynga 14, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1 US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ϵ Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB1, Sgr OB7, Ser OB1, Sct OB3, IC 4665, Vul OB1, Vul OB4, Cyg OB3, Cas OB14, Cam OB1, NGC 1502, α Per, Per OB2, Cas-Tau, Pleiades, Aur OB1, Gem OB1, Mon OB1, NGC 2264, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, NGC 2232, CMa OB1, NGC 2287, NGC 2414, NGC 2367, Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, NGC 2439, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, vdB-Hagen 99, IC 2602, ChaT, Ara OB1A, Sco OB4, Pismis 24, M6, NGC 6531, IC 4725, Blancol, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1940, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2547, NGC 2670, NGC 2516, NGC 3532, Feinstein 1, NGC 6025, NGC 6087, Bica 1, NGC 7129, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pis- mis 8, Col 205, NGC 2669, Pismis 16, ColA, CarA, Octans, Argus, Pleiades B1, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2547, NGC 2670, NGC 2516, NGC 3532, Feinstein 1, NGC 6025, NGC 6087, Bica 1, NGC 7129, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pis- mis 8, Col 205, NGC 2669, Pismis 16, ColA, CarA, Octans, Argus, Pleiades B1, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2547, NGC 2670, NGC 2516, NGC 3532, Feinstein 1, NGC 4463, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 7129, NGC 1513, NGC 2186, Dolidze 25, NGC 2649, Pismis 16, Ruprecht 107, Lynga 14, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1	≳1.3	6.68	118	280

Та	ble	F.1:	-	Continued.	-
	DIC			continucu.	

PSR	possible parents	$ au_{\textit{kin}}$ [Myr]	τ _{char} [Myr]	# former _{vr,run} known	comp. cand. <i>v_{r,run}</i> unknown
J0821-4300	Tuc-Hor, Tr 10, Vel OB1, ColA, CarA, Octans, Argus, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB1, Sgr OB7, Ser OB1, Sct OB3, IC 4665, Vul OB1, Vul OB4, Cyg OB9, Cyg OB4, Cyg OB7, Lac OB1, Cep OB2, Cep OB6, Cep OB3, Cas OB14, Cam OB1, NGC 1502, α Per, Per OB2, Cas-Tau, Pleiades, Aur OB1, Gem OB1, Mon OB1, NGC 264, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, NGC 2362, CMa OB1, NGC 2287, NGC 2414, NGC 2367, Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, NGC 2439, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, vdB-Hagen 99, IC 2602, ChaT, Ara OB1A, Sco OB4, Pismis 24, M6, NGC 6531, IC 4725, Blanco1, NGC 6716, NGC 6683, Stephenson 1, Col 419, NGC 1746, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2547, NGC 2670, NGC 2516, NGC 3532, Feinstein 1, NGC 6025, NGC 6087, Bica 1, NGC 7129, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bo- chum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2516, NGC 3532, Feinstein 1, NGC 1007, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 24847, NGC 2608, Catas, Argus, Pleiades B1, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 2384, Col 2384, Col 2384, Col 2384, NGC 132, NGC 2516, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 7129, NGC 1513, NGC 2166, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 7129, NGC 1513, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2649, Pismis 16, Ruprecht 107, Lynga 14, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1	≳ 0.5	1.49	2	8
J0837+0610	Tuc-Hor, ϵ Cha, η Cha, NGC 2367, Col 121, Pup OB1, NGC 2376, Col 140, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, IC 2395, IC 2391, IC 2602, ChaT, NGC 2384, NGC 2547, NGC 2516, NGC 2571, ColA, CarA, Octans, Cep OB6, Cep OB3, Cas OB14, Cam OB1, NGC 1502, α Per, Per OB2, Cas-Tau, Pleiades, Aur OB1, Gem OB1, Mon OB1, NGC 2264, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, NGC 2232, CMa OB1, NGC 2287, NGC 2414, NGC 2367, Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, NGC 2349, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, vdB-Hagen 99, IC 2602, ChaT, Ara OB1A, Sco OB4, Pismis 24, M6, NGC 6531, IC 4725, Blanco1, NGC 6716, NGC 6683, Stephenson 1, Col 419, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2547, NGC 2516, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pis- mis 8, Col 205, NGC 2669, Pismis 16, ColA, CarA, Octans, Argus, Pleiades B1, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2344, Col 132, NGC 2547, NGC 2670, NGC 2516, NGC 3532, Feinstein 1, NGC 4663, NGC 6025, NGC 6087, Harvard 10, NGC 2645, Pis- mis 8, Col 205, NGC 2669, Pismis 16, ColA, CarA, Octans, Argus, Pleiades B1, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2344, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2516, NGC 6178, Tr 24, NGC 7129, NGC 1513, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, Ruprecht 107, Lynga 14, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1	≥ 0.4	2.97	66	237

Table F.1: -	Continued. –
--------------	--------------

PSR	possible parents	$ au_{kin}$ [Myr]	τ _{char} [Myr]	# former _{vr,run} known	comp.cand. <i>v_{r,run}</i> unknown
J0837—4135	Tuc-Hor, β Pic-Cap, AB Dor, Her-Lyr, Cyg OB3, Byurakan 1, Byurakan 2, NGC 6883, Cyg OB1, Cyg OB3, Cyg OB2, Cyg OB7, Cep OB6, Cas-Tau, IC 1848, Pup OB1, Pup OB3, NGC 2546, Tr 10, NGC 6913, Col 419, NGC 6910, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7129, Czernik 2, NGC 2571, Haffner 26, ColA, CarA, Octans, Argus, Mon OB1, NGC 2264, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, NGC 2232, CMa OB1, NGC 2476, Col 140, NGC 2439, Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, NGC 2439, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, vdB-Hagen 99, IC 2602, ChaT, Ara OB1A, Sco OB4, Pismis 24, M6, NGC 6531, IC 4725, Blanco1, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 2553, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2547, NGC 2670, NGC 2516, NGC 3532, Feinstein 1, NGC 6025, NGC 6087, Bica 1, NGC 7129, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 1513, NGC 2516, NGC 3532, Feinstein 1, NGC 1980, NGC 2516, NGC 3532, Feinstein 1, NGC 1981, NGC 1980, NGC 2513, NGC 2442, NGC 2344, Col 132, NGC 2669, Pismis 16, ColA, CarA, Octans, Argus, Pleiades B1, Col 107, NGC 1981, NGC 1980, NGC 2516, NGC 3532, Feinstein 1, NGC 1980, NGC 2516, NGC 3532, Feinstein 1, NGC 1980, NGC 2513, NGC 2442, NGC 2344, Col 132, NGC 2669, Pismis 16, ColA, CarA, Octans, Argus, Pleiades B1, Col 107, NGC 1981, NGC 1980, NGC 2516, NGC 3532, Feinstein 1, NGC 4463, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 7129, NGC 1513, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2545, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2545, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2545, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2545, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2545, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2545, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2545, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ru	no restriction	3.36	36	548
J0846-3533	US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ϵ Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB1, Sgr OB7, Sgr OB6, Ser OB1, Sct OB3, Sct OB2, Vul OB1, NGC 6823, Vul OB4, Cyg OB3, NGC 6871, Byurakan 2, NGC 6883, Cyg OB1, Cyg OB8, Cyg OB9, Cyg OB2, Cyg OB4, Cyg OB7, Tr 37, Lac OB1, Cep OB2, Cep OB1, Cep OB6, Cep OB3, Cas OB2, Cas OB5, Cep OB4, Cas OB4, Cas OB14, Cas OB7, IC 1590, Cas OB1, NGC 457, Cas OB8, Per OB1, h Per, χ Per, Cas OB6, IC 1805, Cam OB1, NGC 1502, Cam OB3, α Per, Per OB2, Cas-Tau, Pleiades, Aur OB2, NGC 1893, Aur OB1, NGC 2129, Gem OB1, Mon OB1, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, NGC 2322, CMa OB1, NGC 2287, NGC 2414, NGC 2367, Col 121, NGC 2362, Pup OB1, NGC 2287, Col 140, NGC 2439, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, Col 228, IC 2602, Car OB2, ChaT, Cen OB1, Hogg 16, Ara OB1A, Sco OB1, Sco OB4, Pis- mis 24, Col 367, IC 4725, Blanco1, NGC 6716, NGC 6683, Steph- enson 1, NGC 6913, Col 419, NGC 6910, NGC 7031, IC 5146, NGC 7128, NGC 7160, NGC 7261, NGC 7510, Markarian 50, Stock 17, NGC 7788, Stock 18, NGC 103, NGC 129, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2551, NGC 4522, NGC 663, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2551, NGC 4522, NGC 6087, NGC 6854, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterioo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis- mis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5	no restriction	11.0	247	573

Table	F.1:	 Continued. 	-

PSR	possible parents	$ au_{kin}$	$ au_{char}$	# former o	omp. cand.
			[iviyr]	v _{r,run} known	
22200-1128	Iuc-Hor, β Pic-Cap, AB Dor, Cyg OB3, Cyg OB1, Cyg OB8, Cyg OB9, Cyg OB4, Cyg OB7, Tr 37, Lac OB1, Cep OB2, Cep OB6, Cep OB3,	$\gtrsim 0.2$	9.5	306	399
	Cas OB2, Cas OB5, Cep OB4, Cas OB14, Per OB1, Cas OB6,				
	Cam OB1, NGC 1502, $lpha$ Per, Per OB2, Cas-Tau, Pleiades, Aur OB1,				
	NGC 2129, Gem OB1, Mon OB1, NGC 2264, Mon OB2, Ori OB1,				
	λ Ori, Mon R2, IC 1848, NGC 7031, IC 5146, NGC 7128, NGC 7160,				
	NGC 7261, NGC 7510, NGC 433, Stock 5, Stock 7, NGC 1027,				
	NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, Col 89,				
	NGC 2109, Col 97, Col 100, NGC 2422, Berkeley 80, NGC 7039,				
	IC 348. Ruprecht 26. ColA. Octans. Argus. Cep OB5. NGC 2232.				
	CMa OB1, NGC 2287, NGC 2414, NGC 2367, Col 121, NGC 2362,				
	Pup OB1, NGC 2476, Col 140, NGC 2439, Col 135, Pup OB3,				
	NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, Col 228,				
	IC 2602, Car OB2, ChaT, Cen OB1, Hogg 16, Ara OB1A, Sco OB1,				
	Sco OB4, Pismis 24, Col 367, IC 4725, Blanco1, NGC 6716, NGC 6683,				
	Stephenson 1, NGC 6913, Col 419, NGC 6910, NGC 7031, IC 5146,				
	NGC 7128, NGC 7100, NGC 7201, NGC 7510, Markarian 50, Stock 17,				
	NGC 637 NGC 659 NGC 663 Stock 5 Stock 7 NGC 140, NGC 455,				
	NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168,				
	Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980,				
	NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670,				
	NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86,				
	Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12,				
	Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513,				
	IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7,				
	NGC 2571 Haffner 26 NGC 2645 Pismis 8 Col 205 NGC 2669 Pis-				
	mis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5				
J0922+0638	Pup OB3, Vel OB2, Haffner 26, Cyg OB3, Cyg OB1, Cyg OB8,	0.7 - 3.4	0.501	7	51
	Cyg OB9, Cyg OB4, Cyg OB7, Tr 37, Lac OB1, Cep OB2, Cep OB6,				
	Cep OB3, Cas OB2, Cas OB5, Cep OB4, Cas OB14, Per OB1,				
	Cas OB6, Cam OB1, NGC 1502, α Per, Per OB2, Cas-Tau, Plei-				
	ades, Aur OB1, NGC 2129, Gem OB1, Mon OB1, NGC 2264,				
	Mon OB2, Ori OB1, A Ori, Mon R2, IC 1848, NGC 7031, IC 5146,				
	Stock 7. NGC 1027. NGC 1444. NGC 1912. Stock 8. NGC 1960.				
	NGC 1746, Col 89, NGC 2169, Col 97, Col 106, NGC 2422, Berke-				
	ley 86, NGC 7039, NGC 7129, NGC 7419, NGC 7654, Mayer 1,				
	Czernik 2, Tr 3, NGC 1513, IC 348, Ruprecht 26, Col A, Octans, Argus,				
	Cep OB5, NGC 2232, CMa OB1, NGC 2287, NGC 2414, NGC 2367,				
	Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, NGC 2439,				
	Col 135, Pup OB5, NGC 2540, Vel OB2, 17 10, Vel OB1, 1C 2395,				
	Ara OB1A. Sco OB1. Sco OB4. Pismis 24. Col 367. IC 4725. Blanco 1.				
	NGC 6716, NGC 6683, Stephenson 1, NGC 6913, Col 419, NGC 6910,				
	NGC 7031, IC 5146, NGC 7128, NGC 7160, NGC 7261, NGC 7510,				
	Markarian 50, Stock 17, NGC 7788, Stock 18, NGC 103, NGC 129,				
	NGC 146, NGC 433, NGC 637, NGC 659, NGC 663, Stock 5, Stock 7,				
	NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960,				
	NGC 1745, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132				
	NGC 2453, NGC 2670, NGC 2516, NGC 2422, NGC 2504, C01 152, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885				
	IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419,				
	NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848,				
	Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345,				
	Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32,				
	Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205,				
	NGC 2069, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Plei-				
	ades D1, Cep UB5				

PSR	possible parents	τ _{kin} [Myr]	τ _{char} [Myr]	# former _{vr,run} known	comp. cand. <i>v_{r,run}</i> unknown
J0946+0951	US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ε Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB1, Sgr OB7, Sgr OB6, Ser OB1, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Tr 35, Col 359, IC 4665, Vul OB1, NGC 6823, Vul OB4, Cyg OB1, Cyg OB9, Cyg OB4, Cyg OB7, Lac OB1, Cep OB2, Cep OB6, Cep OB3, Cam OB1, α Per, Per OB2, Cas-Tau, Pleiades, Mon OB1, Ori OB1, ChaT, Pismis 24, NGC 6531, IC 4725, NGC 6613, NGC 6716, NGC 6694, NGC 6664, NGC 6683, NGC 6755, NGC 6709, Stephenson 1, Col 419, NGC 6885, Bica 1, NGC 7129, ColA, CarA, Octans, Argus, Pleiades B1, Czernik 2, Tr 3, NGC 1513, IC 348, Ruprecht 26, ColA, Octans, Argus, Cep OB5, NGC 2232, CMa OB1, NGC 2287, NGC 2414, NGC 2367, Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, NGC 2439, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, Col 228, IC 2602, Car OB2, ChaT, Cen OB1, Hogg 16, Ara OB1A, Sco OB1, Sco OB4, Pismis 24, Col 367, IC 4725, Blanco1, NGC 6716, NGC 6683, Stephenson 1, NGC 6913, Col 419, NGC 7510, Markarian 50, Stock 17, NGC 7788, Stock 18, NGC 103, NGC 129, NGC 1466, NGC 433, NGC 637, NGC 659, NGC 663, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Plei- ades B1. Cep OB5	no restriction	4.98	270	558
J1041-1942	US, UC, LCC, TWA, Tuc-Hor, β Pic-Cap, ϵ Cha, η Cha, Ext. R CrA, AB Dor, Cas-Tau, Ori OB1, Col 121, Col 140, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, Col 359, IC 4665, Vul OB1, NGC 6823, Vul OB4, Cyg OB1, Cyg OB9, Cyg OB4, Cyg OB7, Lac OB1, Cep OB2, Cep OB6, Cep OB3, Cam OB1, α Per, Per OB2, Cas-Tau, Pleiades, Mon OB1, Ori OB1, ChaT, Pismis 24, NGC 6531, IC 4725, NGC 6613, NGC 6716, NGC 6694, NGC 6684, NGC 6533, NGC 6755, NGC 6709, Stephenson 1, Col 419, NGC 6885, Bica 1, NGC 7129, ColA, CarA, Octans, Argus, Pleiades B1, Czernik 2, Tr 3, NGC 1513, IC 348, Ruprecht 26, ColA, Octans, Argus, Cep OB5, NGC 2322, CMa OB1, NGC 2287, NGC 2414, NGC 2367, Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, NGC 2439, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, Col 228, IC 2602, Car OB2, ChaT, Cen OB1, Hogg 16, Ara OB1A, Sco OB1, Sco OB4, Pismis 24, Col 367, IC 4725, Blanco1, NGC 6716, NGC 6683, Stephenson 1, NGC 6913, Col 419, NGC 6910, NGC 7031, IC 5146, NGC 7128, NGC 7160, NGC 7261, NGC 7510, Markarian 50, Stock 17, NGC 7788, Stock 18, NGC 103, NGC 129, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2453, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 2966, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 2516, NGC 2516, NGC 3532, NGC 26087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Plei- ades B1, Cep OB5	≳ 0.3	23.2	116	503

