Bilder und Erläuterungen zur Vorlesung 12

Bremsstrahlung

Natürliche Strahlungsquellen/Strahlungsmechanismen:

- Thermische Emission von (Fest-)Körpern (λ ≤ 1cm)
 (Wärmestrahlung verteilt über viele Wellenlängen)
- 2) <u>Linienstrahlung</u> (von Gas)

(Aussenden von schmalbandiger Emission beim Übergang zwischen verschiedenen, diskreten Anregungszuständen von Atomen und Molekülen, Rekombinationsvorgänge)

3) Thermische Emission von heißem Gas (λ ≥ 1 cm)

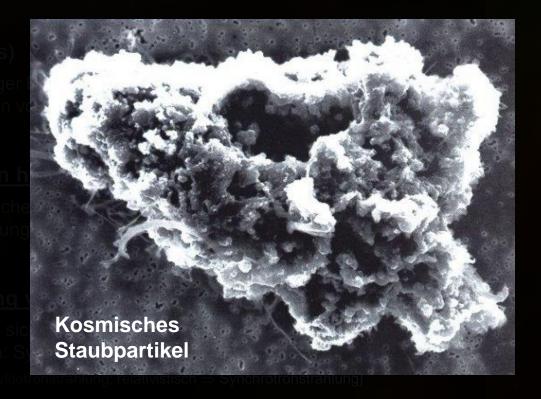
(Elektronen werden im elektrischen Feld von Ionen abgelenkt und abgebremst = Frei-Frei Strahlung) [Bremsstrahlung]

4) Nichtthermische Strahlung von heißem Gas (λ ≥ 1 cm)

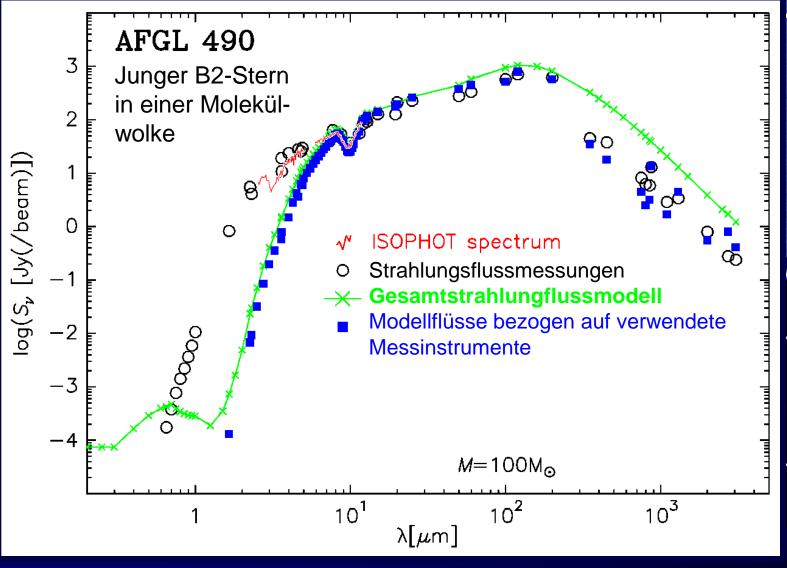
(schnelle, freie Elektronen, die sich auf "Spirelli"-Bahnen um Magnetfeldlinien bewegen: Synchrotronstrahlung)

[Gyrostrahlung: nichtrelativistisch \Rightarrow Zyklotronstrahlung; relativistisch \Rightarrow Synchrotronstrahlung]

Natürliche Strahlungsquellen/Strahlungsmechanismen:


1) Thermische Emission von (Fest-)Körpern (λ ≤ 1cm)

```
... z.B. kalter Staub


(\lambda \le 1cm,

T = 10...100 \text{ K}

= -263...-173°C)
```


