



## Vorlesung Radioastronomie WS17/18 Übungsblatt #9

Abgabe: 08.01.2018

## Aufgabe 9.1 - Krebsnebel (20 Punkte)

Der Krebsnebels ist der Überrest einer Supernovaexplosion im Jahre 1054 AD. Abbildung 1 zeigt die spektrale Energieverteilung  $\nu S_{\nu}(\nu)$  des Supernovaüberrests. Von niedrigsten Frequenzen bis über  $10^{22}$  Hz wird die Emission durch Synchrotronstrahlung dominiert. Unterhalb  $10^{15}$  Hz sieht man Radiostrahlung von Elektronen wie sie an der Stoßfront beschleunigt werden. Oberhalb wird das Spektrum steiler, da sich verschieden "gealterte" Elektronenpopulationen überlagern. Der "Knick" im Radiospektrum bei  $10^{15}$  Hz spiegelt jene Elektronen wider, die unmittelbar nach der Explosion an der Stoßfront beschleunigt wurden. Im Folgenden sei vereinfachend angenommen, dass Elektronen ausschließlich bei der kritischen Frequenz der Synchrotronstrahlung

$$v_{crit} = \frac{3\pi}{8} \gamma^2 v_G,$$

emittieren. Hier wurde angenommen, dass  $\langle \sin \alpha \rangle = \pi/4$  und  $\nu_G$  ist die Gyrofrequenz (hier nicht Kreisfrequenz  $\omega$ ).

a) Schätzen die Stärke des Magnetfeldes (in  $\mu$ Gauss) im Krebsnebel! Nehmen Sie dazu, dass die Zeitskala

$$\tau = \frac{E}{P}$$

( $\it E$  ist die Energie eines relativistische Elektrons und  $\it P$  die Gesamtstrahlungsleistung der Synchrotronstrahlung) der Elektronen, die bei  $10^{15}$  Hz abstrahlen, dem Alter des Supernovaüberrests entspricht.

- b) Bestimmen Sie den Lorentzfaktor, die Umlauffrequenz  $\omega_B$  und den Radius der Kreisbahn von Elektronen die bei  $10^{22}$  Hz emittieren!
- c) In Tabelle 1 sind typische Frequenzen drei verschiedener "Beobachtungsfenster" angegeben, bestimmen Sie die Energieverlustzeitskala  $\tau$ .
- d) Der Krebsnebel ist 6000 Lichtjahre entfernt. Welche Leuchtkräfte  $P_{\nu}$  ergeben sich aus Abbildung 1 für die drei in Tabelle 1 genannten Frequenzen? Viele Elektronen sind jeweils erforderlich, um die entsprechende Energie abzustrahlen? Das Volumen der emittieren Region betrage  $3 \cdot 10^{56} {\rm cm}^3$ . Welche Teilchenzahldichten ergeben sich für die drei Frequenzen?





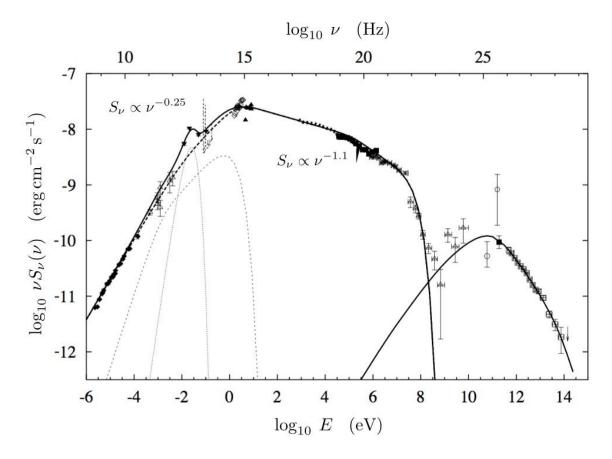



Abbildung 1: Verteilung der spektralen Energiedichte des Krebsnebels.

|                   | Frequenz (Hz)     |
|-------------------|-------------------|
| Radio (0.5 GHz)   | $5 \cdot 10^{8}$  |
| Optisch (600 nm)  | $5 \cdot 10^{14}$ |
| Röntgen (4.1 keV) | $1 \cdot 10^{18}$ |

Tabelle 1: Frequenzen in typischen "Beobachtungsfenstern"