Table F.1: - Continued. -

PSR	possible parents	$ au_{kin}$ [Myr]	<i>⊤_{char}</i> [Mvr]	# former vr.run known	comp. cand. vr. run unknown
J1057-5226	TWA, Tuc-Hor, β Pic-Cap, AB Dor, Lac OB1, Per OB1, Cam OB1, α Per, Per OB2, Cas-Tau, Pleiades, Aur OB1, Gem OB1, Mon OB1, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, NGC 2232, CMa OB1, NGC 2287, NGC 2367, Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, NGC 2439, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, NGC 1746, Col 89, Col 97, Col 106, NGC 1981, NGC 1980, NGC 2353, NGC 2384, Col 132, NGC 2547, NGC 2670, NGC 7129, Czernik 2, NGC 1513, IC 348, SigmaOri, NGC 2343, NGC 2345, Waterloo 7, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis- mis 16, Col A, CarA, Octans, Argus, Cep OB5, NGC 2362, CMa OB1, NGC 2287, NGC 2414, NGC 2367, Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, NGC 2439, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, Col 228, IC 2602, Car OB2, ChaT, Cen OB1, Hogg 16, Ara OB1A, Sco OB1, Sco OB4, Pismis 24, Col 367, IC 4725, Blanco1, NGC 6716, NGC 6683, Steph- enson 1, NGC 6913, Col 419, NGC 7510, Markarian 50, Stock 17, NGC 7128, NGC 7160, NGC 7031, NGC 1910, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 433, NGC 637, NGC 659, NGC 663, Stock 5, Stock 7, NGC 1046, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis- mis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5	[Myr] no restriction	[Myr] 0.535	v _{r,run} known 97	<u>vr,<i>run</i></u> unknown 554
J1115+5030	Tuc-Hor, β Pic-Cap, AB Dor, Cam OB1, NGC 1502, α Per, Cas-Tau, Blanco1, Stock 7, NGC 7129, ColA, Argus, Gem OB1, Mon OB1, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, NGC 2232, CMa OB1, NGC 2287, NGC 2367, Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, NGC 2439, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, NGC 1746, Col 89, Col 97, Col 106, NGC 1981, NGC 1980, NGC 2353, NGC 2384, Col 132, NGC 2547, NGC 2670, NGC 7129, Czernik 2, NGC 1513, IC 348, SigmaOri, NGC 2343, NGC 2345, Waterloo 7, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis- mis 16, Col A, Car A, Octans, Argus, Cep OB5, NGC 2322, CMa OB1, NGC 2476, Col 140, NGC 2439, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, Col 228, IC 2602, Car OB2, ChaT, Cen OB1, Hogg 16, Ara OB1A, Sco OB1, Sco OB4, Pismis 24, Col 367, IC 4725, Blanco1, NGC 6716, NGC 6683, Steph- enson 1, NGC 6913, Col 419, NGC 7510, Markarian 50, Stock 17, NGC 7788, Stock 18, NGC 103, NGC 129, NGC 146, NGC 433, NGC 637, NGC 659, NGC 663, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2570, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis- mis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5	≳ 0.4	10.5	85	321

Table F.1: - Continued. -

[Myr]	[Myr]	-	
	. , ,	v _{r,run} known	v _{r,run} unknown
$\lesssim 3.2$	1.88	<i>v_{r,run}</i> known 180	vr.,run unknown 543 497
	$\lesssim 3.2$	$\lesssim 3.2$ 1.5	$\lesssim 3.2$ 1.5 76

Table F.1: - Continued. -

PSR	possible parents	$ au_{kin}$ [Myr]	<i>⊤_{char}</i> [Myr]	# former o _{Vr,run} known	comp. cand. <i>v_{r,run}</i> unknown
J1321+8323	US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ε Cha, η Cha, HD 141569, Ext. RCA, AB Dor, Her-Lyr, NGC 6530, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, Ser OB1, NGC 6611, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Tr 35, Col 359, IC 4665, Vul OB4, Cas-Tau, Vel OB2, Tr 10, IC 2395, IC 2391, IC 2602, ChaT, Ara OB1A, NGC 6204, Sco OB4, Pismis 24, Tr 27, NGC 6333, M6, NGC 6514, Col 367, NGC 66531, Markarian 38, IC 4725, NGC 6613, NGC 6716, NGC 6694, NGC 6664, NGC 6663, NGC 6709, Stephenson 1, NGC 6025, NGC 6087, Lynga 14, Col A, CarA, Octans, Argus, Pleiades B1, Blancol, Stephenson 1, Col 419, NGC 7031, NGC 7128, NGC 7160, NGC 7261, NGC 7510, Markarian 50, Stock 17, Stock 7, Col 89, Col 97, NGC 1981, NGC 2422, Col 132, NGC 2567, NGC 2670, NGC 2516, Col 232, NGC 3532, Feinstein 1, Stock 13, NGC 372, Stock 14, NGC 4103, NGC 4463, NGC 4609, NGC 5168, NGC 5281, NGC 5617, NGC 6025, NGC 6087, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, Czernik 2, Tr 3, Bochum 9, NGC 2645, Pismis 8, Col 205, NGC 6087, Bica 1, Bica 2, Loden153, Bochum 12, Melotte101, NGC 3590, Ruprecht 107, Col 272, ColA, CarA, Octans, Argus, Plei- ades B1, Cep OB5, NGC 146, NGC 433, NGC 637, NGC 659, NGC 663, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2151, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bo- chum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 3659, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5 US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, eCha, η Cha, HD 141569, Ext. R CrA, AB Dor, Cyg OB7, Lac OB1, Col 140, Col 135, Pup OB3, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, vdB-Hagen 99, Car OB1, Cor 3516, NGC 6087, R80, NGC 7129, Bochum 9, Pismis 8, Pis- mis 1	rkin [Myr] ≳ 0.5	⁷ <i>char</i> [Myr] 18.7	[#] former of v _{r,run} known 226	466
	Cep OB5, NGC 146, NGC 433, NGC 637, NGC 659, NGC 663, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bo- chum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5				

	Table F.1: - Continued						
PSR	possible parents	[⊤] _{kin} [Myr]	τ _{char} [Myr]	# former _{vr,run} known	comp. cand. _{vr,run} unknown		
J1430-6623	US, UCL, TWA, Tuc-Hor, β Pic-Cap, ε Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB5, NGC 6530, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, NGC 6611, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Tr 35, Col 359, IC 4665, Vul OB1, NGC 6623, Vul OB4, Cyg OB3, NGC 6871, Byurakan 2, Cyg OB1, Cyg OB3, Cyg OB9, Cyg OB2, Cyg OB7, Tr 37, Cep OB2, Cep OB1, Cep OB6, Cep OB3, Cas OB5, Cep OB4, Cas OB4, Cas OB14, Cas-Tau, NGC 6067, R 105, Ara OB1A, NGC 6193, NGC 6204, Ara OB1B, Sco OB1, NGC 6231, Bochum 13, Sco OB4, Pismis 24, Tr 27, NGC 6383, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6664, NGC 6683, NGC 6755, NGC 6709, Stephenson 1, NGC 6913, Col 419, NGC 6910, NGC 7128, NGC 7235, NGC 7160, Markarian 50, Stock 17, Stock 18, Pismis 20, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6242, Nor OB1, R103, IC 4996, Bica 1, Bica 2, NGC 7129, Mayer 1, Czernik 2, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 92, Loden 153, Bochum 12, Melotte101, NGC 3590, Ruprecht 107, Col 272, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5, NGC 1466, NGC 433, NGC 637, NGC 659, NGC 6633, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2159, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 6384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1888, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 13, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Plei-	no restriction	4.49	159	475		
J1453-6413	ades B.J. Cep OB5 R 105, Ara OB1A, Ara OB1B, Pismis 24, Pismis 20, Nor OB1, R103, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB5, NGC 6530, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, NGC 6611, Stt OB3, Ser OB2, NGC 6604, Sct OB2, Tr 35, Col 359, IC 4665, Vul OB1, NGC 6823, Vul OB4, Cyg OB3, NGC 6871, Byurakan 2, Cyg OB1, Cyg OB8, Cyg OB9, Cyg OB2, Cyg OB7, Tr 37, Cep OB2, Cep OB1, Cep OB6, Cep OB3, Cas OB5, Cep OB4, Cas OB4, Cas OB14, Cas-Tau, NGC 6067, R 105, Ara OB1A, NGC 6193, NGC 6204, Ara OB1B, Sco OB1, NGC 6231, Bochum 13, Sco OB4, Pismis 24, Tr 27, NGC 6383, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6664, NGC 6663, NGC 6755, NGC 6709, Stephenson 1, NGC 6913, Col 419, NGC 6910, NGC 7128, NGC 7235, NGC 7160, Markarian 50, Stock 17, Stock 18, Pismis 20, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6242, Nor OB1, R103, IC 4996, Bica 1, Bica 2, NGC 7129, Mayer 1, Czernik 2, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 92, Loden153, Bo- chum 12, Melotte101, NGC 3590, Ruprecht 107, Col 272, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5, NGC 146, NGC 433, NGC 637, NGC 659, NGC 663, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 6384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19,	$\gtrsim 1.6$	1.04	9	78		

NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5

PSR	possible parents	<i>⊤_{kin}</i> [Myr]	τ _{char} [Myr]	# former _{vr,run} known	comp. cand. _{Vr,run} unknown
J1456-6843	Tuc-Hor, β Pic-Cap, Ext. R CrA, AB Dor, Cyg OB9, Cyg OB4, Cyg OB7, Tr 37, Cep OB2, Cep OB6, Cep OB3, Cas OB2, Cas OB5, Cep OB4, Cas OB4, Cas OB14, Cas OB1, Ara OB1A, Pismis 24, NGC 7031, NGC 7160, NGC 7510, Stock 17, Stock 18, Bica 1, NGC 7039, NGC 7129, NGC 7654, Mayer 1, Czernik 2, Octans, Argus, Cyg OB1, Cyg OB8, Cyg OB9, Cyg OB2, Cyg OB7, Tr 37, Cep OB2, Cep OB1, Cep OB6, Cep OB3, Cas OB5, Cep OB4, Cas OB4, Cas OB14, Cas-Tau, NGC 6067, R 105, Ara OB1A, NGC 6193, NGC 6204, Ara OB1B, Sco OB1, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 66514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6664, NGC 6683, NGC 6755, NGC 6709, Stephenson 1, NGC 6913, Col 419, NGC 6910, NGC 7128, NGC 6025, NGC 7160, Markarian 50, Stock 17, Stock 18, Pismis 20, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6242, Nor OB1, R103, IC 4996, Bica 1, Bica 2, NGC 7129, Mayer 1, Czernik 2, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 92, Loden 153, Bochum 12, Melotte101, NGC 3590, Ruprecht 107, Col 272, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5, NGC 146, NGC 433, NGC 637, NGC 659, NGC 663, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 7453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 685, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7544, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2168, Col 37, NGC 634, Dasel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2166, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis- mis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5 US, Tuc-Hor, β Pic-Cap, HD 141569, Ext, R CrA, AB Dor, He- Ivys, Col 359, IC 46655, Cas Tay, ChA JE, Car 740, AB Dor, He-	$\gtrsim 0.4$	42.5	106	543
	 Lyr, Col 359, 1C 4005, Cas-Tau, Chair, 1C 4725, NGC 7129, COIA, Argus, Pleiades B1, Cas OB1, Ara OB1A, Pismis 24, NGC 7031, NGC 7160, NGC 7510, Stock 17, Stock 18, Bica 1, NGC 7039, NGC 7129, NGC 7654, Mayer 1, Czernik 2, Octans, Argus, Cyg OB1, Cyg OB8, Cyg OB9, Cyg OB2, Cyg OB7, Tr 37, Cep OB2, Cep OB1, Cep OB6, Cep OB3, Cas OB5, Cep OB4, Cas OB4, Cas OB14, Cas-Tau, NGC 6067, R 105, Ara OB1A, NGC 6193, NGC 6204, Ara OB1B, Sco OB1, NGC 6231, Bochum 13, Sco OB4, Pismis 24, Tr 27, NGC 6383, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 66514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6614, Col 367, NGC 6755, NGC 6709, Stephenson 1, NGC 6913, Col 419, NGC 6910, NGC 7128, NGC 7235, NGC 7160, Markarian 50, Stock 17, Stock 18, Pismis 20, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6242, Nor OB1, R103, IC 4996, Bica 1, Bica 2, NGC 7129, Mayer 1, Czernik 2, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 92, Loden153, Bo- chum 12, Melotte101, NGC 3590, Ruprecht 107, Col 272, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5, NGC 146, NGC 433, NGC 637, NGC 659, NGC 663, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 6384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7554, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis- mis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5 				

Table	F.1:	 Continued 	_
		continueu.	

PSR	possible parents	τ_{kin}	<i>⊤_{char}</i> [M]	# former	comp. cand.
J1559-4438	Ori OB1, Hogg 16, Nor OB1, R103, Octans, AB Dor, Her-Lyr, Col 359, IC 4665, Cas-Tau, ChaT, IC 4725, NGC 7129, ColA, Argus, Plei- ades B1, Cas OB1, Ara OB1A, Pismis 24, NGC 7031, NGC 7160, NGC 7510, Stock 17, Stock 18, Bica 1, NGC 7039, NGC 7129, NGC 7654, Mayer 1, Czernik 2, Octans, Argus, Cyg OB1, Cyg OB8,	1.0 - 4.6	4.0	2	68
J1604—4909	 NGC 7654, Mayer 1, Czernik 2, Octans, Argus, Cyg OB1, Cyg OB8, Cyg OB3, Cyg OB7, Tr 37, Cep OB2, Cep OB1, Cep OB6, Cep OB3, Cas OB5, Cep OB4, Cas OB4, Cas OB14, Cas-Tau, NGC 6007, R 105, Ara OB1A, NGC 6193, NGC 6204, Ara OB1B, Sco OB1, NGC 6211, Coi 367, NGC 6531, Markarian 38, IC 4725, NGC 6383, M6, NGC 6514, Coi 367, NGC 6531, Markarian 38, IC 4725, NGC 6100, Markarian 50, Stock 17, Stock 18, Pismis 20, NGC 6202, NGC 6100, Markarian 50, Stock 17, Stock 18, Pismis 20, NGC 6225, NGC 6007, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6242, Nor OB1, R103, IC 4996, Bica 1, Bica 2, NGC 7129, Mayer 1, Czernik 2, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, BH 92, Loden153, Bochum 12, Melotte101, NGC 3590, Ruprecht 107, Col 272, Col A, Cara, Argus, Pleiades II, Cep OB5, NGC 1646, NGC 433, NGC 637, NGC 639, NGC 663, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1580, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2516, NGC 2353, NGC 6427, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 754, King 12, Mayer 1, Czernik 2, NGC 654, Bisseli 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2551, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, Col A, CarA, Octans, Argus, Pleiades B1, Cep OB5 Sgr OB5, Sgr OB1, Ara OB1A, Ara OB1B, R103, AB Dor, Her- Lyr, Col 359, IC 4665, Cas-Tau, CA13, NGC 6124, NGC 7031, NGC 7510, Stock 17, Stock 18, Bica 1, NGC 7031, NGC	0.2 - 4.9	5.09	130	29