Planckkurven der Strahlungsverteilung idealer Schwarzer Körper mit verschiedenen Temperaturen Planck-Funktion $B_{\nu}(T)$: 10¹⁵ (Spezifische Ausstrahlung [W Hz⁻¹m⁻²] $B_{\nu}(\mathbf{T}) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/k\mathbf{T}} - 1}$ T = 9000K10¹² Sonne T ...Temperatur *h* ... Plancksche Wirkungsquantum T = 5780K ν ... Frequenz c ... Lichtgeschwindigkeit k ... Botzmann-Konstante 10⁹ T = 2000KWiensches Verschiebungsgesetz: 10⁶ T = 1000K $2897,8 \,\mu \text{m K}$ 1000 Mensch T = 309KT = 50KSonne $T_{\rm eff}$ = 5780 K $\lambda_{\text{max}} = 500 \text{ nm}$ T = 20KMensch T = 36°C = 309 K $\lambda_{\text{max}} = 9 \, \mu \text{m}$ Interstellarer Staub T = 10K0.001 Interstellarer Staub $T = 10 \text{ K} \ \lambda_{\text{max}} = 290 \ \mu\text{m}$ 0.1 10 100 1000 Kosmische Hintergrundstrahlung Wellenlänge λ [μm] $T = 2.725 \text{ K} \ \lambda_{\text{max}} = 1.06 \text{ mm}$

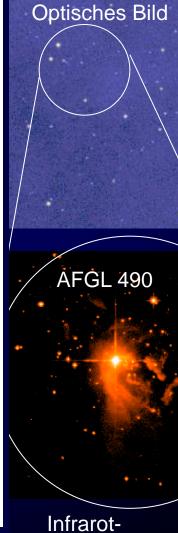


bild (2.2µm)

Natürliche Strahlungsquellen/Strahlungsmechanismen:

- Thermische Emission von (Fest-)Körpern (λ ≤ 1cm)
 (Wärmestrahlung verteilt über viele Wellenlängen)
- 2) <u>Linienstrahlung</u> (von Gas)

(Aussenden von schmalbandiger Emission beim Übergang zwischen verschiedenen, diskreten Anregungszuständen von Atomen und Molekülen, Rekombinationsvorgänge)

3) Thermische Emission von heißem Gas (λ ≥ 1 cm)

(Elektronen werden im elektrischen Feld von Ionen abgelenkt und abgebremst = Frei-Frei Strahlung) [Bremsstrahlung]

4) Nichtthermische Strahlung von heißem Gas (λ ≥ 1 cm)

(schnelle, freie Elektronen, die sich auf "Spirelli"-Bahnen um Magnetfeldlinien bewegen: Synchrotronstrahlung)

[Gyrostrahlung: nichtrelativistisch \Rightarrow Zyklotronstrahlung; relativistisch \Rightarrow Synchrotronstrahlung]

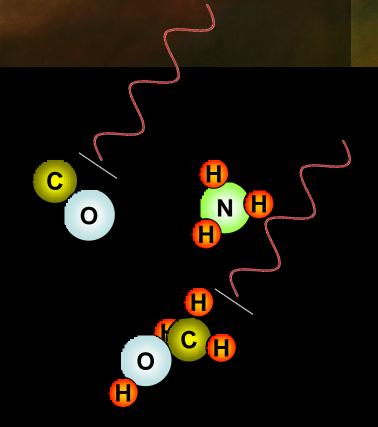
Natürliche Strahlungsquellen/Strahlungsmechanismen:

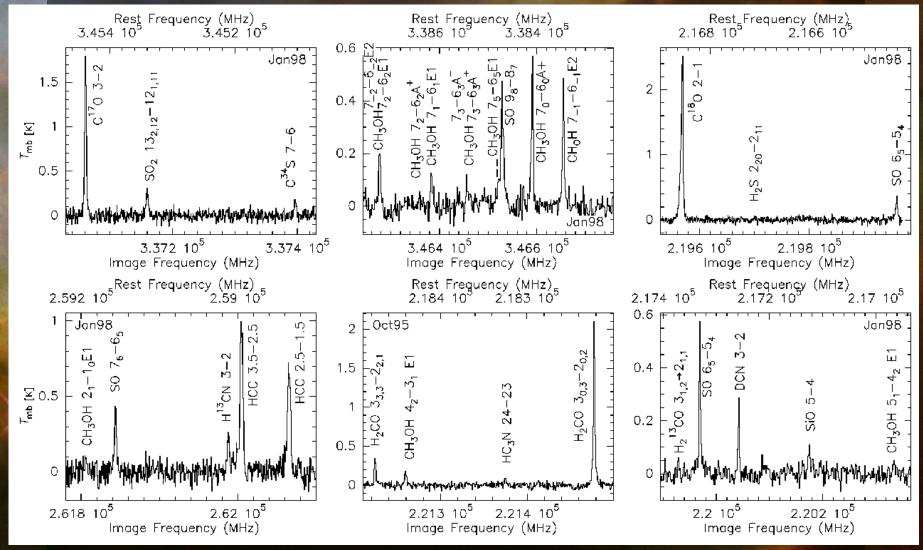
Thermische Emission von (Fest-)Körpern (λ ≤ 1cm)
 (Wärmestrahlung verteilt über viele Wellenlängen)

2) <u>Linienstrahlung</u> (von Gas)

(Aussenden von schmalbandiger Emission bediskreten Anregungszuständen von Atomen

3) Thermische Emission von heißem Ga


(Elektronen werden im elektrischen Feld von abgebremst = Frei-Frei Strahlung) [Bremsst


4) Nichtthermische Strahlung von heiße

(schnelle, freie Elektronen, die sich auf "Spire um Magnetfeldlinien bewegen: Synchrotrons

[Gyrostrahlung: nichtrelativistisch ⇒ Zyklotronstrahlung:

Gasmoleküle

Natürliche Strahlungsquellen/Strahlungsmechanismen:

- Thermische Emission von (Fest-)Körpern (λ ≤ 1cm)
 (Wärmestrahlung verteilt über viele Wellenlängen)
- 2) <u>Linienstrahlung</u> (von Gas)

(Aussenden von schmalbandiger Emission beim Übergang zwischen verschiedenen, diskreten Anregungszuständen von Atomen und Molekülen, Rekombinationsvorgänge)

3) Thermische Emission von heißem Gas (λ ≥ 1 cm)

(Elektronen werden im elektrischen Feld von Ionen abgelenkt und abgebremst = Frei-Frei Strahlung) [Bremsstrahlung]

4) Nichtthermische Strahlung von heißem Gas (λ ≥ 1 cm)

(schnelle, freie Elektronen, die sich auf "Spirelli"-Bahnen um Magnetfeldlinien bewegen: Synchrotronstrahlung)

[Gyrostrahlung: nichtrelativistisch \Rightarrow Zyklotronstrahlung; relativistisch \Rightarrow Synchrotronstrahlung]

Natürliche Strahlungsquellen/Strahlungsmechanismen:

- 1) Thermische Emission von (Fest-)Körpern (λ ≤ 1cm)
 - (Wärmestrahlung verteilt über viele Wellenlängen)
- 2) <u>Linienstrahlung</u> (von Gas)

(Aussenden von schmalbandiger Emission beim Übergang zwischen verschiedenen, diskreten Anregungszuständen von Atomen und Molekülen, Rekombinationsvorgänge)

3) Thermische Emission von heißem Gas (λ ≥ 1 cm)

(Elektronen werden im elektrischen Feld von Ionen abgelenkt und abgebremst = Frei-Frei Strahlung) [Bremsstrahlung]

4) Nichtthermische Strahlung von heißem G

(schnelle, freie Elektronen, die sich auf "Spirelli"-B um Magnetfeldlinien bewegen: Synchrotronstrahl [Gyrostrahlung: nichtrelativistisch ⇒ Zyklotronstrahlung; relativis

Radiostrahlung

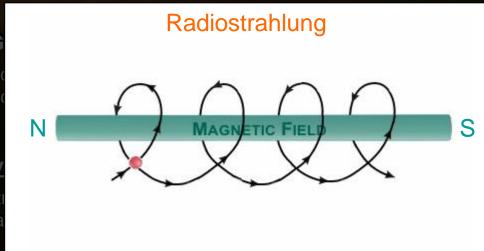
Natürliche Strahlungsquellen/Strahlungsmechanismen:

- Thermische Emission von (Fest-)Körpern (λ ≤ 1cm)
 (Wärmestrahlung verteilt über viele Wellenlängen)
- 2) <u>Linienstrahlung</u> (von Gas)

(Aussenden von schmalbandiger Emission beim Übergang zwischen verschiedenen, diskreten Anregungszuständen von Atomen und Molekülen, Rekombinationsvorgänge)

3) Thermische Emission von heißem Gas (λ ≥ 1 cm)

(Elektronen werden im elektrischen Feld von Ionen abgelenkt und abgebremst = Frei-Frei Strahlung) [Bremsstrahlung]


4) Nichtthermische Strahlung von heißem Gas (λ ≥ 1 cm)

(schnelle, freie Elektronen, die sich auf "Spirelli"-Bahnen um Magnetfeldlinien bewegen: Synchrotronstrahlung)

[Gyrostrahlung: nichtrelativistisch \Rightarrow Zyklotronstrahlung; relativistisch \Rightarrow Synchrotronstrahlung]

Natürliche Strahlungsquellen/Strahlungsmechanismen:

- Thermische Emission von (Fest-)Körpern (λ ≤ 1cm)
 (Wärmestrahlung verteilt über viele Wellenlängen)
- 2) <u>Linienstrahlung</u> (von G (Aussenden von schmalband diskreten Anregungszuständ
- Thermische Emission v (Elektronen werden im elektronen stellt) abgebremst = Frei-Frei Stra

4) Nichtthermische Strahlung von heißem Gas (λ ≥ 1 cm)

(schnelle, freie Elektronen, die sich auf "Spirelli"-Bahnen um Magnetfeldlinien bewegen: Gyrostrahlung)

[Gyrostrahlung: nichtrelativistisch \Rightarrow Zyklotronstrahlung; relativistisch \Rightarrow Synchrotronstrahlung]

(heiß: $T > 2000 \text{ K} \Rightarrow \text{Plasma}$)

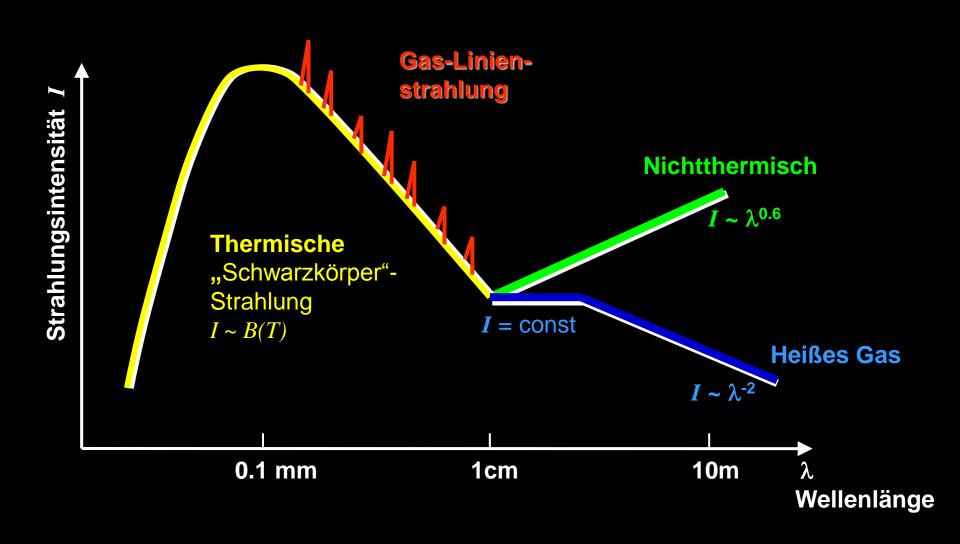
Frage ⇒ Unterscheidung ?