Table	F.1:	 Continued. 	-

PSR	possible parents		τ_{char}	# former comp. cand.		
		[Myr]	[Myr]	<i>v_{r,run}</i> known	<i>v_{r,run}</i> unknown	
PSR J1607-0032	possible parents US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ε Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Col 359, IC 4665, Cyg OB7, Lac OB1, Cep OB6, α Per, Per OB2, Cas-Tau, Pleiades, Aur OB1, Gem OB1, Mon OB1, NGC 2264, Mon OB2, Ori OB1, λ Ori, NGC 1976, Mon R2, NGC 2232, Col 121, Col 140, Vel OB2, Tr 10, IC 2391, IC 2602, ChaT, Blanco1, Stephenson 1, NGC 1746, Col 89, NGC 2169, Col 97, NGC 1981, NGC 1980, NGC 2422, NGC 7129, IC 348, SigmaOri, ColA, CarA, Octans, Argus, Pleiades B1, Bochum 13, Sco OB4, Pis- mis 24, Tr 27, NGC 6383, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6664, NGC 6683, NGC 6755, NGC 6709, Stephenson 1, NGC 6913, Col 419, NGC 6910, NGC 7128, NGC 7235, NGC 7160, Markarian 50, Stock 17, Stock 18, Pismis 20, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6242, Nor OB1, R103, IC 4996, Bica 1, Bica 2, NGC 7129, Mayer 1, Czernik 2, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 92, Loden153, Bochum 12, Melotte101, NGC 3590, Ruprecht 107, Col 272, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5, NGC 146, NGC 433, NGC 637, NGC 659, NGC 663, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 6384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis- mis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5 US, UCL, TWA, Tuc-Hor, β Pic-Cap, ε Cha, Ext, R CrA, AB Dor, Sgr OB5, Cas-Tau, Ori OB1, ChaT, Ara OB1A, NGC 6133, NGC 6204, Ara OB1B, Sco OB1, NGC 6231, NGC 6322, Bochum 13, Sco OB4,	$rac{ au_{kin}}{[Myr]}$	τ _{char} [Myr] 21.8 3.45	# former of vr,run known 380	tomp. cand. Vr.run unknown 596	
	 Pismis 24, NGC 6087, Harvard 10, Tr 24, NGC 6242, Nor OB1, R103, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Blanco1, Stephenson 1, NGC 1746, Col 89, NGC 2169, Col 97, NGC 1981, NGC 1980, NGC 2422, NGC 7129, IC 348, SigmaOri, ColA, CarA, Octans, Argus, Pleiades B1, Bochum 13, Sco OB4, Pismis 24, Tr 27, NGC 6383, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6664, NGC 6683, NGC 6755, NGC 6709, Stephenson 1, NGC 6913, Col 419, NGC 6910, NGC 7128, NGC 7235, NGC 7160, Markarian 50, Stock 17, Stock 18, Pismis 20, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6242, Nor OB1, R103, IC 4996, Bica 1, Bica 2, NGC 7129, Mayer 1, Czernik 2, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 92, Loden 153, Bochum 12, Melotte101, NGC 3590, Ruprecht 107, Col 272, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5, NGC 1466, NGC 433, NGC 637, NGC 659, NGC 663, Stock 5, Stock 7, NGC 1027, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 624, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5 					

PSR	possible parents	$ au_{kin}$ [Myr]	τ _{char} [Myr]	# former _{vr,run} known	comp. cand. <i>v_{r,run} unkno</i> w
J1709–1640	US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ϵ Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB5, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, NGC 6611, Sct OB3, Ser OB2, Col 359, IC 4665, Vul OB4, Cyg OB7, Tr 37, Lac OB1, Cep OB2, Cep OB6, Cep OB3, Cep OB4, Cas OB14, Cam OB1, NGC 1502, α Per, Per OB2, Cas- Tau, Pleiades, Aur OB2, NGC 1893, Aur OB1, NGC 2129, Gem OB1, Mon OB1, NGC 2264, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, NGC 2232, CMa OB1, NGC 2287, Col 121, Col 140, Col 135, Pup OB3, Vel OB2, Tr 10, IC 2395, IC 2391, vdB-Hagen 99, IC 2602, ChaT, Ara OB1A, NGC 6193, Ara OB1B, Sco OB1, Bochum 13, Sco OB4, Pismis 24, Tr 27, NGC 6383, M6, NGC 6514, NGC 6531, IC 4725, Blanco1, Stephenson 1, Stock 7, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, Col 132, NGC 2547, NGC 2516, NGC 3532, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, Bica 1, NGC 7129, Tr 3, NGC 1513, IC 348, NGC 2186, SigmaOri, NGC 2343, Bochum 5, Pismis 8, Pismis 16, Hogg 22, NGC 6250, BH 217, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 6384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Bassel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bo chum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16,	no restriction	1.64	502	591
1722-3207	Bit 217, ColA, CarA, Octans, Argus, Pierades BJ, Cep OB5 US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ϵ Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB5, NGC 6530, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Tr 35, Col 359, IC 4665, Vul OB1, NGC 6823, Vul OB4, Cyg OB1, Cyg OB8, Cyg OB9, Cyg OB4, Cyg OB7, Tr 37, Lac OB1, Cep OB2, Cep OB6, Cep OB3, Cep OB4, Cas OB14, Cas OB6, IC 1805, Cam OB1, NGC 1502, α Per, Per OB2, Cas-Tau, Pleiades, Aur OB1, Mon OB1, Mon OB2, Ori OB1, λ Ori, NGC 1976, Mon R2, CMa OB1, Col 121, Col 140, Col 135, Vel OB2, Tr 10, IC 2395, IC 2391, ChaT, Hogg 16, NGC 6067, R 105, Ara OB1A, NGC 6193, NGC 6204, Ara OB1B, Sco OB1, NGC 6231, Bochum 13, Sco OB4, Pismis 24, Tr 27, NGC 6383, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6514, Col 3664, NGC 6683, NGC 6709, Stephenson 1, NGC 7160, Stock 7, NGC 1444, NGC 1746, Col 89, Col 97, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, Nor OB1, R103, Bica 2, NGC 7129, Czernik 2, NGC 1513, Hogg 22, NGC 6250, Lynga 14, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Stock 5, Stock 7, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis-	no restriction	11.7	1	194

Table F.1: - Continued. -

Table F.1: – Conti	nued. –
--------------------	---------

PSR	possible parents	$ au_{\mathit{kin}}$ [Myr]	^τ _{char} [Myr]	# former o v _{r,run} known	comp. cand. <i>v_{r,run}</i> unknown
J1735—0724	TWA, Tuc-Hor, β Pic-Cap, ϵ Cha, Ext. R CrA, AB Dor, Sgr OB5, Sgr OB1, Ori OB1, NGC 1976, Mon R2, ChaT, Ara OB1A, Bochum 13, Pismis 24, Tr 27, NGC 6383, M6, NGC 1981, NGC 1980, SigmaOri, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Vul OB4, Cyg OB1, Cyg OB8, Cyg OB9, Cyg OB4, Cyg OB7, T37, Lac OB1, Cep OB2, Cep OB6, Cep OB3, Cep OB4, Cas OB14, Cas OB6, IC 1805, Cam OB1, Mon OB1, Mon OB2, Ori OB1, λ Ori, NGC 1976, Mon R2, CMa OB1, Col 121, Col 140, Col 135, Vel OB2, Tr 10, IC 2395, IC 2391, ChaT, Hogg 16, NGC 6067, R 105, Ara OB1A, NGC 6193, NGC 6204, Ara OB1B, Sco OB1, NGC 6231, Bochum 13, Sco OB4, Pismis 24, Tr 27, NGC 6383, M6, NGC 614, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6716, NGC 6664, NGC 6663, NGC 6709, Stephenson 1, NGC 7160, Stock 7, NGC 1444, NGC 1746, Col 89, Col 97, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, Nor OB1, R103, Bica 2, NGC 7129, Czernik 2, NGC 1513, Hogg 22, NGC 6250, Lynga 14, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 1981, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 2670, NGC 2513, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2166, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades 10, Car 30, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades 81, Cep OB5	0.2 - 3.1	5.47	7	333
J1740+1311	Tuc-Hor, β Pic-Cap, AB Dor, Her-Lyr, Vul OB1, NGC 6823, Vul OB4, Cyg OB3, NGC 6871, Byurakan 1, Byurakan 2, NGC 6883, Cyg OB1, Cyg OB8, Cyg OB9, Cyg OB2, Cyg OB4, Cyg OB7, Lac OB1, Per OB2, Cas-Tau, Ori OB1, Mon R2, NGC 6834, NGC 6913, Col 419, NGC 6910, IC 5146, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, Czernik 2, ColA, Octans, Argus, Cep OB4, Cas OB14, Cas OB6, IC 1805, Cam OB1, NGC 1502, α Per, Per OB2, Cas-Tau, Pleiades, Aur OB1, Mon OB1, Mon OB2, Ori OB1, λ Ori, NGC 1976, Mon R2, CMa OB1, Col 121, Col 140, Col 135, Vel OB2, Tr 10, IC 2395, IC 2391, ChaT, Hogg 16, NGC 6067, R 105, Ara OB1A, NGC 6193, NGC 6204, Ara OB1B, Sco OB1, NGC 6231, Bochum 13, Sco OB4, Pismis 24, Tr 27, NGC 6383, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6716, NGC 6664, NGC 6533, NGC 6709, Stephenson 1, NGC 7160, Stock 7, NGC 1444, NGC 1746, Col 89, Col 97, NGC 6025, NGC 6087, Har- vard 10, NGC 6167, NGC 6178, Tr 24, Nor OB1, R103, Bica 2, NGC 7129, Czernik 2, NGC 1513, Hogg 22, NGC 6250, Lynga 14, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IG 348, NGC 2186, Col 364, Pismis 8, Col 2054, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Plei- ades B1, Cep OB5	$\gtrsim 0.1$	8.77	29	529

Table F.1:	– Continued. –
------------	----------------

PSR	possible parents	τ_{kin}	$ au_{char}$	# former	comp. cand.
		[Myr]	[Myr]	v _{r,run} known	v _{r,run} unknown
J1741—3927	 TWA, AB Dor, Sgr OB5, NGC 6530, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Vul OB1, Cam OB1, Cas-Tau, Mon OB1, Col 121, Pup OB3, Vel OB2, Tr 10, Vel OB1, IC 2395, Car OB1, IC 2581, NGC 3293, NGC 3324, Tr 14, Tr 15, Col 228, Car OB2, Cru OB1, IC 2944, ChaT, Cen OB1, Stock 16, Hogg 16, NGC 5606, Ara OB1A, Ara OB1B, Sco OB1, Bochum 13, Sco OB4, Feinstein 1, Stock 13, NGC 3572, Stock 14, NGC 4463, NGC 4755, NGC 5168, NGC 5316, NGC 5617, Pismis 20, NGC 6087, Harvard 10, NGC 6167, R80, Nor OB1, R103, NGC 7129, Bochum 9, Haffner 26, Pismis 8, BH 92, Loden153, Bochum 12, Melotte101, NGC 3590, Ruprecht 107, Basel 18, Col 272, Hogg 22, BH 217, NGC 6396, CarA, Octans, Argus, Pleiades B1, M6, NGC 6514, Col 367, NGC 6563, NGC 6709, Stephenson 1, NGC 7160, Stock 7, NGC 6464, NGC 66683, NGC 6709, Stephenson 1, NGC 7160, Stock 7, NGC 1444, NGC 1746, Col 89, Col 97, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, Nor OB1, R103, Bica 2, NGC 7129, Czernik 2, NGC 1513, Hogg 22, NGC 6250, Lynga 14, BH 217, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, Stock 5, Stock 7, NGC 1027, NGC 1980, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 5332, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 739, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1888, Tr 3, NGC 1548, NGC 2186, Col 186, Col 186, Col 37, NGC 1545, Vaterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205 	n o restriction	4.2	75	48
J1745—3040	NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5 US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ε Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB5, Sgr OB1, Col 359, IC 4665, Cam OB1, Per OB2, Cas-Tau, Pleiades, Aur OB2, Aur OB1, NGC 2129, Gem OB1, Mon OB1, NGC 2264, Mon OB2, NGC 2244, Ori OB1, λ Ori, Mon R2, NGC 2232, CMa OB1, NGC 2287, Col 121, NGC 2362, NGC 2476, Col 140, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, vdB-Hagen 99, IC 2602, ChaT, Hogg 16, NGC 6067, R 105, Ara OB1A, NGC 6193, NGC 6204, Ara OB1B, Sco OB1, NGC 6231, Bochum 13, Sco OB4, Pis- mis 24, Tr 27, NGC 6383, M6, NGC 6514, NGC 6531, Stephenson 1, NGC 1960, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1961, NGC 1980, NGC 2353, NGC 2422, Col 132, NGC 5547, NGC 2516, NGC 3532, Feinstein 1, NGC 4463, NGC 6178, Tr 24, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6242, Nor OB1, R103, NGC 7129, NGC 2166, NGC 2343, Water- loo 7, Bochum 5, Pismis 8, Pismis 16, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Plei- ades B1, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 1027, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1077, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 332, NGC 6087, NGC 6885, IC 4996, Berkely 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Plei-	≳ 0.4	0.546	93	450

PSR possible	parents	$ au_{kin}$ [Myr]	$ au_{char}$ [Myr]	# former o <i>v_{r,run}</i> known	:omp. cand. <i>v_{r,run}</i> unknown
J1752-2806 US, UCL Ext. R Sgr OB3 Ser OB2 Cep OB α Per, F NGC 21 λ Ori, N IC 2602, Col 367 NGC 677 Stock 8 Col 97, IC 348, NGC 23 NGC 23 NGC 62 Octans, gus, Ple Pleiades NGC 19 NGC 21 NGC 23 NGC 23 NGC 23 Stock 7 Stock 7 Stock 7 Stock 7 Stock 7 Stock 7 NGC 21 NGC 23 NGC 23 NGC 23 NGC 23 NGC 25 Bica 1, F Mayer 1 IC 348, Ruprech NGC 25 mis 16, J1801-2451 Sgr OB Sct OB Ara OB Nor OB Vul OB Cas OB Nor OB Vul OB Cas OB Aur OB Nor OB Vul OB Cas C22 Col 140, Tr 27, N IC 4725, Stock 7 NGC 24 CarA, O Pismis 8 NGC 63 CarA, O Pismis 8 NGC 63 CarA, 0 Pismis 8 NGC 14 Col 39, NGC 23 NGC 25 Bica 1, F Mayer 1 IC 348, Ruprech NGC 26 CarA, 0 Pismis 8 NGC 63 CarA, 0 Pismis 8 NGC 63 CarA, 0 Pismis 8 NGC 25 Bica 1, F Mayer 1 IC 348, Ruprech NGC 25 Stock 7 NGC 21 NGC 24 NGC 24 NGC 25 Stock 7 NGC 21 NGC 24 NGC 24 NGC 25 Stock 7 NGC 21 NGC 24 NGC 24 NGC 25 Stock 7 NGC 21 NGC 24 NGC 25 Stock 7 NGC 21 NGC 24 NGC 24 NGC 25 Stock 7 NGC 21 NGC 24 NGC 24 NGC 25 Stock 7 NGC 21 NGC 24 NGC 25 Stock 7 NGC 21 NGC 24 NGC 25 Stock 7 NGC 21 NGC 24 NGC 24 Stock 7 NGC 21 NGC 24 NGC 25 Stock 7 NGC 21 NGC 21 NGC 24 NGC 25 Stock 7 NGC 21 NGC 21 NGC 21 NGC 22 NGC 25 Stock 7 NGC 21 NGC 25 Stock 7 NGC 25 Stock 7 Stock 7 Stock 7 Stock 7 NGC 25 Stock 7 NGC 25 Stock 7 NGC 25 Stock 7 NGC 25 Stock 7 Stock 7 Stock 7 Stock 7 Stock 7 Stock 7 Stock 7 Stock 7 Stock 7 St	, LCC, TWA, Tuc-Hor, β Pic-Cap, ε Cha, η Cha, HD 141569, CrA, AB Dor, Her-Lyr, Sgr OB5, NGC 6530, Sgr OB1, 7, Sgr OB4, Sgr OB6, M17, Ser OB1, NGC 6611, Sct OB3, 7, Sgr OB6, Cep OB4, Cas OB14, Cam OB1, NGC 1502, Per OB2, Cas-Tau, Pleiades, Aur OB2, NGC 1893, Aur OB1, 29, Gem OB1, Mon OB1, NGC 2264, Mon OB2, Ori OB1, GG 1976, Mon R2, Col 121, Col 140, Vel OB2, Tr 10, IC 2391, ChaT, Sco OB4, Pismis 24, Tr 27, NGC 6383, M6, NGC 6514, , NGC 1660, NGC 1746, NGC 2168, Col 89, NGC 2169, NGC 1981, NGC 1980, NGC 2422, Bica 1, NGC 7129, Tr 3, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, 30, Waterloo 7, Bochum 5, Pismis 8, Pismis 16, Hogg 22, 50, Lynga 14, BH 205, BH 217, NGC 6396, ColA, CarA, Argus, Pleiades B1, NGC 6396, ColA, CarA, Octans, Ar- iades B1, BH 217, NGC 6396, ColA, CarA, Octans, Ar- iades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, B1, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 1444, 12, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, 69, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, 53, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, 53, NGC 2422, NGC 2343, NGC 2435, NGC 2670, 54, NGC 2532, NGC 6087, NGC 6688, IC 4996, Berkeley 86, 31ca 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Czernik 2, NGC 564, Basel 10, IC 1848, Tr 3, NGC 1513, NGC 2186, Dolidze 25, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis- BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5 5, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, 3, Ser OB2, NGC 6604, Sct OB2, Vul OB1, Cen OB1, 4A, Ara OB18, Sco OB1, Bochum 13, NGC 6683, NGC 6087, 1, R103, Hogg 22, BH 217, NGC 6396, Col 359, IC 4665, 4, Cam OB1, NGC 1502, α Per, Per OB2, Cas-Tau, Pleiades, 2, NGC 1893, Aur OB1, NGC 2129, Gem OB1, Mon OB1, 44, Cam OB1, NGC 1502, α Per, Per OB2, Cas-Tau, Pleiades, 2, NGC 1893, Aur OB1, NGC 2129, Gem OB1, Mon OB1, 44, Ara OB18, Sco OB1, Bochum 13, NGC 6683, Stephenson 14, NGC 1394, NGC 6514, Col 367, NGC 6683, Stephenson 17, 6, ColA, CarA, Octans, Argus, Pleiades B1, MGC 1396, ColA, ctans, Argus, Pleiades B1, NGC 2129, Ge	no restriction $\gtrsim 1.7$	0.0155	2	24

Table F.1: –	Continued
--------------	-----------

PSR	possible parents	τ_{kin}	τ_{char}	# former o	comp. cand.
			[IVIyr]	V _{r,run} Known	V _{r,run} unknown
51005-2157	NGC 2367 Col 121 Pup OB1, Mon OB1, Mon OB2, CMa OB1,	$\gtrsim 0.2$	0.0158	L	91
	Vel OB2, Tr 10, Vel OB1, IC 2395, vdB-Hagen 99, Car OB1, IC 2581,				
	NGC 3293, Tr 16, Col 228, Car OB2, Tr 18, NGC 3766, Cru OB1,				
	IC 2944, ChaT, Cen OB1, Stock 16, Hogg 16, NGC 5606, NGC 6067,				
	R 105, Ara OB1A, NGC 6193, NGC 6204, Ara OB1B, Sco OB1,				
	NGC 6231, Bochum 13, Sco OB4, Pismis 24, Tr 27, NGC 6383,				
	NGC 6514, Col 106, NGC 2353, NGC 2384, NGC 2670, NGC 3532,				
	Feinstein 1, Stock 13, NGC 3572, Stock 14, NGC 4103, NGC 4403, NGC 4609, NGC 4755, NGC 5168, NGC 5281, NGC 5316, NGC 5617				
	Pismis 20. NGC 6087. Harvard 10. NGC 6167. NGC 6178. Tr 24.				
	NGC 6242, R80, Nor OB1, R103, Waterloo 7, Ruprecht 26, Bo-				
	chum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645,				
	Pismis 8, Col 205, NGC 2669, Pismis 16, BH 92, Bochum 12,				
	Melotte101, NGC 3590, Ruprecht 107, Basel 18, Col 272, Hogg 22,				
	NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, CarA, Plei-				
	ades BI, Pismis ID, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6206, CelA, CerA, Ostopa, Argue, Plaindes P1, NGC 6206, CelA				
	CarA Octans Argus Pleiades B1 BH 217 NGC 6396 ColA CarA				
	Octans, Argus, Pleiades B1, Stock 5, Stock 7, NGC 1027, NGC 957,				
	NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168,				
	Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980,				
	NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670,				
	NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86,				
	Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12,				
	IC 348 NGC 2186 Dolidze 25 NGC 2343 NGC 2345 Waterloo 7				
	Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19,				
	NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis-				
	mis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5				
J1809-1943	Sgr OB4, M17, Ser OB1, Sct OB3, Ser OB2, Sct OB2, Tr 35, Vul OB1,	$\gtrsim 0.3$	0.0113	7	73
	NGC 6823, Vul OB4, Cyg OB1, Cyg OB9, Cyg OB4, Cyg OB7, Tr 37,				
	Lac OB1, Cep OB2, Cep OB3, Cas OB14, Cam OB1, Aur OB1, $NCC 6604$ NCC 6664 NCC 6683 NCC 6755 NCC 6013 C-1 410				
	NGC 6910 NGC 7031 Stock 7 NGC 1027 Bica 1 Bica 2 NGC 7039				
	NGC 7654, Czernik 2, NGC 1513, NGC 6204, Ara OB1B, Sco OB1,				
	NGC 6231, Bochum 13, Sco OB4, Pismis 24, Tr 27, NGC 6383,				
	NGC 6514, Col 106, NGC 2353, NGC 2384, NGC 2670, NGC 3532,				
	Feinstein 1, Stock 13, NGC 3572, Stock 14, NGC 4103, NGC 4463,				
	NGC 4609, NGC 4755, NGC 5168, NGC 5281, NGC 5316, NGC 5617,				
	Pismis 20, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Ir 24, NGC 6242, P80, Nev OB1, P103, Waterlag, 7, Puppett 26, Pa				
	chum 5. Tr 7. Ruprecht 18. NGC 2571. Haffner 26. NGC 2645.				
	Pismis 8, Col 205, NGC 2669, Pismis 16, BH 92, Bochum 12,				
	Melotte101, NGC 3590, Ruprecht 107, Basel 18, Col 272, Hogg 22,				
	NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, CarA, Plei-				
	ades B1, Pismis 16, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217,				
	NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 6396, ColA,				
	CarA, Octans, Argus, Pleiades BI, BH 217, NGC 0390, ColA, CarA, Octans, Argus, Pleiades B1, Stock 5, Stock 7, NGC 1027, NGC 957				
	NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168.				
	Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980,				
	NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670,				
	NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86,				
	Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12,				
	Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513,				
	IC 340, NGC 2100, Dollaze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Rochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Hoffnor 10				
	NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis-				
	mis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5				

Table F.1: –	Continued. –
--------------	--------------

PSR	possible parents	$ au_{kin}$ [Myr]	τ _{char} [Myr]	# former _{vr,run} known	comp. cand. _{Vr,run} unknown
J1824-1945 J1824-2452A	TWA, Tuc-Hor, β Pic-Cap, Ext. R CrA, AB Dor, Her-Lyr, Tr 35, α Per, Cas-Tau, Pleiades, λ Ori, ChaT, Markarian 38, IC 4725, NGC 6613, NGC 6664, NGC 6683, NGC 6709, Stephenson 1, Col 89, NGC 7129, ColA, CarA, Argus, NGC 6755, NGC 6913, Col 419, NGC 6910, NGC 7031, Stock 7, NGC 1027, Bica 1, Bica 2, NGC 7039, NGC 7654, Czernik 2, NGC 1513, NGC 6204, Ara OB1B, Sco OB1, NGC 6231, Bochum 13, Sco OB4, Pismis 24, Tr 27, NGC 6383, NGC 6514, Col 106, NGC 2353, NGC 2384, NGC 2670, NGC 3532, Feinstein 1, Stock 13, NGC 3572, Stock 14, NGC 4103, NGC 4463, NGC 4609, NGC 4755, NGC 5168, NGC 5281, NGC 5316, NGC 5617, Pismis 20, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6242, R80, Nor OB1, R103, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 92, Bochum 12, Melotte101, NGC 3590, Ruprecht 107, Basel 18, Col 272, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6386, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2345, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades	≳ 2.7	0.573	76	274
	Cas-Tau, Pleiades, λ Ori, ChaT, Markarian 38, IC 4725, NGC 6613, NGC 6664, NGC 6683, NGC 6709, Stephenson 1, Col 89, NGC 7129, ColA, CarA, Argus, NGC 6755, NGC 6913, Col 419, NGC 6910, NGC 7031, Stock 7, NGC 1027, Bica 1, Bica 2, NGC 7039, NGC 7654, Czernik 2, NGC 1513, NGC 6204, Ara OB1B, Sco OB1, NGC 6231, Bo- chum 13, Sco OB4, Pismis 24, Tr 27, NGC 6383, NGC 6514, Col 106, NGC 2353, NGC 2384, NGC 2670, NGC 3532, Feinstein 1, Stock 13, NGC 3572, Stock 14, NGC 4103, NGC 4463, NGC 4609, NGC 4755, NGC 5168, NGC 5281, NGC 5316, NGC 5617, Pismis 20, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6242, R80, Nor OB1, R103, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 92, Bochum 12, Melotte101, NGC 3590, Ruprecht 107, Basel 18, Col 272, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, CarA, Pleiades B1, Pismis 16, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Ar- gus, Pleiades B1, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 1449, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bo- chum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5				

Table F.1: –	Continued. –
--------------	--------------

PSR	possible parents	$\tau_{\rm kin}$	$\tau_{\textit{char}}$	# former o	comp. cand.
		[Myr]	[Myr]	<i>v_{r,run}</i> known	<i>v_{r,run}</i> unknown
J1825-0935	US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ε Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Ser OB1, Ser OB2, NGC 6604, Sct OB2, Tr 35, Col 359, IC 4665, Vul OB4, Cyg OB4, Cyg OB7, Lac OB1, Cep OB2, Cep OB6, Cam OB1, NGC 1502, α Per, Per OB2, Cas-Tau, Pleiades, Aur OB1, NGC 2129, Gem OB1, Mon OB1, NGC 2264, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, ChaT, NGC 6694, NGC 6664, NGC 6683, Stephenson 1, Stock 7, Stock 8, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 107, Bica 1, NGC 7129, IC 348, Col A, CarA, Octans, Argus, Pleiades B1, NGC 5617, Pismis 20, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6242, R80, Nor OB1, R103, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 92, Bochum 12, Melotte101, NGC 3590, Ruprecht 107, Basel 18, Col 272, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, ColA, CarA, Plei- ades B1, Pismis 16, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 1366, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Stock 5, Stock 7, NGC 1027, NGC 9157, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 6384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czenik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis- mis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5	≳ 0.3	0.232	412	587
J1829–1751	Ara OB1B, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ϵ Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Ser OB1, Ser OB2, NGC 6604, Sct OB2, Tr 35, Col 359, IC 4665, Vul OB4, Cyg OB4, Cyg OB7, Lac OB1, Cep OB2, Cep OB6, Cam OB1, NGC 1502, α Per, OB2, Cas-Tau, Pleiades, Aur OB1, NGC 2129, Gem OB1, Mon OB1, NGC 2264, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, ChaT, NGC 6694, NGC 6664, NGC 6683, Steph- enson 1, Stock 7, Stock 8, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 107, Bica 1, NGC 7129, IC 348, ColA, CarA, Octans, Argus, Pleiades B1, NGC 5617, Pismis 20, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6242, R80, Nor OB1, R103, Wa- terloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 92, Bochum 12, Melotte101, NGC 3590, Ruprecht 107, Basel 18, Col 272, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, CarA, Pleiades B1, Pismis 16, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Plei- ades B1, NGC 6396, NGC 2168, NGC 2169, Col 97, Col 106, Col 107, NGC 1946, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6487, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Plei- ades B1	3.1 – 4.8	0.877	0	2

Table F.1: –	Continued. –
--------------	--------------

PSR	possible parents	$ au_{kin}$	<i>⊤_{char}</i> [Mvr]	# former / vr.run known	comp. cand. Vr.rup.unknown
J1832-0827	Tuc-Hor, Sgr OB5, NGC 6530, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Tr 35, Vul OB1, Cyg OB7, Ug OB7, Lac OB1, Ori OB1, Vel OB2, Ara OB1A, Ara OB1B, Sco OB1, Sco OB4, Pismis 24, Col 367, Markarian 38, NGC 6613, NGC 6694, NGC 6663, Hogg 22, BH 217, NGC 6396, ColA, Octans, Pleiades B1, MON DB2, NGC 2168, Col 89, NGC 2169, Col 97, Col 107, Bica 1, NGC 1976, NGC 2168, Col 89, NGC 2169, Col 97, Col 107, Bica 1, NGC 7146, NGC 2168, CarA, Octans, Argus, Pleiades B1, NGC 5617, Pismis 20, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6242, R80, Nor OB1, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 92, Bochum 12, Melotte101, NGC 3590, Ruprecht 107, Basei 18, Col 272, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 517, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Stock 7, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2151, NGC 2353, NGC 2422, NGC 6687, NGC 6687, NGC 6687, NGC 6687, NGC 6687, NGC 6687, NGC 6385, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 28, NGC 6687, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1051, IC 348, NGC 2151, NGC 3572, NGC 6484, NGC 6531, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 28, BC 2343, NGC 2345, Waterloo 7, Ruprecht 28, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 28, NGC 2343, NGC 2345, NGC 2659, Pismis 16, BH 217, Col A, CarA, Octans, Argus, Pleiades B1, Sco K3, Ara Ottans, Argus, Pleiades B1, NGC 5517, Pismis 20, NGC 2551, Lagr OB3, Cap OB1, Sgr OB1, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB5, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, Scr OB2, Scr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, Scr OB2, Scr OB2, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, Scr OB3, Scr OB1, Sgr OB7, Sgr OB4, Sgr OB5, Cap OB1, Cgr OB3, Cap OB1, Cgr OB3, Cap OB1, C	no restriction	0.161	1	33

PSR	possible parents	$ au_{kin}$ [Myr]	τ _{char} [Myr]	# former _{vr,run} known	comp.cand. _{Vr,run} unknow
J1836-1008	AB Dor, Sgr OB5, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, Ser OB2, Sct OB2, Vul OB1, Cyg OB3, Cyg OB1, Cyg OB9, Cep OB1, Cru OB1, IC 2944, Stock 16, Hogg 16, R 105, Ara OB1A, Ara OB1B, Sco OB1, Bochum 13, Pismis 24, NGC 6531, NGC 3572, Harvard 10, R80, Nor OB1, R103, IC 4996, Hogg 22, BH 217, NGC 6396, Pleiades B1, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, ChaT, NGC 6694, NGC 6664, NGC 6683, Steph- enson 1, Stock 7, Stock 8, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 107, Bica 1, NGC 7129, IC 348, ColA, CarA, Octans, Argus, Pleiades B1, NGC 5617, Pismis 20, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6242, R80, Nor OB1, R103, Wa- terloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 92, Bochum 12, Melotte101, NGC 3590, Ruprecht 107, Basel 18, Col 272, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, CarA, Pleiades B1, Pismis 16, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Plei- ades B1, NGC 6396, ColA, CarA, Octans, Argus, Plei- ades B1, NGC 6396, ColA, CarA, Octans, Argus, Plei- ades B1, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Plei- ades B1. Cep OB5	≥ 0.4	0.756	0	4
J1840+5640	Tr 37, Cep OB2, Cep OB1, NGC 7380, Cep OB3, Cas OB2, Cas OB5, Cep OB4, Cas OB14, Cam OB1, NGC 7128, NGC 7235, NGC 7160, NGC 7510, IC 1442, NGC 7419, NGC 7654, Czernik 2, Cep OB5, R 105, Ara OB1A, Ara OB1B, Sco OB1, Bochum 13, Pismis 24, NGC 6531, NGC 3572, Harvard 10, R80, Nor OB1, R103, IC 4996, Hogg 22, BH 217, NGC 6396, Pleiades B1, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, ChaT, NGC 6694, NGC 6664, NGC 6683, Stephenson 1, Stock 7, Stock 8, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 107, Bica 1, NGC 7129, IC 348, Col A, CarA, Octans, Argus, Pleiades B1, NGC 5617, Pismis 20, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6242, R80, Nor OB1, R103, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 92, Bochum 12, Melotte101, NGC 3590, Ruprecht 107, Basel 18, Col 272, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, CarA, Pleiades B1, Pismis 16, Hogg 22, NGC 6350, Lynga 14, BH 205, BH 217, NGC 6396, Col A, CarA, Octans, Ar- gus, Pleiades B1, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, Stock 7, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97,	≳ 0.9	17.5	40	89

NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5

Table F.1: – Con	tinued. –
-------------------------	-----------

[Myr] 3.18	v _{r,run} known 3	v _{r,run} unknown 91
3.18	3	91
47.4	76	257
	47.4	47.4 76

Table F	.1: -	Continued.	
---------	-------	------------	--

PSR	possible parents	$ au_{kin}$ [Myr]	^τ char [Myr]	# former _{vr,run} known	comp. cand. <i>v_{r,run} unknown</i>
J1907+4002	US, UCL, LCC, Ext. R CrA, NGC 6611, Col 359, IC 4665, Pup OB3, Vel OB2, Vel OB1, IC 2395, vdB-Hagen 99, ChaT, Pismis 24, M6, NGC 6514, NGC 6531, IC 4725, NGC 6716, NGC 6709, NGC 2670, NGC 3532, Feinstein 1, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, CarA, Octans, Pleiades B1, Berkeley 86, NGC 7039, NGC 7129, NGC 7654, Mayer 1, Czernik 2, Argus, BH 217, NGC 6396, NGC 1976, Mon R2, ChaT, NGC 6694, NGC 6664, NGC 6683, Steph- enson 1, Stock 7, Stock 8, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 107, Bica 1, NGC 7129, IC 348, ColA, CarA, Octans, Argus, Pleiades B1, NGC 5617, Pismis 20, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6242, R80, Nor OB1, R103, Wa- terloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 92, Bochum 12, Melotte101, NGC 3590, Ruprecht 107, Basel 18, Col 272, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, CarA, Pleiades B1, Pismis 16, Hogg 22, NGC 6250, Lynga 14, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 2670, NGC 2516, NGC 2532, NGC 6087, NGC 6489, IC 4533, NGC 2670, NGC 2513, NGC 2422, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2445, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Plei- ades B1. Cep OB5	$\gtrsim 1.1$	36.2	96	303
J1913—0440	US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ϵ Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB5, NGC 6530, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Tr 35, Col 359, IC 4665, Vul OB1, NGC 6823, Vul OB4, Cyg OB3, NGC 6871, Byurakan 2, Cyg OB1, Cyg OB8, Cyg OB9, Cyg OB2, Cyg OB4, Cyg OB7, Tr 37, Lac OB1, Cep OB2, Cep OB6, Cep OB3, Cas OB5, Cep OB4, Cas OB14, Cam OB1, NGC 1502, α Per, Per OB2, Cas-Tau, Pleiades, Aur OB1, Gem OB1, Mon OB1, Mon OB2, Ori OB1, λ Ori, NGC 1976, Mon R2, CMa OB1, Col 121, Pup OB1, Col 140, Col 135, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, IC 2602, ChaT, Hogg 16, NGC 6067, R 105, Ara OB1, NGC 6193, NGC 6204, Sco OB1, NGC 6513, Bochum 13, Sco OB4, Pismis 24, Tr 27, NGC 6383, M6, NGC 6513, NGC 6716, NGC 66531, Markarian 38, IC 4725, Blanco1, NGC 6613, NGC 6716, NGC 6694, NGC 6664, NGC 6683, NGC 6755, NGC 6709, NGC 6834, Stephen- son 1, NGC 6913, Col 419, NGC 6910, NGC 7160, Stock 7, Col 89, Col 97, NGC 1981, Col 132, NGC 6025, INGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7129, Mayer 1, Czernik 2, NGC 1513, Pismis 8, Pismis 16, Hogg 22, BH 217, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, INGC 6685, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Bassel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis- mis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5	≳ 0.3	3.22	1	258

Table	F.1:	– Continued.	_
		00	

PSR	possible parents	$ au_{kin}$	τ_{char}	# former	comp. cand.
		[IVI yr]	[Wiyr]	Vr,run Known	
J1917+1353	possible parents US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ϵ Cha, Ext. R CrA, AB Dor, Sgr OB5, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Col 359, Vul OB1, NGC 6823, Vul OB4, Cyg OB3, Byurakan 1, Byurakan 2, NGC 6883, Cyg OB1, Cyg OB8, Cyg OB9, Cyg OB2, Cyg OB4, Cyg OB7, Tr 37, Lac OB1, Cep OB2, Cep OB1, Cep OB6, NGC 7380, Cep OB3, Cas OB2, Cas OB4, Cas OB14, Cas OB7, Cas OB1, Per OB1, Cam OB1, Per OB2, Cas-Tau, Gem OB1, Mon OB1, Ori OB1, Tr 10, ChaT, Ara OB1A, NGC 6193, Sco OB1, Bochum 13, Sco OB4, Pis- mis 24, NGC 6383, NGC 6531, Markarian 38, NGC 6613, NGC 6716, NGC 6694, NGC 6664, NGC 6683, NGC 6709, NGC 6834, Steph- enson 1, Col 419, NGC 6910, NGC 7128, NGC 7235, NGC 7160, NGC 7261, NGC 7510, Markarian 50, Stock 17, NGC 7788, Stock 18, NGC 146, NGC 433, NGC 637, NGC 6087, Harvard 10, NGC 6167, NGC 6885, IC 4996, Berkeley 86, Bica 2, NGC 7129, NGC 7419, NGC 7654, Mayer 1, Czernik 2, NGC 6306, ColA, CarA, Argus, Plei- ades B1, Cep OB5, NGC 6910, NGC 7160, Stock 7, Col 89, Col 97, NGC 1981, Col 132, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7129, Mayer 1, Czernik 2, NGC 1513, Pismis 8, Pismis 16, Hogg 22, BH 217, NGC 6396, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7129, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7129, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7139, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2166, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis- mis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5 US, UCL, LCC, TWA	$ au_{kin}$ [Myr] $\gtrsim 1.6$ $\gtrsim 0.8$	^τ char [Myr] 0.428 2.63	26	comp. cand. v _{r,rum} unknown 76
	Cas OB2, Cas OB5, Cep OB4, Cas OB14, Per OB1, Cam OB1, α Per, Per OB2, Cas-Tau, Aur OB1, Gem OB1, Mon OB1, Mon OB2, Ori OB1, Mon R2, Col 121, Vel OB2, Tr 10, IC 2395, ChaT, Cen OB1, NGC 5606, R 105, Ara OB1A, NGC 6193, NGC 6204, Sco OB1, NGC 6231, Bochum 13, Sco OB4, Pismis 24, Tr 27, NGC 6383, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6716, NGC 6694, NGC 6683, NGC 6755, NGC 6709, Stephen- son 1, NGC 6913, Col 419, Stock 7, Col 89, Col 106, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7129, Czernik 2, NGC 1513, Pismis 8, Hogg 22, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 6178, Tr 24, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 7339, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 7139, NGC 7513, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis- mis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, IC 369, NGC 2169, Col 77, Col 709, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis- mis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5				

Table F.1: –	Continued. –
--------------	--------------

PSR	possible parents	$ au_{kin}$ [Myr]	τ _{char} [Myr]	# former o v _{r.run} known	comp. cand. <i>v_{r.run} u</i> nknown
J1921+2153	US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ε Cha, η Cha, Ext. R CrA, AB Dor, NGC 6530, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, Ser OB1, NGC 6611, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Tr 35, Col 359, IC 4665, Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, NGC 2439, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, vdB-Hagen 99, Car OB1, IC 2602, Car OB2, Tr 18, NGC 3766, ChaT, Hogg 16, R 105, Ara OB1A, NGC 6193, NGC 6204, Sco OB1, NGC 6231, Sco OB4, Pismis 24, Tr 27, NGC 6383, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6694, NGC 6664, NGC 6683, NGC 6755, NGC 6709, Col 132, NGC 2547, NGC 2670, NGC 3532, Feinstein 1, NGC 4463, NGC 4609, NGC 5281, NGC 5316, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, Waterloo 7, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismi 16, NGC 6250, Lynga 14, BH 217, NGC 6396, ColA, CarA, Octans, Ar- gus, Pleiades B1, NGC 7129, Czernik 2, NGC 1513, Pismis 8, Hogg 22, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 6178, Tr 24, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7129, Mayer 1, Czernik 2, NGC 1513, Pismis 8, Pismis 16, Hogg 22, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 6178, Tr 24, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 6343, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2369, Pis- mis 16, BH 217, ColA, CarA, Octans, Argus Pleiades B1, Con OB5	≳ 0.2	15.7	253	554
J1935+1616	This 10, Diff 211, Corr, CarA, CarA, Nuclais, Aligns, Frences DJ, Cep (26), Vul OB1, NGC 7129, LCC, TWA, Tuc-Hor, β Pic-Cap, ε Cha, η Cha, Ext. R CrA, AB Dor, NGC 6530, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, Ser OB1, NGC 6611, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Tr 35, Col 359, IC 4665, Col 121, NGC 2362, Pup OB1, NGC 2476, Col 140, NGC 2439, Col 135, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, vdB-Hagen 99, Car OB1, IC 2602, Car OB2, Tr 18, NGC 5204, Sco OB1, NGC 6531, Sco OB4, Pismis 24, Tr 27, NGC 6383, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6514, Col 367, NGC 6683, NGC 6755, NGC 6709, Col 132, NGC 2547, NGC 2670, NGC 3532, Feinstein 1, NGC 4463, NGC 6167, NGC 6178, Tr 24, Waterloo 7, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, NGC 6178, Tr 24, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, NGC 7129, Czernik 2, NGC 1513, Pismis 8, Hogg 22, BH 205, BH 217, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, NGC 1269, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2462, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 3532, NGC 2453, NGC 2670, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2650, Lyng 14, Czernik 2, NGC 1513, Pismis 8, Hogg 22, BH 205, BH 217, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, NGC 7129, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 754, King 12, Mayer 1, Czernik 2, NGC 6188, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 2166, Dolidze 25, NGC 2343, NGC 2453, NGC 2453, NGC 2670, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 754, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1888, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Vaterloo 7, Ruprecht 26, Bochum 5,	1.1 - 3.0	0.947	3	45
PSR	possible parents	τ_{kin}	$ au_{char}$	# former of	:omp. cand.
--------------------------	--	----------------	--------------	--------------------------------	----------------------------------
		[Myr]	[Myr]	<i>v_{r,run}</i> known	<i>v_{r,run}</i> unknown
J1941—2602 J1946—2913	US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB5, NGC 6530, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, NGC 6611, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Tr 35, Col 359, IC 4665, Pismis 24, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6716, NGC 6694, NGC 6664, NGC 6683, ColA, CarA, Octans, Argus, Pleiades B1, NGC 3766, ChaT, Hogg 16, R 105, Ara OB1A, NGC 6193, NGC 6204, Sco OB1, NGC 6231, Sco OB4, Pismis 24, Tr 27, NGC 6383, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6594, NGC 6664, NGC 6683, NGC 6755, NGC 6709, Col 132, NGC 2547, NGC 2670, NGC 3532, Feinstein 1, NGC 4463, NGC 4609, NGC 5281, NGC 5316, NGC 6025, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, Waterloo 7, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, NGC 6570, Lynga 14, BH 217, NGC 6396, ColA, CarA, Octans, Ar- gus, Pleiades B1, NGC 7129, Czernik 2, NGC 1513, Pismis 8, Hogg 22, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 6178, Tr 24, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7129, Mayer 1, Czernik 2, NGC 1513, Pismis 8, Pismis 16, Hogg 22, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 6384, Col 132, NGC 2453, NGC 24513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis- mis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5 US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, e Cha, HD 141569	no restriction	6.68	8	533
	 Ext. R CrA, AB Dor, Her-Lyr, Sgr OB5, NGC 6530, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Tr 35, Col 359, IC 4665, Vul OB1, Vul OB4, Cyg OB3, Byurakan 2, Cyg OB1, Cyg OB9, Cyg OB7, Cep OB2, Cam OB1, Cas-Tau, Mon OB1, Vel OB2, IC 2395, IC 2391, ChaT, Ara OB1A, NGC 6193, Ara OB1B, Sco OB1, Sco OB4, Pismis 24, Tr 27, NGC 6383, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6716, NGC 6694, NGC 6664, NGC 6683, NGC 6755, NGC 6709, Stephenson 1, NGC 6087, Harvard 10, NGC 6167, Tr 24, IC 4996, NGC 7129, Hogg 22, NGC 6250, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, Waterloo 7, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, NGC 6250, Lynga 14, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 6178, Tr 24, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 6178, Tr 24, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 6178, Tr 24, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 6178, Tr 24, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 6178, Tr 24, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 6178, Tr 24, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 6178, Tr 24, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, OG 7129, Mayer 1, Czernik 2, NGC 1513, Pismis 8, Pismis 16, Hogg 22, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Ce				

Table F.1: - Continued. -

Table	F.1:	 Continued 	_
		continueu.	

PSR	possible parents	$ au_{\textit{kin}}$	$ au_{char}$	# former o	comp. cand
		[Myr]	[Myr]	<i>v_{r,run}</i> known	<i>v_{r,run}</i> unknown
J1952+3252	Cyg OB1, Cyg OB4, Lac OB1, Cas-Tau, Ori OB1, Mon R2, ColA, Argus, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB5, NGC 6530, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Tr 35, Col 359, IC 4665, Vul OB1, Vul OB4, Cyg OB3, Byurakan 2, Cyg OB1, Cyg OB9, Cyg OB7, Cep OB2, Cam OB1, Cas-Tau, Mon OB1, Vel OB2, IC 2395, IC 2391, ChaT, Ara OB1A, NGC 6193, Ara OB1B, Sco OB1, Sco OB4, Pismis 24, Tr 27, NGC 6633, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6716, NGC 6694, NGC 6664, NGC 6683, NGC 6755, NGC 6709, Stephenson 1, NGC 6087, Harvard 10, NGC 6167, Tr 24, IC 4996, NGC 7129, Hogg 22, NGC 6250, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 6087, Har- vard 10, NGC 6167, NGC 6178, Tr 24, Waterloo 7, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, NGC 6250, Lynga 14, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 7129, Czernik 2, NGC 1513, Pis- mis 8, Hogg 22, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 7129, Mayer 1, Czernik 2, NGC 1513, Pis- mis 8, Hogg 22, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 7129, Mayer 1, Czernik 2, NGC 1513, Pis- mis 8, Pismis 16, Hogg 22, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 6348, Sec 2343, NGC 2453, NGC 1513, IC 348, NGC 2166, Dolidze 25, NGC 2343, NGC 2343, NGC 2453, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Plei-	0.5 – 3.9	0.107	3	30
J1955+5059	ades B1, Cep OB5 Tuc-Hor, β Pic-Cap, AB Dor, Vul OB1, Cyg OB3, NGC 6871, By- urakan 1, Byurakan 2, NGC 6883, Cyg OB1, Cyg OB8, Cyg OB9, Cyg OB2, Cyg OB7, Vel OB2, ChaT, NGC 6913, Col 419, NGC 6910, NGC 6885, IC 4996, Berkeley 86, ColA, CarA, Octans, Argus, Vul OB1, Vul OB4, Cyg OB3, Byurakan 2, Cyg OB1, Cyg OB9, Cyg OB7, Cep OB2, Cam OB1, Cas-Tau, Mon OB1, Vel OB2, IC 2395, IC 2391, ChaT, Ara OB1A, NGC 6193, Ara OB1B, Sco OB1, Sco OB4, Pis- mis 24, Tr 27, NGC 6383, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6716, NGC 6694, NGC 6664, NGC 6683, NGC 6755, NGC 6709, Stephenson 1, NGC 6087, Har- vard 10, NGC 6167, Tr 24, IC 4996, NGC 7129, Hogg 22, NGC 6250, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, Waterloo 7, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, NGC 6250, Lynga 14, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 7129, Czernik 2, NGC 1513, Pismis 8, Hogg 22, BH 205, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, NGC 6178, Tr 24, NGC 6185, IC 4996, Berke- ley 86, Bica 1, Bica 2, NGC 7129, Mayer 1, Czernik 2, NGC 1513, Pis- mis 8, Pismis 16, Hogg 22, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Col 89, NGC 2159, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7554, King 12, Mayer 1, Czernik 2, NGC 6184, Brasel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2166, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Plei- ades B1, Cep OB5	≳ 0.2	5.99	56	443