- Thermische Emission von (Fest-)Körpern (λ ≤ 1cm)
 (Wärmestrahlung verteilt über viele Wellenlängen)
- 2) <u>Linienstrahlung</u> (von Gas)

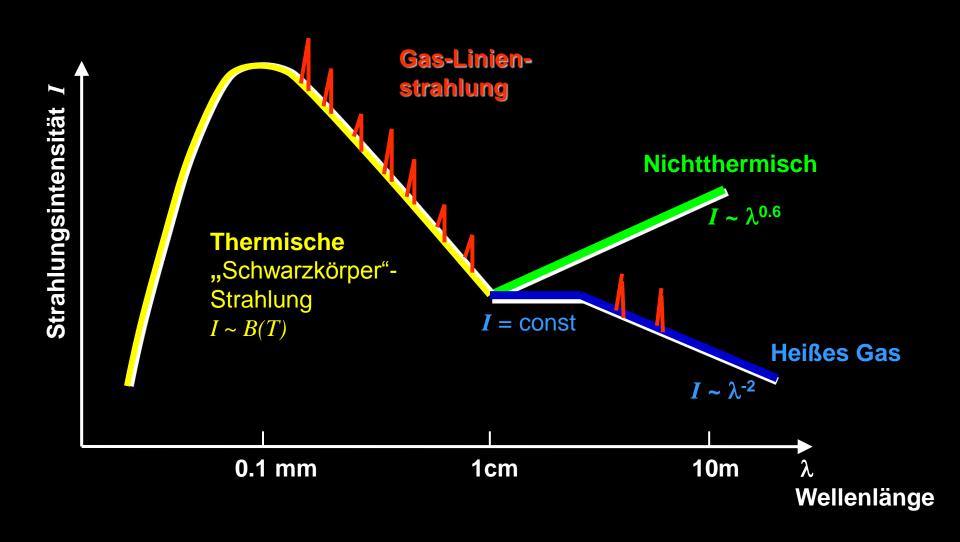
(Aussenden von schmalbandiger Emission beim Übergang zwischen verschiedenen, diskreten Anregungszuständen von Atomen und Molekülen, Rekombinationsvorgänge)

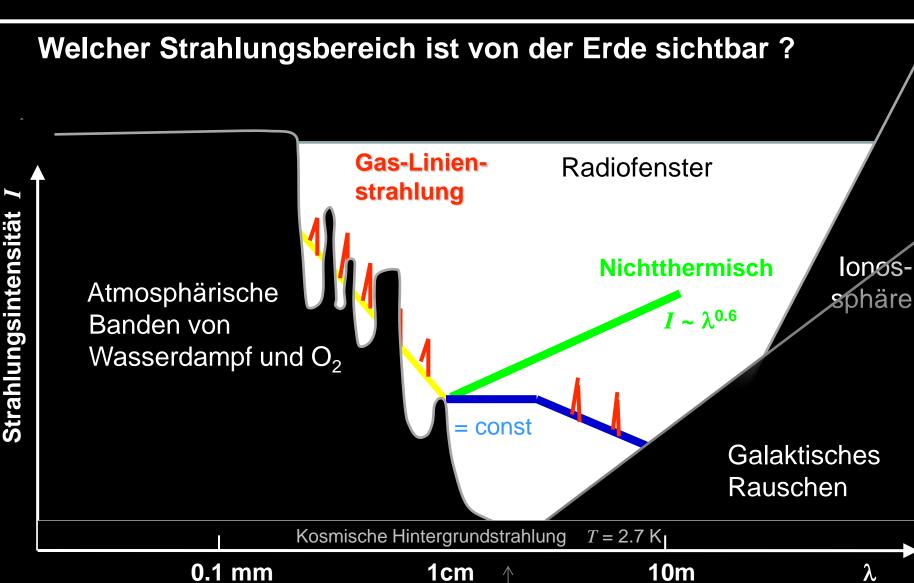
3) Thermische Emission von heißem Gas (λ ≥ 1 cm)

(Elektronen werden im elektrischen Feld von Ionen abgelenkt und abgebremst = Frei-Frei Strahlung) [Bremsstrahlung]


4) Nichtthermische Strahlung von heißem Gas (λ ≥ 1 cm)