Table F.1: –	Continued. –
--------------	--------------

PSR	possible parents	τ_{kin}	τ_{char}	# former of	comp. cand.
		[Myr]	[Myr]	<i>v_{r,run}</i> known	<i>v_{r,run}</i> unknown
J2022+2854	Byurakan 1, Cyg OB2, Cep OB2, NGC 6913, NGC 6910, Berkeley 86, Bica 1, Bica 2, NGC 7129, Czernik 2, Cyg OB8, Cyg OB9, Cyg OB2, Cyg OB7, Vel OB2, ChaT, NGC 6913, Col 419, NGC 6910, NGC 6885, IC 4996, Berkeley 86, Col A, Car A, Octans, Argus, Vul OB1, Vul OB4, Cyg OB3, Byurakan 2, Cyg OB1, Cyg OB9, Cyg OB7, Cep OB2, Cam OB1, Cas-Tau, Mon OB1, Vel OB2, IC 2395, IC 2391, ChaT, Ara OB1A, NGC 6193, Ara OB1B, Sco OB1, Sco OB4, Pismis 24, Tr 27, NGC 6633, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6716, NGC 6694, NGC 6664, NGC 6663, NGC 6755, NGC 6709, Stephenson 1, NGC 6087, Harvard 10, NGC 6167, Tr 24, IC 4996, NGC 7129, Hogg 22, NGC 6250, BH 217, NGC 6396, Col A, Car A, Octans, Argus, Pleiades B1, NGC 6087, Har- vard 10, NGC 6167, NGC 6178, Tr 24, Waterloo 7, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, NGC 6250, Lynga 14, BH 217, NGC 6396, Col A, Car A, Octans, Argus, Pleiades B1, NGC 7129, Czernik 2, NGC 1513, Pis- mis 8, Hogg 22, BH 205, BH 217, NGC 6396, Col A, Car A, Octans, Argus, Pleiades B1, NGC 7129, Mayer 1, Czernik 2, NGC 1513, Pis- mis 8, Pismis 16, Hogg 22, BH 217, NGC 6396, Col A, Car A, Octans, Argus, Pleiades B1, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 754, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, Car A, Octans, Argus, Pleiades 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, Car A, Octans, Argus, Plei- ades B1, Cep OB5	≳ 0.8	2.87	17	85
J2022+5154	Cyg OB1, Cyg OB8, Cyg OB9, Cyg OB2, Cyg OB4, Cyg OB7, Berkeley 86, Bica 2, NGC 7129, Czernik 2, Cyg OB8, Cyg OB9, Cyg OB2, Cyg OB7, Vel OB2, ChaT, NGC 6913, Col 419, NGC 6910, NGC 6885, IC 4996, Berkeley 86, Col A, CarA, Octans, Argus, Vul OB1, Vul OB4, Cyg OB3, Byurakan 2, Cyg OB1, Cyg OB9, Cyg OB7, Cep OB2, Cam OB1, Cas-Tau, Mon OB1, Vel OB2, IC 2395, IC 2391, ChaT, Ara OB1A, NGC 6193, Ara OB1B, Sco OB1, Sco OB4, Pismis 24, Tr 27, NGC 6333, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, NGC 6613, NGC 6516, Col 367, NGC 6664, NGC 66683, NGC 6755, NGC 6709, Stephenson 1, NGC 6087, Harvard 10, NGC 6167, Tr 24, IC 4996, NGC 7129, Hogg 22, NGC 6250, BH 217, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, NGC 6087, Harvard 10, NGC 6167, NGC 6178, Tr 24, Waterloo 7, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, NGC 6250, Lynga 14, BH 217, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, NGC 6178, Tr 24, NGC 6396, Col 4, CarA, Octans, Argus, Pleiades B1, NGC 6179, Tr 24, NGC 6396, Col 4, CarA, Octans, Argus, Pleiades B1, NGC 7129, Mayer 1, Czernik 2, NGC 1513, Pismis 8, Hogg 22, BH 205, BH 217, NGC 6396, Col 4, CarA, Octans, Argus, Pleiades B1, NGC 7129, Mayer 1, Czernik 2, NGC 1513, Pismis 8, Hogg 22, BH 205, BH 217, NGC 6396, Col 4, CarA, Octans, Argus, Pleiades B1, NGC 1729, Mayer 1, Czernik 2, NGC 1513, Pismis 8, Pismis 16, Hogg 22, BH 217, NGC 6396, Col 4, CarA, Octans, Argus, Pleiades B1, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 754, King 12, Mayer 1, Czernik 2, NGC 6148, Sec 1032, NGC 2453, NGC 2455, Nage 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2166, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Arg	0.9 – 3.0	2.74	17	87

PSR	possible parents	$ au_{kin}$	τ_{char}	#former o	comp. cand.
J2046-0421	US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ϵ Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB5, NGC 6530, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Tr 35, Col 359, IC 4665, Vul OB1, NGC 6823,	no restriction	16.7	129	538
	Vul OB4, Cyg OB3, NGC 6871, Byurakan 2, Cyg OB1, Cyg OB8, Cyg OB9, Cyg OB2, Cyg OB4, Cyg OB7, Tr 37, Lac OB1, Cep OB2, Cep OB6, Cep OB3, Cep OB4, Cas OB14, Cam OB1, NGC 1502, α Per, Per OB2, Cas-Tau, Pleiades, Aur OB1, Gem OB1, Mon OB1, NGC 2264, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, CMa OB1, IC 1848, Col 121, Col 140, Col 135, Vel OB2, Tr 10, IC 2395, IC 2391, IC 2602, ChaT, Ara OB1A, Sco OB1, Sco OB4, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, Blanco1, NGC 6613, NGC 6716, NGC 6694, NGC 6664, NGC 6683, NGC 6755, NGC 6709, NGC 6834, Stephenson 1, NGC 6913, Col 419, NGC 6910, NGC 7031, NGC 7160, Stock 7, NGC 1944, NGC 1960, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2422, Col 132, NGC 6685, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7129, NGC 2353, NGC 2422, NGC 2344, Col 132, NGC 2453, NGC 1980, NGC 2456, NGC 2516, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 734, NGC 7343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Waterloo 7, Ru				
J2055+3630	ades B1, Cep OB5 Cyg OB3, NGC 6871, Byurakan 1, Byurakan 2, NGC 6883, Cyg OB1, Cyg OB3, NGC 6871, Byurakan 1, Byurakan 2, NGC 6883, Cyg OB1, Cyg OB8, Cyg OB9, Cyg OB2, Cyg OB7, NGC 6913, Col 419, NGC 6910, IC 4996, Berkeley 86, Bica 2, NGC 7129, Sgr OB6, M17, Ser OB1, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Tr 35, Col 359, IC 4665, Vul OB1, NGC 6823, Vul OB4, Cyg OB3, NGC 6871, Byurakan 2, Cyg OB1, Cyg OB3, Cyg OB9, Cyg OB2, Cyg OB4, Cyg OB7, Tr 37, Lac OB1, Cep OB2, Cep OB6, Cep OB3, Cep OB4, Cyg OB7, Tr 37, Lac OB1, NGC 1502, α Per, Per OB2, Cas-Tau, Pleiades, Aur OB1, Gem OB1, MOn OB1, NGC 2264, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, CMa OB1, IC 1848, Col 121, Col 140, Col 135, Vel OB2, Tr 10, IC 2395, IC 2391, IC 2602, ChaT, Ara OB1A, Sco OB1, Sco OB4, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, Blanco1, NGC 6613, NGC 6716, NGC 66531, Markarian 38, IC 4725, Blanco1, NGC 6709, NGC 6884, Stephen- son 1, NGC 69613, Col 419, NGC 6910, NGC 7031, NGC 7160, Stock 7, NGC 1444, NGC 1960, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2422, Col 132, NGC 6885, IC 4996, Berke- ley 86, Bica 1, Bica 2, NGC 7129, NGC 6396, ColA, CarA, Ottans, Ar- roy Dicider B1, Gra OB5, NGC 7129, NGC 6396, ColA, CarA, Ottans, Ar-	≳ 2.6	9.51	88	30
	 gus, rielades B1, Cep OB3, NGC 7129, Mayer J, Czernik Z, NGC 1513, Pismis 8, Pismis 16, Hogg 22, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2553, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5 				

Table	F.1: -	– Continued.	-

PSR	possible parents	τ_{kin}	τ_{char}	# former o	comp. cand.
		[Myr]	[Myr]	<i>v_{r,run}</i> known	<i>v_{r,run}</i> unknown
J2113+2754	AB Dor, Cyg OB7, Lac OB1, Cep OB2, Cep OB1, Cep OB6, NGC 7380, Cep OB3, Cas OB2, Cas OB5, Cep OB4, Cas OB4, Cas OB14, Cas OB7, Cas OB1, Cas OB8, Per OB1, Cas OB6, IC 1805, Cam OB1, NGC 1502, Cas-Tau, IC 5146, NGC 7128, NGC 7261, NGC 7510, Markarian 50, Stock 17, NGC 7788, NGC 7790, Stock 18, NGC 103, NGC 146, NGC 637, Stock 5, IC 1442, NGC 7129, NGC 7419, NGC 7654, Czernik 43, King 12, Mayer 1, Czernik 2, IC 1848, CoIA, Argus, Cep OB5, NGC 1502, α Per, Per OB2, Cas- Tau, Bloides, Aux OB1, Cam OB1, Mare OB1, NGC 2366, Mare OB2	≳ 0.4	7.27	29	113
	 NGC 2244, Ori OB1, A Ori, NGC 1976, Mon OB1, NGC 2244, Mon OB2, NGC 2244, Ori OB1, A Ori, NGC 1976, Mon R2, CMa OB1, IC 1882, Col 121, Col 140, Col 135, Vel OB2, Tr 10, IC 2395, IC 2391, IC 2602, ChaT, Ara OB1A, Sco OB1, Sco OB4, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, Blanco1, NGC 6613, NGC 6716, NGC 6694, NGC 6664, NGC 6683, NGC 6755, NGC 6709, NGC 6834, Stephenson 1, NGC 6913, Col 419, NGC 6910, NGC 7031, NGC 7160, Stock 7, NGC 1444, NGC 1960, Col 89, NGC 21422, Col 37, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2422, Col 32, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7129, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5, NGC 7129, Mayer 1, Czernik 2, NGC 1513, Pismis 8, Pismis 16, Hogg 22, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 544, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, 				
J2116+1414	NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis- mis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5 Vul OB1, NGC 6823, Vul OB4, Cyg OB3, NGC 6871, Byurakan 1, Byurakan 2, NGC 6883, Cyg OB1, Cyg OB8, Cyg OB2	$\gtrsim 2.3$	24.1	1	56
	by in akain 2, NGC 6003, Cyg OB1, Cyg OB2, Cyg OB4, Cyg OB4, Tr 37, Lac OB1, Cep OB2, NGC 7380, Cep OB3, Cas OB4, Cas OB5, Cas OB4, Cas OB14, Cas OB7, IC 1590, Cas OB1, Per OB1, IC 1805, Cam OB1, Aur OB1, NGC 6834, NGC 6913, NGC 6910, NGC 7128, NGC 7261, NGC 7510, Markarian 50, Stock 17, NGC 7788, NGC 6885, IC 4996, Berkeley 86, Bica 2, NGC 7419, NGC 7654, Mayer 1, Czernik 2, NGC 1513, Cep OB5, α Per, Per OB2, Cas- Tau, Pleiades, Aur OB1, Gem OB1, Mon OB1, NGC 2264, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, CMa OB1, IC 1848, Col 121, Col 140, Col 135, Vel OB2, Tr 10, IC 2395, IC 2391, IC 2602, ChaT, Ara OB1A, Sco OB1, Sco OB4, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, Blanco1, NGC 6613, NGC 6716, NGC 6694, NGC 6664, NGC 6683, NGC 6755, NGC 6709, NGC 6834, Stephenson 1, NGC 1913, Col 419, NGC 6910, NGC 7031, NGC 7160, Stock 7, NGC 1444, NGC 1960, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2422, Col 132, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7129, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5, NGC 7129, Mayer 1, Czernik 2, NGC 1513, Pismis 8, Pismis 16, Hogg 22, BH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2470, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7614, King 12, Mayer 1, Czernik 2, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 7129, NGC 7419, NGC 7554, King 12, Mayer 1, Czernik 2, NGC 7129, NGC 7343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis- vici 16, BH 212, Cel A, CarA, Octans, Argus, Pleiades 10, IC 2676, Pis- vici 46, BH 212, Cel A, CarA, Octans, Argus, Pleiades 10, IC 2676, Pis- vici 46, BH 212, Cel A, CarA, Octans, Argus, Pleiades 10, IC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32				

Table F.1: – (Continued. –
----------------	--------------

J2157+4017 Col 359, Vul OB1, NGC 6823, Vul OB4, NGC 6871, Byurakan 1, 1.9 - 3.5 7.04 2 36 Byurakan 2, NGC 6883, Cyg OB1, Cyg OB8, Cyg OB9, Cyg OB2, Cyg OB4, Tr 37, Lac OB1, Cep OB2, NGC 7380, Cep OB3, Cas OB2, Cas OB5, Cas OB4, Cas OB14, Cas OB7, IC 1590, Cas OB1, Per OB1, IC 1805, Cam OB1, Aur OB1, NGC 6834, NGC 6913, NGC 6910, NGC 7128, NGC 7261, NGC 7510, Markarian 50, Stock 17, NGC 7788, NGC 6885, IC 4996, Berkeley 86, Bica 2, NGC 7419, NGC 7654, Mayer 1, Czernik 2, NGC 1513, Cep OB5, α Per, Per OB2, Cas- Tau, Pleiades, Aur OB1, Gem OB1, Mon OB1, NGC 2264, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, CMa OB1, IC 1848, Col 121, Col 140, Col 135, Vel OB2, Tr 10, IC 2395, IC 2391, IC 2602, ChaT, Ara OB1A, Sco OB1, Sco OB4, M6, NGC 6514, Col 367, NGC 6531, Markarian 38, IC 4725, Blanco1, NGC 6613, NGC 6716, NGC 6694, NGC 6664, NGC 66683, NGC 6755, NGC 6709, NGC 6884, Stephenson 1, NGC 6913, Col 419, NGC 6910, NGC 7031, NGC 7160, Stock 7, NGC 1944, NGC 1960, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2422, Col 132, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7129, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5, NGC 7129, Mayer 1, Czernik 2, NGC 1513, Pismis 8, Pismis 16,	PSR	possible parents	$ au_{kin}$ [Myr]	^τ _{char} [Myr]	# former v v _{r,run} known	comp. cand. <i>v_{r,run} u</i> nknown
Hogg 22, BH 217, NGC 6396, Col A, CarA, Octans, Argus, Pleiades B1, Col 89, NGC 2165, Col 97, Col 105, Col 107, NGC 1980, NGC 1980, NGC 2353, NGC 2462, NGC 2384, Col 132, NGC 2453, NGC 2670, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Betkeley 86, Bica J, Bica 2, NGC 7309, NGC 7129, NGC 7419, NGC 754, King 12, Mayer 1, Czemik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dollarde 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pis- min 16, BH 217, Col A, CarA, Octans, Argus, Pleiades B1, Cep OB5 12219+4754 Cep OB1, NGC 7380, Cas OB2, Cas OB5, Cas OB4, Cas OB14, Cas OB7, IC 1590, Cas OB1, NGC 475, Cas OB8, Pro OB1, h Per, x Per, Cas OB6, IC 1805, Cam OB1, Mon OB2, NGC 1803, Aur OB1, NGC 7210, Stock 18, NGC 103, NGC 129, NGC 1640, NGC 7128, NGC 7230, Stock 18, NGC 103, NGC 129, NGC 146, NGC 7128, NGC 7210, Stock 18, NGC 190, NGC 129, NGC 146, NGC 1027, NGC 957, NGC 1444, NGC 1513, Cep OB5, IC 1848, Ci 190, Cal 107, IC 142, NGC 7419, NGC 7654, Czemik 43, King 12, Mayer 1, Czemik 2, Basel 10, IC 1848, NGC 1513, Cep OB5, IC 1848, Col 211, Col 100, Col 135, Vol OB2, Tr 10, IC 2395, IC 2391, IC 2602, ChaT, Ara OB1A, Soc OB1, Soc OB4, MG, NGC 6514, Col 307, NGC 6531, Markarian 38, IC 4725, Blanco1, NGC 6514, Col 307, NGC 6531, Markarian 38, IC 4725, Blanco1, NGC 6510, NGC 6716, NGC 6694, NGC 6634, MGC 6635, NGC 7550, NGC 6731, NGC 7510, NGC 7510, NGC 7510, NGC 1941, NGC 1960, Col 89, NGC 2150, Col 97, Col 106, Col 107, NGC 1941, NGC 1960, NGC 2422, Ol 231, NGC 6716, NGC 6694, NGC 6634, Stoch Haf, Soc OB1, Soc NG 755, NGC 756, NGC 756, NGC 755, NGC 755, NGC 755, NGC 755, NGC 755, NGC 755, NGC 756, NGC 755, NGC 755, NGC 755, NGC 755, NGC 755, NGC 755, NGC 7558, NGC 7558, NGC 7558, NGC 739, NGC 71510, NGC 7554, King 12, Maye	J2157+4017	Col 359, Vui OB1, NGC 6823, Vui OB4, NGC 6871, Byurakan 1, Byurakan 2, NGC 6883, Cyg OB1, Cyg OB8, Cyg OB9, Cyg OB2, Cyg OB4, Tr 37, Lac OB1, Cep OB2, NGC 7380, Cep OB3, Cas OB2, Cas OB5, Cas OB4, Cas OB14, Cas OB7, IC 1590, Cas OB1, Per OB1, IC 1805, Cam OB1, Aur OB1, NGC 6834, NGC 6913, NGC 6910, NGC 7128, NGC 7261, NGC 7510, Markarian 50, Stock 17, NGC 7788, NGC 6885, IC 4996, Berkeley 86, Bica 2, NGC 7419, NGC 7654, Mayer 1, Czernik 2, NGC 1513, Cep OB5, α Per, Per OB2, Cas- Tau, Piciades, Aur OB1, AG Cm OB1, Mon OB1, NGC 2264, Mon OB2, NGC 2244, Ori OB1, A Ori, NGC 1976, Mon R2, CMa OB1, IC 1848, Col 121, Col 140, Col 135, Vel OB2, Tr 10, IC 2395, IC 2391, IC 2602, ChaT, Ara OB1A, Sco OB1, Sco OB4, M6, NGC 6514, Col 37, NGC 6531, Markarian 38, IC 4725, Blancol, NGC 6613, NGC 6716, NGC 6694, NGC 6664, NGC 6663, NGC 6709, NGC 6634, Stephenson 1, NGC 6913, Col 419, NGC 6910, NGC 7031, NGC 7160, Stock 7, NGC 1444, NGC 1960, Col 89, NGC 2129, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2422, Col 32, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7129, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5, NGC 7129, Mayer 1, Czernik 2, NGC 1513, Pismis 8, Pismis 16, Log 29, ZH 217, NGC 6396, ColA, CarA, Octans, Argus, Pleiades B1, Col 90, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2353, NGC 2422, NGC 2384, Col 132, NGC 2435, Watcrioo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2659, Pis- mis 16, B127, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5 Cep OB1, NGC 7380, Cara OB2, Cas OB5, Cas OB4, Cas OB14, Cas OB7, IC 1590, Cas OB1, NGC 457, Cas OB8, Per OB1, h Per, Y, Per, Cas OB6, IC 1805, Carn OB1, Mon OB1, Mon OB2, IC 1848, NGC 7128, NGC 7380, Cas OB2, Cas OB5, Cas OB4, Cas OB14, Cas OB7, IC 1590, Cas OB1, MGC 6511, MGC 6531, Markarian 50, Stock 17, NGC 7488, NGC 7380, NGC 551, NGC 570, NGC 1484, NGC 1993, Aur OB1, NGC 2129, Gem OB1, Mon OB1, Mon OB2, IC 1848, NGC 7128, NGC 7380, NGC 551, NGC 5670	1.9 - 3.5	3.09	2	36

Table	F.1:	_	Continued.	—

PSR	possible parents	τ_{kin}	τ_{char}	# former o	comp. cand.
		[Myr]	[Myr]	v _{r,run} known	v _{r,run} unknown
PSR J2305+3100	 possible parents Cep OB1, NGC 7380, Cas OB2, Cas OB5, Cas OB4, NGC 7128, NGC 7235, NGC 7261, NGC 7510, Markarian 50, Stock 17, NGC 7788, Stock 18, IC 1442, NGC 7419, Czernik 43, King 12, Czernik 2, Cep OB5, NGC 1893, Aur OB1, NGC 2129, Gem OB1, Mon OB1, Mon OB2, IC 1848, NGC 7128, NGC 7235, NGC 7261, NGC 7510, Markarian 50, Stock 17, NGC 7788, NGC 7790, Stock 18, NGC 103, NGC 129, NGC 146, NGC 433, NGC 436, NGC 581, NGC 637, NGC 659, NGC 663, Stock 5, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, Col 107, IC 1442, NGC 7419, NGC 7654, Czernik 43, King 12, Mayer 1, Czernik 2, Basel 10, IC 1848; NGC 1513, Cep OB5, IC 1848, Col 121, Col 140, Col 135, Vel OB2, Tr 10, IC 2395, IC 2391, IC 2602, ChaT, Ara OB1A, Sco OB1, Sco OB4, M6, NGC 6514, Col 367, NGC 66531, Markarian 38, IC 4725, Blanco1, NGC 6613, NGC 6716, NGC 6694, NGC 6664, NGC 6683, NGC 6755, NGC 6709, NGC 6834, Stephenson 1, NGC 6913, Col 419, NGC 6910, NGC 7031, NGC 7160, Stock 7, NGC 1444, NGC 1960, Col 39, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2422, Col 132, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7129, NGC 2353, NGC 2422, NGC 2344, Col 132, NGC 2453, NGC 2576, NGC 2353, NGC 2422, NGC 2344, Col 132, NGC 2453, NGC 2670, NGC 2353, NGC 2422, NGC 2344, Col 132, NGC 2453, NGC 2670, NGC 2354, NGC 7039, NGC 7129, NGC 7149, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 2666, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 2616, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Wf 6, Do 87, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Wf 6, Do 87, VGC 6574, Waterloo 7, Ruprecht 26, Bochum 5, Tr 7, Ruprecht 18, Ruprecht 32, Wf 6,	^τ kin [Myr] 2.1 – 4.8	⁷ char [Myr] 8.63	# former of v _{r,run} known 2	:omp. cand. v _{r,run} unknown 45
J2308+5547	NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5 US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ε Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Cyg OB4, Cyg OB7, Tr 37, Lac OB1, Cep OB2, Cep OB1, Cep OB6, Cep OB3, Cas OB2, Cas OB5, Cep OB4, Cas OB4, Cas OB14, Cas OB7, IC 1590, Cas OB1, Cas OB8, Per OB1, h Per, χ Per, Cas OB6, IC 1805, Cam OB1, NGC 1502, Cam OB3, α Per, Per OB2, Cas-Tau, Pleiades, Aur OB2, NGC 1893, Aur OB1, NGC 2129, Gem OB1, Mon OB1, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, NGC 2362, Pup OB1, NGC 2476, Col 140, Col 135, Pup OB3, Vel OB2, Tr 10, Vel OB1, IC 2395, ChaT, NGC 7160, NGC 7510, Markarian 50, Stock 17, NGC 7788, NGC 7790, Stock 18, NGC 103, NGC 129, NGC 146, NGC 433, NGC 436, NGC 581, NGC 637, NGC 659, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 7129, NGC 7419, NGC 7654, Czernik 43, King 12, Mayer 1, Czernik 2, NGC 654, Basel 10, IC 1848, NGC 2153, NGC 2343, Water- loo 7, Bochum 5, Tr 7, Ruprecht 18, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, Col 89, NGC 2169, Col 97, Col 106, Col 107, NGC 1981, NGC 1980, NGC 2513, NGC 2422, NGC 2384, Col 132, NGC 2453, NGC 2470, NGC 2516, NGC 3532, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 6087, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, NGC 7129, NGC 7419, NGC 7654, King 12, Mayer 1, Czernik 2, NGC 664, Basel 10, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bo- chum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2345, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades BI, Cep OB5	no restriction	37.7	18	257

PSR	possible parents	τ_{kin}	$\tau_{\textit{char}}$	∦ former o	comp. cand.
		[Myr]	[Myr]	<i>v_{r,run}</i> known	<i>v_{r,run}</i> unknow
12321+6024	US, UCL, LCC, TWA, Tuc-Hor, β Pic-Cap, ϵ Cha, η Cha, HD 141569, Ext. R CrA, AB Dor, Her-Lyr, Sgr OB1, Sgr OB7, Sct OB3, Ser OB2, Sct OB2, Vul OB1, NGC 6823, Vul OB4, Cyg OB3, NGC 6883, Cyg OB1, Cyg OB8, Cyg OB9, Cyg OB2, Cyg OB4, Cyg OB7, Tr 37, Lac OB1, Cep OB2, Cep OB1, Cep OB6, NGC 7380, Cep OB3, Cas OB2, Cas OB5, Cep OB4, Cas OB1, Cas OB14, Cas OB7, IC 1590, Cas OB1, NGC 457, Cas OB8, Per OB1, h Per, χ Per, Cas OB6, IC 1805, Cam OB1, NGC 1502, Cam OB3, α Per, Per OB2, Cas- Tau, Pleiades, Aur OB2, NGC 1893, Aur OB1, NGC 2129, Gem OB1, Mon OB1, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, CMa OB1, IC 1848, NGC 2367, Col 121, Pup OB1, NGC 2476, Col 140, Pup OB3, NGC 2546, Vel OB2, Tr 10, Vel OB1, IC 2395, IC 2391, vdB-Hagen 99, Col 228, Car OB2, IC 2944, ChaT, Cen OB1, Hogg 16, Sco OB4, Pismis 24, IC 4725, NGC 6716, Stephenson 1, Col 419, NGC 7031, NGC 7128, NGC 7285, NGC 7160, NGC 7261, NGC 7510, Markarian 50, Stock 17, NGC 7788, NGC 7790, Stock 18, NGC 103, NGC 129, NGC 146, NGC 433, NGC 436, NGC 581, NGC 637, NGC 659, NGC 663, Stock 5, Stock 7, NGC 1027, NGC 957, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2188, Col 89, Col 97, Col 106, Col 107, NGC 2353, NGC 2422, NGC 2343, Wa- terloo 7, Bochum 5, Ruprecht 18, Haffner 26, NGC 2343, Wa- terloo 7, Bochum 5, Ruprecht 18, Haffner 26, NGC 2343, Wa- terloo 7, Bochum 5, Ruprecht 18, Haffner 26, NGC 2343, Wa- terloo 7, Bochum 5, Ruprecht 18, Haffner 26, NGC 2345, Pismis 8, Col 205, Pismis 16, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5, IC 1848, Tr 3, NGC 1513, IC 348, NGC 186, Col 2345, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Plut 410, C1 410, CarA, Octans, Argus,	no restriction	5.08	4	306
12337+6151	Using the set of the	no restriction	0.0406	400	277

Table F.1: - Continued. -

Table F.1: –	Continued. –
--------------	--------------

PSR	possible parents	$ au_{\textit{kin}}$ [Myr]	τ _{char} [Myr]	# former o <i>v_{r,run}</i> known	comp. cand. v _{r,run} unknown
J2354+6155	Sgr OB5, NGC 6530, Sgr OB1, Sgr OB7, Sgr OB4, Sgr OB6, M17, Ser OB1, Sct OB3, Ser OB2, NGC 6604, Sct OB2, Tr 35, Vul OB1, NGC 6823, Cyg OB3, NGC 6871, Byurakan 1, Byurakan 2, NGC 6883, Cyg OB1, Cyg OB8, Cyg OB2, Cep OB1, NGC 7380, Sco OB1, Bo- chum 13, Pismis 24, Col 367, Markarian 38, NGC 6613, NGC 6694, NGC 6683, NGC 6755, NGC 6834, NGC 6910, NGC 7128, NGC 7235, NGC 7261, NGC 6885, IC 4996, Berkeley 86, Bica 2, IC 1442, Czernik 43, Hogg 22, BH 217, NGC 6396, Per OB1, h Per, χ Per, Cas OB6, IC 1805, Cam OB1, NGC 1502, Cam OB3, α Per, Per OB2, Cas-Tau, Aur OB2, NGC 1893, Aur OB1, NGC 2129, Gem OB1, Mon OB1, Mon OB2, NGC 2244, Ori OB1, λ Ori, NGC 1976, Mon R2, CMa OB1, Col 121, Pup OB1, NGC 2476, Pup OB3, Vel OB2, Tr 10, Vel OB1, IC 2395, ChaT, Cen OB1, Ara OB1A, Sco OB4, Pismis 24, NGC 6514, IC 4725, NGC 6683, Stephenson 1, NGC 6913, Col 419, NGC 6910, NGC 7031, NGC 7128, NGC 7235, NGC 7160, NGC 7261, NGC 7510, Markarian 50, Stock 17, NGC 7788, NGC 7790, Stock 18, NGC 103, NGC 129, NGC 146, NGC 433, NGC 436, NGC 587, NGC 1444, NGC 1912, Stock 8, NGC 1960, NGC 1746, NGC 2168, Col 89, Col 97, Col 106, Col 107, NGC 1980, NGC 2353, NGC 2422, Col 132, NGC 6087, Harvard 10, NGC 6167, Tr 24, NGC 6885, IC 4996, Berkeley 86, Bica 1, Bica 2, NGC 7039, IC 1442, NGC 7129, NGC 7419, NGC 7654, Czernik 43, King 12, Mayer 1, Czernik 2, NGC 654, Czernik 4, Basel 10, IC 1848, NGC 1513, NGC 2343, Waterloo 7, Tr 7, NGC 2645, Pismis 8, Pismis 16, BH 217, ColA, CarA, Octans, Argus, Pleiades B1, Cep OB5, IC 1848, Tr 3, NGC 1513, IC 348, NGC 2186, Dolidze 25, NGC 2343, NGC 2345, Waterloo 7, Ruprecht 26, Bo- chum 5, Tr 7, Ruprecht 18, Ruprecht 32, Haffner 19, NGC 2571, Haffner 26, NGC 2645, Pismis 8, Col 205, NGC 2669, Pismis 16, BH 217, Col A, CarA, Octans, Argus, Pleiades B1, Cep OB5	≳ 0.3	0.92	13	68