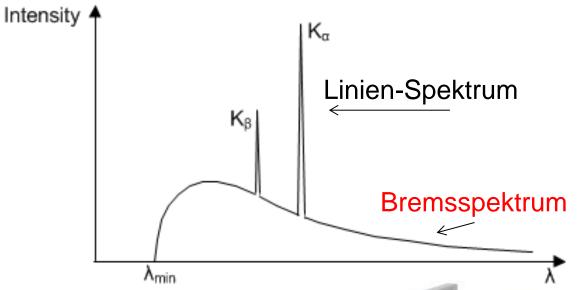
(schnelle, freie Elektronen, die sich auf "Spirelli"-Bahnen um Magnetfeldlinien bewegen: Synchrotronstrahlung)


[Gyrostrahlung: nichtrelativistisch \Rightarrow Zyklotronstrahlung; relativistisch \Rightarrow Synchrotronstrahlung]


(heiß : $T > 2000 \text{ K} \Rightarrow \text{Plasma}$)

Unterscheidung verschiedener Strahlungsmechanismen

Unterscheidung verschiedener Strahlungsmechanismen

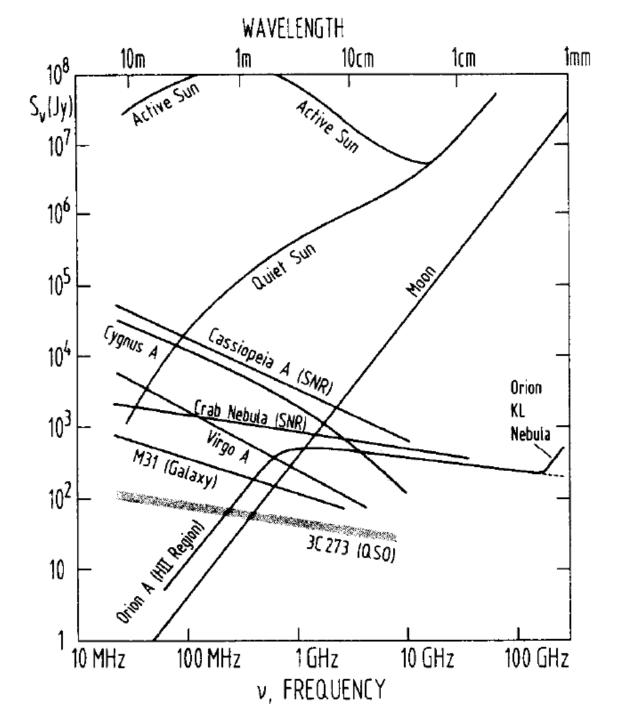

30cm

Wellenlänge

Bremsstrahlung

= Frei-Frei - Emission

z.B. optische Tiefe für die frei-frei Emission $\;\;\tau_{ff}$



Spektrum einer Röntgenröhre (Molybdän-Röhre)

Erinnerung Physikpraktikum:

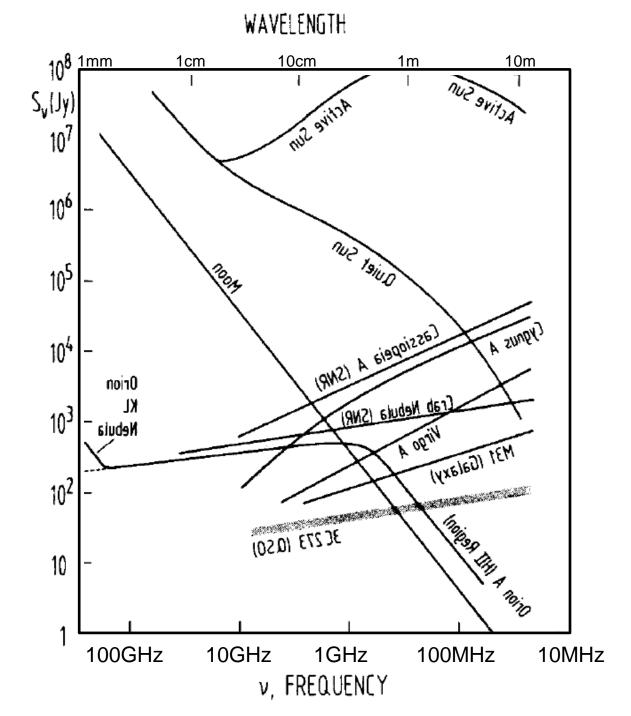


Abb. 11.1
Spektrale
Energieverteilungen
für verschiedene
astronomische
Objekte

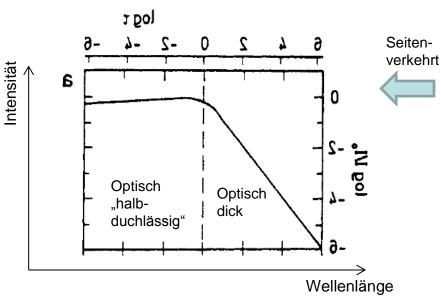

aus Wilson et al. "Tools of Radioastronomie"

Abb. 11.1
Spektrale
Energieverteilunge
für verschiedene
astronomische
Objekte

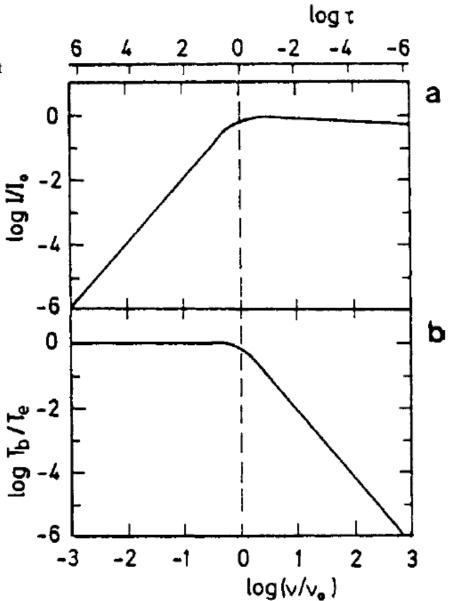
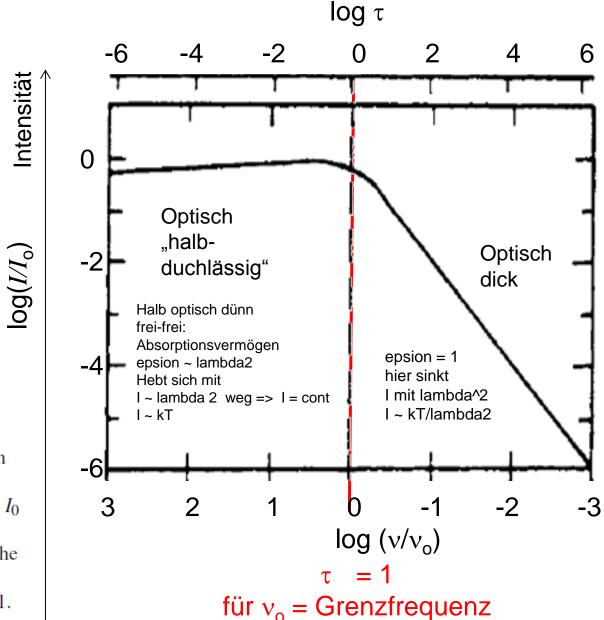

aus Wilson et al. "Tools of Radioastronomie"

Abb. 11.2.



aus Wilson et al. "Tools of Radioastronomie":

Fig. 10.5 Thermal radiation of a gas cloud. (a) Spectral distribution of the intensity. I_0 is the intensity, the electron temperature is T_e , and τ is the optical depth, v_0 is the turn over frequency, where $\tau = 1$. (b) Spectral distribution of the brightness temperature

"turn over" - Frequenz

aus Wilson et al. "Tools of Radioastronomie":

Fig. 10.5 Thermal radiation of a gas cloud. (a) Spectral distribution of the intensity. I_0 is the intensity, the electron temperature is T_e , and τ is the optical depth, v_0 is the turn over frequency, where $\tau = 1$. (b) Spectral distribution of the brightness temperature