^a RBS 1223

Publications

Publications Related to Neutron Stars

- Trepl, L., V. V. Hambaryan, T. Pribulla, N. Tetzlaff, R. Chini, R. Neuhäuser, S. B. Popov, O. Stahl, F. M. Walter and M. M. Hohle. 'Is there a compact companion orbiting the late O-type binary star HD 164816?' In: MNRAS 427 (Dec. 2012), pp. 1014–1023. DOI: 10.1111/j.1365-2966.2012.22011.x. arXiv:1209.2592 [astro-ph.GA].
- Tetzlaff, N., J. G. Schmidt, M. M. Hohle and R. Neuhäuser. 'Neutron Stars From Young Nearby Associations: The Origin of RX J1605.3+3249'. In: *Publications of the Astronomical Society of Australia* 29 (Mar. 2012), pp. 98–108. DOI: 10.1071/AS11057. arXiv:1202.1388 [astro-ph.GA].
- Hui, C. Y., R. H. H. Huang, L. Trepl, N. Tetzlaff, J. Takata, E. M. H. Wu and K. S. Cheng. 'XMM-Newton Observation of PSR B2224+65 and Its Jet'. In: ApJ 747, 74 (Mar. 2012), p. 74. DOI: 10.1088/0004-637X/747/1/74. arXiv:1112.5816 [astro-ph.HE].
- Neuhäuser, R., N. Tetzlaff, T. Eisenbeiss and M. M. Hohle. 'On identifying the neutron star that was born in the supernova that placed ⁶⁰Fe onto the Earth'. In: Journal of Physics Conference Series 337.1 (Feb. 2012), p. 012052. DOI: 10.1088/1742-6596/ 337/1/012052. arXiv:1111.0453 [astro-ph.SR].
- Neuhäuser, R., V. V. Hambaryan, N. Tetzlaff, M. M. Hohle and T. Eisenbeiss. 'Constraints on neutron-star theories from nearby neutron star observations'. In: conf. proc. for invited talk at NIC Conf. Heidelberg 2010 (Nov. 2011). arXiv:1111.0447 [astro-ph.SR].
- Tetzlaff, N., T. Eisenbeiss, R. Neuhäuser and M. M. Hohle. 'The origin of RX J1856.5-3754 and RX J0720.4-3125 - updated using new parallax measurements'. In: MNRAS 417 (Oct. 2011), pp. 617–626. DOI: 10.1111/j.1365-2966.2011.19302.x. arXiv:1107. 1673 [astro-ph.GA].
- Boldin, P. A., S. B. Popov and N. Tetzlaff. 'A web-tool for population synthesis of near-by cooling neutron stars: An on-line test for cooling curves'. In: *Astronomische Nachrichten* 332 (Feb. 2011), pp. 122-+.
- **Tetzlaff**, N., R. Neuhäuser and M. M. Hohle. 'A catalogue of young runaway Hipparcos stars within 3 kpc from the Sun'. In: MNRAS 410 (Jan. 2011), pp. 190–200.
- Hambaryan, V., R. Neuhäuser, N. Tetzlaff and M. M. Hohle. 'On the evolutionary status of Isolated Neutron Stars'. In: *Evolution of Cosmic Objects through their Physical Activity*. Ed. by & Y. Terzian H. A. Harutyunian A. M. Mickaelian. Nov. 2010, pp. 111–117.
- **Tetzlaff**, **N.**, R. Neuhäuser and M. M. Hohle. 'Young runaway stars within 3kpc (Tetzlaff+, 2011)'. In: *VizieR Online Data Catalog* 741 (Aug. 2010), S. 190ff.
- **Tetzlaff**, **N.**, R. Neuhäuser, M. M. Hohle and G. Maciejewski. 'Identifying birth places of young isolated neutron stars'. In: MNRAS 402 (Mar. 2010), pp. 2369–2387.
- Tetzlaff, N., R. Neuhäuser, M. M. Hohle and G. Maciejewski. 'Kinematics of young associations/clusters (Tetzlaff+, 2010)'. In: VizieR Online Data Catalog 740 (Mar. 2010), S. 22369ff.
- **Tetzlaff**, N., R. Neuhäuser and M. M. Hohle. 'The origin of the Guitar pulsar'. In: MNRAS 400 (Nov. 2009), pp. L99–L102.
- Hohle, M. M., R. Neuhäuser and N. Tetzlaff. 'Using radioactivities to improve the search for nearby radio-quiet neutron stars'. In: *New Astronomy Reviews* 52 (Oct. 2008), pp. 405–408.

Other Publications

- Berndt, A., R. Errmann, G. Maciejewski, S. Raetz, C. Marka, C. Ginski, M. Mugrauer, T. O. B. Schmidt, R. Neuhäuser, M. Seeliger, M. Moualla, T. Pribulla, M. M. Hohle, N. Tetzlaff, C. Adam, T. Eisenbeiss and YETI Team. 'Observation of Young Stars at the University Observatory Jena'. In: Astronomical Society of the Pacific Conference Series. Ed. by C. Johns-Krull, M. K. Browning and A. A. West. Vol. 448. Astronomical Society of the Pacific Conference Series.
- Moualla, M., T. O. B. Schmidt, R. Neuhäuser, V. V. Hambaryan, R. Errmann, L. Trepl, C. Broeg, T. Eisenbeiss, M. Mugrauer, C. Marka, C. Adam, C. Ginski, T. Pribulla, S. Rätz, J. Schmidt, A. Berndt, G. Maciejewski, T. Röll, M. M. Hohle, N. Tetzlaff, S. Fiedler and S. Baar. 'A new flare star member candidate in the Pleiades cluster'. In: Astronomische Nachrichten 332 (Aug. 2011), p. 661. DOI: 10.1002/asna.201111580. arXiv:1108.6278 [astro-ph.SR].
- Raetz, S., M. Mugrauer, T. O. B. Schmidt, T. Roell, T. Eisenbeiss, M. Vaňko, A. Koeltzsch, M. M. Hohle, C. Ginski, C. Marka, M. Moualla, N. Tetzlaff, A. Reithe, W. Rammo, S. Fiedler, J. Koppenhoefer and R. Neuhäuser. 'Observations of planetary transits at the University Observatory Jena'. In: Research, Science and Technology of Brown Dwarfs and Exoplanets: Proceedings of an International Conference held in Shangai on Occasion of a Total Eclipse of the Sun, Shangai, China, Edited by E.L. Martin; J. Ge; W. Lin; EPJ Web of Conferences, Volume 16, id.01003 16, 01003 (July 2011), p. 1003. DOI: 10.1051/epjconf/20111601003.
- Neuhäuser, R., R. Errmann, A. Berndt, G. Maciejewski, H. Takahashi, W. P. Chen, D. P. Dimitrov, T. Pribulla, E. H. Nikogossian, E. L. N. Jensen, L. Marschall, Z.-Y. Wu, A. Kellerer, F. M. Walter, C. Briceño, R. Chini, M. Fernandez, S. Raetz, G. Torres, D. W. Latham, S. N. Quinn, A. Niedzielski, Ł. Bukowiecki, G. Nowak, T. Tomov, K. Tachihara, S. C.-L. Hu, L. W. Hung, D. P. Kjurkchieva, V. S. Radeva, B. M. Mihov, L. Slavcheva-Mihova, I. N. Bozhinova, J. Budaj, M. Vaňko, E. Kundra, Ľ. Hambálek, V. Krushevska, T. Movsessian, H. Harutyunyan, J. J. Downes, J. Hernandez, V. H. Hoffmeister, D. H. Cohen, I. Abel, R. Ahmad, S. Chapman, S. Eckert, J. Goodman, A. Guerard, H. M. Kim, A. Koontharana, J. Sokol, J. Trinh, Y. Wang, X. Zhou, R. Redmer, U. Kramm, N. Nettelmann, M. Mugrauer, J. Schmidt, M. Moualla, C. Ginski, C. Marka, C. Adam, M. Seeliger, S. Baar, T. Roell, T. O. B. Schmidt, L. Trepl, T. Eisenbeiß, S. Fiedler, N. Tetzlaff, E. Schmidt, M. Mohle, M. Kitze, N. Chakrova, C. Gräfe, K. Schreyer, V. V. Hambaryan, C. H. Broeg, J. Koppenhoefer and A. K. Pandey. 'The Young Exoplanet Transit Initiative (YETI)'. In: Astronomische Nachrichten 332 (July 2011), p. 547. DOI: 10.1002/asna.201111573. arXiv:1106.4244 [astro-ph.SR].
- Maciejewski, G., D. Dimitrov, R. Neuhäuser, N. Tetzlaff, A. Niedzielski, S. Raetz, W. P. Chen, F. Walter, C. Marka, S. Baar, T. Krejcová, J. Budaj, V. Krushevska, K. Tachihara, H. Takahashi and M. Mugrauer. 'Transit timing variation and activity in the WASP-10 planetary system'. In: MNRAS 411 (Feb. 2011), pp. 1204–1212.
- Raetz, S., G. Maciejewski, M. Mugrauer, T. O. B. Schmidt, T. Roell, T. Eisenbeiss, A. Berndt, M. M. Hohle, C. Ginski, R. Errmann, M. Seeliger, C. Adam, T. Pribulla, N. Tetzlaff, M. Vaňko, J. Koppenhoefer, M. Raetz and R. Neuhäuser. 'Transit timing, depth, and duration variation in exoplanet TrES-2?' In: Detection and Dynamics of Transiting Exoplanets, St. Michel l'Observatoire, France, Edited by F. Bouchy; R. Díaz; C. Moutou; EPJ Web of Conferences, Volume 11, id.05007 11 (Feb. 2011), pp. 5007-+.
- Maciejewski, G., R. Neuhäuser, R. Errmann, M. Mugrauer, C. Adam, A. Berndt, T. Eisenbeiss, S. Fiedler, C. Ginski, M. Hohle, U. Kramm, C. Marka, M. Moualla, T. Pribulla, S. Raetz, T. Roell, T. O. B. Schmidt, M. Seeliger, I. Spaleniak, N. Tetzlaff and L.

Trepl. 'Towards the Rosetta Stone of planet formation'. In: Detection and Dynamics of Transiting Exoplanets, St. Michel l'Observatoire, France, Edited by F. Bouchy; R. Díaz; C. Moutou; EPJ Web of Conferences, Volume 11, id.04006 11 (Feb. 2011), pp. 4006-+.

- Hohle, M. M., T. Eisenbeiss, M. Mugrauer, F. Freistetter, M. Moualla, R. Neuhäuser, S. Raetz, T. O. B. Schmidt, N. Tetzlaff and M. Vaňko. 'Photometric study of the OB star clusters NGC 1502 and NGC 2169 and mass estimation of their members at the University Observatory Jena'. In: Astronomische Nachrichten 330 (May 2009), S. 511ff.
- Raetz, S., M. Vaňko, M. Mugrauer, T. O. B. Schmidt, T. Roell, T. Eisenbeiss, M. M. Hohle, A. Koeltzsch, C. Ginski, C. Marka, M. Moualla, N. Tetzlaff, C. Broeg and R. Neuhäuser. 'Photometric analysis of the eclipsing binary 2MASS 19090585+4911585'. In: Astronomische Nachrichten 330 (May 2009), S. 504ff.
- Raetz, S., M. Mugrauer, T. O. B. Schmidt, T. Roell, T. Eisenbeiss, M. M. Hohle, N. Tetzlaff, M. Vaňko, A. Seifahrt, C. Broeg, J. Koppenhoefer and R. Neuhäuser. 'Planetary transit observations at the University Observatory Jena: XO-1b and TrES-1'. In: *Astronomische Nachrichten* 330 (May 2009), S. 475ff.
- Raetz, S., M. Mugrauer, T. O. B. Schmidt, T. Roell, T. Eisenbeiss, M. M. Hohle, A. Koeltzsch, M. Vaňko, C. Ginski, C. Marka, M. Moualla, N. Tetzlaff, A. Seifahrt, C. Broeg, J. Koppenhoefer, M. Raetz and R. Neuhäuser. 'Planetary transit observations at the University Observatory Jena: TrES-2'. In: Astronomische Nachrichten 330 (May 2009), S. 459ff.

Teaching, Talks and Public Outreach

Supervising physics course "Mathematische Methoden der - 10/2005 - 02/2006: Physik I" (mathematical methods in physics I) - 04/2008 - 12/2008: Construction of a web-tool for population synthesis in cooperation with Prof. Sergei B. Popov (Sternberg University Moscow) - Sep 9th 2009: Support of a Slovakian school class - Sep 16th 2009: Talk and organiser of a workshop at the Einsteintag on "Kinematics of neutron stars" - since Oct 1st 2009: Science Coach for OPSIS (Optimization of Professional Support for International Students) at Friedrich-Schiller-Universität, Jena, Germany (scientific support for international students) Nov 6th 2009: certificate for training in intercultural work - Nov 13th 2009: Public talk at the Lange Nacht der Wissenschaften in Jena - Dec 7th 2009: Support of children of the NAJU (German Society for the Protection of Nature) - Sep 16th 2010: Talk at the meeting of the Astronomische Gesellschaft (German Astronomical Society) on the "Identification of the neutron star which was born in the recent nearby supernova that placed ⁶⁰Fe onto the Earth" - Mar 3rd 2011: Talk at the workshop "Astronomy with radioactivities VII" on "Neutron stars from young nearby associations - the origin of the two X-ray pulsars RX J1856.5-3754 and RX J0720 4-3125" - 04/2011 - 07/2011: Development of an experiment for and supervising the practical course of astrophysics Support of a Slovakian school class with talk "As-- Sep 21st 2011: tropysikalisches Institut und Universitäts-Sternwarte Jena" - 04/2012 - 07/2012: Supervising the practical course of astrophysics

Curriculum Vitae

Nina Ulrike Tetzlaff born on June 9th 1984 in Gera, Germany

_	08/1991 - 06/1995:	Primary school at 4. Grundschule in Gera, Germany
_	08/1995 - 06/2003:	High school at Zabelgymnasium Gera, Germany, Abitur on Jun 27 th 2003
_	10/2003 - 06/2009:	Physics studies at Friedrich-Schiller-Uni"-ver"-si"-tät Jena, Germany, Diploma in physics on Jun 23 rd 2009 Title of diploma thesis: "Kinematische Untersuchungen zu jun- gen isolierten Neutronensternen: Die Suche nach den Orten potentieller Supernovae" (Investigating the kinematics of young isolated neutron stars: searching for possible supernova sites)
		- ,
_	Mar 25 th 2006:	English language certificate "IELTS"
_	Mar 25 th 2006: 09/2006 – 07/2007:	English language certificate "IELTS" Physics studies at the University of Liverpool, UK
_	Mar 25 th 2006: 09/2006 – 07/2007: Aug 5 th 2008:	English language certificate "IELTS" Physics studies at the University of Liverpool, UK English language certificate "Certificate of Proficiency in Eng- lish" (level C2)
	Mar 25 th 2006: 09/2006 – 07/2007: Aug 5 th 2008: since Jul 1 st 2009:	English language certificate "IELTS" Physics studies at the University of Liverpool, UK English language certificate "Certificate of Proficiency in Eng- lish" (level C2) PhD thesis at Friedrich-Schiller-Uni"-ver"-si"-tät Jena, Ger- many (Astrophysikalisches Insitut und Universitäts-Sternwarte) Title of PhD thesis: "Identifying Birth Places of Young Neutron Stars to Determine Their Kinematic Ages"
	Mar 25 th 2006: 09/2006 - 07/2007: Aug 5 th 2008: since Jul 1 st 2009: 07/2010 - 12/2012:	English language certificate "IELTS" Physics studies at the University of Liverpool, UK English language certificate "Certificate of Proficiency in Eng- lish" (level C2) PhD thesis at Friedrich-Schiller-Uni"-ver"-si"-tät Jena, Ger- many (Astrophysikalisches Insitut und Universitäts-Sternwarte) Title of PhD thesis: "Identifying Birth Places of Young Neutron Stars to Determine Their Kinematic Ages" scholarship holder of the Carl-Zeiss-Stiftung

Declaration

lch erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit selbständig, ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel und Literatur angefertigt habe. Die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Bei der Auswahl und Auswertung folgenden Materials haben mir die nachstehend aufgeführten Personen in der jeweils beschriebenen Weise unentgeltlich geholfen:

1. Markus Hohle hat mir seine MATLAB-Programme zur Koordinatentransformation zur Verfügung gestellt. Diese wurden überarbeitet und weiterentwickelt.

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden Arbeit nicht beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von Vermittlungsbzw. Beratungsdiensten (Promotionsberater oder andere Personen) in Anspruch genommen. Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Die geltende Promotionsordnung der Physikalisch-Astronomischen Fakultät ist mir bekannt.

Ich versichere ehrenwörtlich, dass ich nach bestem Wissen die reine Wahrheit gesagt und nichts verschwiegen habe.

Ort, Datum

Unterschrift des Verfassers